Finite Element Method(FEM) for Two Dimensional Laplace Equation with Dirichlet Boundary Conditions

April 9, 2007

1 Variational Formulation of the Laplace Equation

The problem is to solve the Laplace equation

$$
\begin{equation*}
\nabla^{2} u=0 \tag{1}
\end{equation*}
$$

in domain Ω subject to Dirichlet boundary conditions on $\partial \Omega$. We know from our study of the uniqueness of the solution of the Laplace equation that finding the solution is equivalent to finding u that minimizes

$$
\begin{equation*}
W=\frac{1}{2} \int_{\Omega}\|\nabla u\|^{2} d \tau \tag{2}
\end{equation*}
$$

subject to the same boundary conditions. Here the differential $d \tau$ denotes the volume differential and stands for $d x d y$ for a plane region. W has interpretations such as stored energy or dissipated power in various problems.

2 Meshing

First we approximate the boundary of Ω by polygons. Then Ω can be divided into small triangles called triangular elements. There is a great deal of flexibility in this division process. The term meshing is used for this division. For the resulting FEM matrices to be well-conditioned it is important that the triangles produced by meshing should not have angles which are too small.

At the end of the meshing process the following quantities are created.

- N_{v} : number of vertices or nodes.
- $N_{v} \times 2$ array of real numbers holding the x and y coordinates of the vertices.
- N_{e} : number of triangular elements.
- $N_{e} \times 3$ array of integers holding the vertices of the triangular elements.
- $N_{v f}$: Number of vertices on which the u values are not specified or free.
- $N_{v f} \times 1$ array of integers holding free vertex indices.
- $N_{v p}$: Number of vertices on which the u values are specified or prescribed.
- $N_{v p} \times 1$ array of integers holding prescribed vertex indices.
- $N_{v p} \times 1$ array of real numbers holding prescribed u values.

Data structures holding adjacency information for the vertices, edges, and the triangular elements are also generated by sophisticated FEM meshing subroutines.

3 Planar Approximation over a Triangle

Let us consider a triangular element whose node numbers are α, β, and γ. The node coordinates are $\left(x_{\alpha}, y_{\alpha}\right),\left(x_{\beta}, y_{\beta}\right),\left(x_{\gamma}, y_{\gamma}\right)$. On this triangle $u(x, y)$ is assumed to have a planar variation:

$$
u(x, y)=a+b x+c y=\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{l}
a \tag{3}\\
b \\
c
\end{array}\right]
$$

First a, b, c are to be determined in terms of the values of $u(x, y)$ at the nodes $U_{\alpha}, U_{\beta}, U_{\gamma}$, using the three equations

$$
\begin{equation*}
u\left(x_{j}, y_{j}\right)=U_{j}, \quad j \in\{\alpha, \beta, \gamma\} \tag{4}
\end{equation*}
$$

In matrix form the equations are

$$
\left[\begin{array}{lll}
1 & x_{\alpha} & y_{\alpha} \tag{5}\\
1 & x_{\beta} & y_{\beta} \\
1 & x_{\gamma} & y_{\gamma}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
U_{\alpha} \\
U_{\beta} \\
U_{\gamma}
\end{array}\right]
$$

So

$$
\begin{align*}
u(x, y) & =\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{ccc}
1 & x_{\alpha} & y_{\alpha} \\
1 & x_{\beta} & y_{\beta} \\
1 & x_{\gamma} & y_{\gamma}
\end{array}\right]^{-1}\left[\begin{array}{c}
U_{\alpha} \\
U_{\beta} \\
U_{\gamma}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & x & y
\end{array}\right] \frac{1}{2 A}\left[\begin{array}{ccc}
x_{\beta} y_{\gamma}-x_{\gamma} y_{\beta} & x_{\gamma} y_{\alpha}-x_{\alpha} y_{\gamma} & x_{\alpha} y_{\beta}-x_{\beta} y_{\alpha} \\
y_{\beta}-y_{\gamma} & y_{\gamma}-y_{\alpha} & y_{\alpha}-y_{\beta} \\
x_{\gamma}-x_{\beta} & x_{\alpha}-x_{\gamma} & x_{\beta}-x_{\alpha}
\end{array}\right]\left[\begin{array}{l}
U_{\alpha} \\
U_{\beta} \\
U_{\gamma}
\end{array}\right] \\
& =U_{\alpha} \psi_{\alpha}(x, y)+U_{\beta} \psi_{\beta}(x, y)+U_{\gamma} \psi_{\gamma}(x, y) \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
2 A=x_{\beta} y_{\gamma}-x_{\gamma} y_{\beta}+x_{\gamma} y_{\alpha}-x_{\alpha} y_{\gamma}+x_{\alpha} y_{\beta}-x_{\beta} y_{\alpha} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{\alpha}(x, y)=\frac{1}{2 A}\left[x_{\beta} y_{\gamma}-x_{\gamma} y_{\beta}+\left(y_{\beta}-y_{\gamma}\right) x+\left(x_{\gamma}-x_{\beta}\right) y\right] \tag{8}
\end{equation*}
$$

etc. $2 A$ is twice the area of the triangle $\alpha \beta \gamma$. The functions ψ_{j} are interpolatory in nature.

$$
\begin{equation*}
\psi_{j}\left(x_{k}, y_{k}\right)=\delta_{j k}, \quad j, k \in\{\alpha, \beta, \gamma\} \tag{9}
\end{equation*}
$$

$\alpha:\left(x_{\alpha}, y_{\alpha}\right)$

The ψ functions are also known as natural coordinates, simplex coordinates or areal coordinates. Let P be the point (x, y). Then

$$
\begin{equation*}
\psi_{\alpha}(x, y)=\frac{\text { Area of triangle } P \beta \gamma}{\text { Area of triangle } \alpha \beta \gamma} \tag{10}
\end{equation*}
$$

Exercises:

- Show that $\psi_{\alpha}(x, y)+\psi_{\beta}(x, y)+\psi_{\gamma}(x, y)=1$.
- At which point is $\psi_{\alpha}^{2}(x, y)+\psi_{\beta}^{2}(x, y)+\psi_{\gamma}^{2}(x, y)$ minimum? What is the minimum value?

Since the original domain is now approximated as a union of small triangular elements, the total W corresponding to stored energy or power dissipation can be expressed as a sum of element W 's. For the $\alpha \beta \gamma$ element

$$
\begin{equation*}
W^{(\mathrm{e})}=\frac{1}{2} \int_{(\alpha \beta \gamma)}\|\nabla u\|^{2} d \tau \tag{11}
\end{equation*}
$$

Now

$$
\begin{equation*}
\nabla u=U_{\alpha} \nabla \psi_{\alpha}+U_{\beta} \nabla \psi_{\beta}+U_{\gamma} \nabla \psi_{\gamma} \tag{12}
\end{equation*}
$$

It should be noted that due to the planar variation of $u(x, y)$

$$
\begin{equation*}
\nabla \psi_{\alpha}(x, y)=\frac{1}{2 A}\left[\left(y_{\beta}-y_{\gamma}\right) \hat{\mathbf{x}}+\left(x_{\gamma}-x_{\beta}\right) \hat{\mathbf{y}}\right] \tag{13}
\end{equation*}
$$

etc. are constant over the entire element. So

$$
\begin{equation*}
W^{(\mathrm{e})}=\frac{1}{2} \int_{(\alpha \beta \gamma)}\|\nabla u\|^{2} d \tau=\frac{1}{2} \sum_{j=\alpha, \beta, \gamma} \sum_{k=\alpha, \beta, \gamma} U_{j} S_{j k}^{(\mathrm{e})} U_{k} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{j k}^{(\mathrm{e})}=\int_{(\alpha \beta \gamma)}\left(\nabla \psi_{j}\right) \cdot\left(\nabla \psi_{k}\right) d \tau, \quad j, k \in\{\alpha, \beta, \gamma\} \tag{15}
\end{equation*}
$$

Let

$$
U^{(\mathrm{e})}=\left[\begin{array}{c}
U_{\alpha} \tag{16}\\
U_{\beta} \\
U_{\gamma}
\end{array}\right]
$$

Then

$$
\begin{equation*}
W^{(\mathrm{e})}=\frac{1}{2} U^{(\mathrm{e})^{T}} S^{(\mathrm{e})} U^{(\mathrm{e})} \tag{17}
\end{equation*}
$$

$S^{(\mathrm{e})}$ is called the element Dirichlet matrix. Show that,

$$
\begin{equation*}
S_{\alpha \beta}^{(\mathrm{e})}=\frac{1}{2 A}\left[\left(y_{\beta}-y_{\gamma}\right)\left(y_{\gamma}-y_{\alpha}\right)+\left(x_{\gamma}-x_{\beta}\right)\left(x_{\alpha}-x_{\gamma}\right)\right] \tag{18}
\end{equation*}
$$

etc. The Dirichlet matrix is symmetric, positive semi-definite. The expression for element energy is a quadratic form in the nodal values $U_{\alpha}, U_{\beta}, U_{\gamma}$. Since W is expressed as a sum of all the element energies, it follows that W is given by a positive semi-definite quadratic form in the nodal values $U_{1}, U_{2}, \ldots U_{N}$.

$$
\begin{equation*}
W=\frac{1}{2} U^{T} S U \tag{19}
\end{equation*}
$$

where

$$
U=\left[\begin{array}{c}
U_{1} \tag{20}\\
U_{2} \\
\vdots \\
U_{N}
\end{array}\right]
$$

and the Dirichlet matrix S has contributions from all element $S^{(\mathrm{e})}$'s. In the program developed here, S is initialized to zeros and as one loops over all elements any $S_{\alpha \beta}^{(\mathrm{e})}$ contribution is added to $S_{\alpha \beta}$. This is in contrast to other FEM programs which actually generate 3×3 element matrices and then combine all of them during element assembly.

4 Minimization of W

P of the $N U$ values are prescribed. $N-P$ are free to vary. For simplicity of presentation we assume that the prescribed values come after the free values. (MATLAB and modern matrix libraries allow sub-matrices to be selected based on arbitrary index sets. So there is no need to actually number the prescribed nodes after the free nodes.) Then the matrices U and S may be partitioned as follows:

$$
\begin{gather*}
U=\left[\begin{array}{c}
U_{f} \\
U_{p}
\end{array}\right] \tag{21}\\
S=\left[\begin{array}{cc}
S_{f f} & S_{f p} \\
S_{p f} & S_{p p}
\end{array}\right] \tag{22}
\end{gather*}
$$

Note that due to the symmetry of $S, S_{f p}=S_{p f}^{T}$. In terms of the partitioned matrices W may be expressed as

$$
\begin{align*}
W & =\frac{1}{2} U^{T} S U \tag{23}\\
& =\frac{1}{2}\left[\begin{array}{ll}
U_{f}^{T} & U_{p}^{T}
\end{array}\right]\left[\begin{array}{cc}
S_{f f} & S_{f p} \\
S_{p f} & S_{p p}
\end{array}\right]\left[\begin{array}{c}
U_{f} \\
U_{p}
\end{array}\right] \tag{24}\\
& =\frac{1}{2} U_{f}^{T} S_{f f} U_{f}+\frac{1}{2} U_{p}^{T} S_{p f} U_{f}+\frac{1}{2} U_{f}^{T} S_{f p} U_{p}+\frac{1}{2} U_{p}^{T} S_{p p} U_{p} \tag{25}
\end{align*}
$$

But since $U_{p}^{T} S_{p f} U_{f}$ is a scalar it equals its own transpose.

$$
\begin{equation*}
U_{p}^{T} S_{p f} U_{f}=\left(U_{p}^{T} S_{p f} U_{f}\right)^{T}=U_{f}^{T} S_{p f}^{T} U_{p}=U_{f}^{T} S_{f p} U_{p} \tag{26}
\end{equation*}
$$

The last equality is due to the fact that $S_{f p}=S_{p f}^{T}$. So by combining the two equal middle terms of (25) we get

$$
\begin{equation*}
W=\frac{1}{2} U_{f}^{T} S_{f f} U_{f}+U_{f}^{T} S_{f p} U_{p}+\frac{1}{2} U_{p}^{T} S_{p p} U_{p} \tag{27}
\end{equation*}
$$

Now this W is to be minimized with respect to U_{f}. At the minimum the gradient of W with respect to U_{f} equals zero.

$$
\begin{equation*}
\nabla_{U_{f}} W=S_{f f} U_{f}+S_{f p} U_{p}=0 \tag{28}
\end{equation*}
$$

So the solution is

$$
\begin{equation*}
U_{f}=-S_{f f}^{-1} S_{f p} U_{p} \tag{29}
\end{equation*}
$$

Once U_{f} is known, U is known, and one computes $W=\frac{1}{2} U^{T} S U$. In physical problems, quantities related to W are usually important.

In eigenvalue problems like the Helmholtz equation, and loading problems like the Poisson equation, not only $\frac{1}{2} \int_{\Omega}\|\nabla u\|^{2} d \tau$, but also $\frac{1}{2} \int_{\Omega} u^{2} d \tau$ is of importance. Just as $\frac{1}{2} \int_{\Omega}\|\nabla u\|^{2} d \tau$ is expressed as $\frac{1}{2} U^{T} S U$, the quantity $\frac{1}{2} \int_{\Omega} u^{2} d \tau$ can be expressed as $\frac{1}{2} U^{T} T U$, where the T matrix is called the metric matrix. Like the Dirichlet matrix S, T can be constructed from individual element contributions.

$$
\begin{equation*}
\frac{1}{2} \int_{\Delta(\alpha \beta \gamma)} u^{2} d \tau=\frac{1}{2} \sum_{j=\alpha, \beta, \gamma} \sum_{k=\alpha, \beta, \gamma} U_{j} T_{j k}^{(\mathrm{e})} U_{k} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{j k}^{(\mathrm{e})}=\int_{\Delta(\alpha \beta \gamma)} \psi_{j}(x, y) \psi_{k}(x, y) d \tau, \quad j, k \in\{\alpha, \beta, \gamma\} \tag{31}
\end{equation*}
$$

First we evaluate $T_{j j}^{(\mathrm{e})}=\int_{\Delta(\alpha \beta \gamma)} \psi_{j}^{2}(x, y) d \tau$. We consider a differential strip parallel to the side opposite node j in the triangle $\alpha \beta \gamma$ If ψ_{j} changes by $d \psi_{j}$ on the strip, its width is $h d \psi_{j}$ and the length of the strip is $\left(1-\psi_{j}\right) b$, where b is the length of the side opposite to node j and h is the height of the perpendicular from node j to the opposite side. So

$$
\begin{equation*}
T_{j j}^{(\mathrm{e})}=\int_{\Delta(\alpha \beta \gamma)} \psi_{j}^{2} d \tau=\int_{0}^{1} \psi_{j}^{2}\left(1-\psi_{j}\right) b h d \psi_{j}=\frac{b h}{12}=\frac{A}{6} \tag{32}
\end{equation*}
$$

where A is the area of triangle $\alpha \beta \gamma$. Thus the diagonal terms of the element T matrix, $T_{\alpha \alpha}^{(\mathrm{e})}, T_{\beta \beta}^{(\mathrm{e})}$, and $T_{\gamma \gamma}^{(\mathrm{e})}$, are equal to $A / 6$. What about the off-diagonal terms?

$$
\begin{equation*}
T_{\alpha \alpha}^{(\mathrm{e})}+T_{\alpha \beta}^{(\mathrm{e})}+T_{\alpha \gamma}^{(\mathrm{e})}=\int_{\Delta(\alpha \beta \gamma)} \psi_{\alpha}^{2}+\psi_{\alpha} \psi_{\beta}+\psi_{\alpha} \psi_{\gamma} d \tau=\int_{\Delta(\alpha \beta \gamma)} \psi_{\alpha}\left(\psi_{\alpha}+\psi_{\beta}+\psi_{\gamma}\right) d \tau=\int_{\Delta(\alpha \beta \gamma)} \psi_{\alpha} d \tau \tag{33}
\end{equation*}
$$

since $\psi_{\alpha}+\psi_{\beta}+\psi_{\gamma}=1$. So

$$
\begin{equation*}
T_{\alpha \alpha}^{(\mathrm{e})}+T_{\alpha \beta}^{(\mathrm{e})}+T_{\alpha \gamma}^{(\mathrm{e})}=\int_{\Delta(\alpha \beta \gamma)} \psi_{\alpha} d \tau=\int_{0}^{1} \psi_{\alpha}\left(1-\psi_{\alpha}\right) b h d \psi_{\alpha}=\frac{b h}{6}=\frac{A}{3} \tag{34}
\end{equation*}
$$

But $T_{\alpha \alpha}^{(\mathrm{e})}=A / 6$. So

$$
\begin{equation*}
T_{\alpha \beta}^{(\mathrm{e})}+T_{\alpha \gamma}^{(\mathrm{e})}=\frac{A}{3}-\frac{A}{6}=\frac{A}{6} \tag{35}
\end{equation*}
$$

Similarly we also have

$$
\begin{equation*}
T_{\beta \alpha}^{(\mathrm{e})}+T_{\beta \gamma}^{(\mathrm{e})}=\frac{A}{6} \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
T_{\gamma \alpha}^{(\mathrm{e})}+T_{\gamma \beta}^{(\mathrm{e})}=\frac{A}{6} \tag{37}
\end{equation*}
$$

But $T_{\gamma \alpha}^{(\mathrm{e})}=T_{\alpha \gamma}^{(\mathrm{e})}$ etc. by the symmetry of the element T matrix. So adding the above three equations and dividing by 2 we see that

$$
\begin{equation*}
T_{\alpha \beta}^{(\mathrm{e})}+T_{\beta \gamma}^{(\mathrm{e})}+T_{\gamma \alpha}^{(\mathrm{e})}=\frac{A}{4} \tag{38}
\end{equation*}
$$

It it then seen that each off-diagonal element of the element T matrix is equal to $A / 12$.

5 Example Code

The example code available on the web site solves two problems.

- Solution of Laplace equation on a rectangle: On three sides of the rectangle $u=0$, while on the other side $u=1$.
- Capacitance of a cable with elliptic cross sections for both the conductors.

Please download the code and run these examples.

(1.00, 0.80, 1.00)

