
SE289

Scientific Computation with PDEs

Atanu Mohanty

SERC, I.I.Sc., Bangalore

Topics

• Simple finite difference methods for parabolic

and hyperbolic PDEs

• Analysis of stability and accuracy

• Programs and examples for simple problems

• Demonstration of the difficulties presented by

Hyperbolic PDEs

Objectives

• All equations presented here have known ana-

lytical solutions.

• We apply commonly used finite difference schemes

to get numerical solutions which are then com-

pared with the known exact solutions.

• One objective is to see how good or bad these

numerical methods are.

• Another objective is to understand the stability

analysis of these methods.

Examples of PDEs

• Laplace Equation:

∂2u

∂x2
+

∂2u

∂y2
= 0

• Heat or Diffusion Equation:

∂u

∂t
= α

∂2u

∂x2

• Wave Equation:

∂2u

∂x2
=

1

c2
∂2u

∂t2

• Advection Equation:

∂u

∂t
= −c

∂u

∂x

Discretization Notation

We shall discuss the parabolic heat equation and

the hyperbolic advection equation in one space di-

mension (x) only. In what follows we shall replace

various partial derivatives by differences taken on

rectangular grid in the x-t plane.

• Time step will be written as ∆t.

• The index in the t direction will be denoted n

and will be written as a superscript.

• Space step will be written as ∆x.

• The index in the x direction will be denoted m

and will be written as a subscript.

So u(a + m∆x, n∆t) will be written as un
m.

Example Heat Conduction Problem

A metal rod of length L, whose ends are kept at a

fixed low temperature, is heated at its centre for a

long time. The heating is stopped at t = 0. How

does the temperature evolve for t > 0?

Solve

∂u

∂t
= α

∂2u

∂x2

for t > 0, subject to conditions,

u(x,0) = 1 − |1 − 2x/L|,

for 0 ≤ x ≤ L, and

u(0, t) = u(L, t) = 0,

for t > 0.

Fourier Series Solution:

u(x, t) =

8

π2

∞∑

k=0

(−1)k

(2k + 1)2
e
−(2k+1)2π2αt

L2 sin
(2k + 1)πx

L

FTCS Scheme for the Heat Equation

• Heat Equation:

∂u

∂t
= α

∂2u

∂x2

• Forward in Time, Centered in Space

• ∂u
∂t ≈

un+1
m −un

m
∆t

• ∂2u
∂x2 ≈

un
m+1−2un

m+un
m−1

(∆x)2

• Scheme:

un+1
m = (1 − 2r)un

m + r(un
m−1 + un

m+1)

• where, r =
α∆t

(∆x)2

FTCS Computational Molecule

1

r 1 − 2r r

(m, n + 1)

(m, n)(m − 1, n) (m + 1, n)

Level n

Level n + 1

• r =
α∆t

(∆x)2

Heat Equation FTCS Scheme Results

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
x/L

t=0
t=0.02

FTCS t=0.02

⋆
⋆

⋆
⋆

⋆
⋆

⋆
⋆ ⋆ ⋆ ⋆ ⋆

⋆
⋆

⋆
⋆

⋆
⋆

⋆

⋆
t=0.04

FTCS t=0.04

+
+

+
+

+
+

+++++++
+

+
+

+
+

+

+

• ∆t =
1

800

L2

α
,∆x =

L

18

• r =
α∆t

(∆x)2
= 0.405

• Note: The time values are normalized with re-

spect to L2/α.

FTCS with smaller ∆x

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 0.2 0.4 0.6 0.8 1
x/L

t=0.01
FTCS t=0.01

• ∆t =
1

800

L2

α
,∆x =

L

22

• r =
α∆t

(∆x)2
= 0.605

• Should the result not be more accurate?

• What went wrong!

FTCS with smaller ∆x

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1
x/L

t=0.02
FTCS t=0.02

• ∆t =
1

800

L2

α
,∆x =

L

22

• r =
α∆t

(∆x)2
= 0.605

• Unstable!

• Stability analysis needed.

Stability Analysis (von Neumann)

The exponentials are the eigenfunctions of all lin-

ear difference operators. Assuming u(x, t) = U(t)eikx

we get,

Un+1
m = AUn

m,

where,

A = 1 − 2r + 2r cos(k∆x))

= 1 − 4r sin2(k∆x/2).

We know that spatial variations are smoothed by

the diffusion process, so for stability we need |A|

to be less than 1. Assuming that in the worst case

the sine square term can become unity, for |A| to

be less than 1 we must have 4r < 2, or

r <
1

2
.

This type of stability analysis is called von Neu-

mann stability analysis. It looks at what happens

to waves for various wavelengths.

Limitations of von Neumann Analysis

Strictly speaking von Neumann stability analysis is

valid only for unbounded domains, since it does

not take boundary conditions into account. For

a bounded domain like a rod, a matrix eigenvalue

analysis will give exact results. But it is the short

wavelength modes which cause more trouble, so

von Neumann analysis is usually good enough.

Consequences of r < 1/2

Since r =
α∆t

(∆x)2
needs to remain below a critical

value for stability, doubling spatial resolution(halving

∆x) requires a simultaneous reduction in time step

by a factor of four. This is a very unfortunate sit-

uation.

Stability is poor for explicit schemes such as the

FTCS scheme. One can overcome these instabili-

ties by using implicit schemes. This we know from

ODE courses where it is shown that the implicit

trapezoidal Euler method is more stable and accu-

rate than the explicit Euler forward method. The

PDE version of the trapezoidal method is known

as the Crank-Nicolson method. It is more complex

than FTCS, but it is stable for all step sizes.

The Crank-Nicolson Method

In this method ∂2u
∂x2 is taken as the average of

un
m+1 − 2un

m + un
m−1

(∆x)2

and

un+1
m+1 − 2un+1

m + un+1
m−1

(∆x)2
.

Then we get

(1 + r)un+1
m −

r

2
(un+1

m−1 + un+1
m+1)

= (1 − r)un
m +

r

2
(un

m−1 + un
m+1).

where r = α∆t
(∆x)2

.

This is an implicit scheme. To find the u values

at level n + 1, we must solve a tridiagonal matrix

equation at each step.

Crank-Nicolson Computational Molecule

r
2

1 − r r
2

−r
2

1 + r −r
2

(m − 1, n + 1) (m, n + 1) (m + 1, n + 1)

(m, n)(m − 1, n) (m + 1, n)

Level n

Level n + 1

Crank-Nicolson Stability

Using von Neumann stability analysis we get

A =
1 − r + r cos(k∆x)

1 + r − r cos(k∆x)

=
1 − 2r sin2(k∆x/2)

1 + 2r sin2(k∆x/2)

So |A| < 1 for all values of k. So the Crank-

Nicolson method is unconditionally stable. So the

price of solving a tridiagonal system at each step

is worth paying since this method allows large step

sizes. This is the most popular numerical method

for the diffusion equation.

Crank-Nicolson Results

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
x/L

t=0
t=0.02

CN t=0.02

+

+
+

+
+

+
+

+
+++++

+
+

+
+

+
+

+

+

+

• ∆t =
1

200

L2

α
,∆x =

L

20

• r =
α∆t

(∆x)2
= 2

• Works even with r > 1.

The 1D Advection Equation

• Simplest hyperbolic PDE

•
∂u

∂t
= −c

∂u

∂x

• Describes a scalar field u(x, t) carried by a flow

at constant speed c

• Solution: u(x, t) = F (x − ct)

Initial data

• u(x,0) specified for all x, OR,

• u(x,0) specified for a ≤ x ≤ b, and u(a, t) spec-

ified for t > 0

The FTCS Differencing Scheme

• ut ≈
un+1

m −un
m

∆t

• ux ≈
un

m+1−un
m−1

2∆x

•

un+1
m = un

m −
r

2
(un

m+1 − un
m−1)

• Explicit scheme, easy to use

• Is it stable?

FTCS Computational Molecule

1

r
2

1 −r
2

(m, n + 1)

(m, n)(m − 1, n) (m + 1, n)

Level n

Level n + 1

• r = c∆t
∆x (Courant Number)

FTCS Scheme Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• Pulse grows in amplitude

• A = 1 − ir sin(k∆x)

• |A| > 1. Always unstable!

The Lax Scheme

To fix the instability of the FTCS scheme, Lax

replaced un
m by the average of its left and right

neighbours, (un
m−1 + un

m+1)/2, to get

un+1
m =

1 + r

2
un

m−1 +
1 − r

2
un

m+1

1

1+r
2

1−r
2

(m, n + 1)

(m − 1, n) (m + 1, n)

Level n

Level n + 1

Stability Analysis of the Lax Scheme

Writing u(x, t) = U(t)eikx we get, Un+1
m = AUn

m,

where

A = cos(k∆x) − ir sin(k∆x).

The Lax scheme is thus unconditionally stable(

|A| < 1 for all k), provided |r| < 1.

Since, r =
c∆t

∆x
, this means

∆t <
∆x

c

This is the well-known Courant-Friedrichs-Lewy(or

CFL) stability criterion. All explicit stable differ-

encing schemes are subject to the CFL constraint.

The physical meaning is that having ∆t larger than

the CFL limit artificially slows down the speed at

which the numerical information propagates and

thus prevents convergence.

The Lax Scheme/MATLAB Code

function unew = stepLax(u, r)

N = length(u) - 1;

unew = zeros(N + 1, 1);

cm = 0.5 * (1 + r);

cp = 0.5 * (1 - r);

for ii = 2:N

unew(ii) = cm * u(ii-1) + cp * u(ii+1);

end

unew(1) = 0.0;

unew(N+1) = 0.0;

Lax Scheme Results

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• r = 0.5

• Shows Dispersion

Lax Scheme/CFL Violated

-4

-3

-2

-1

0

1

2

3

4

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• r = 2

Crank-Nicolson for Advection

• Scheme

un+1
m +

r

4
(un+1

m+1 − un+1
m−1)

= un
m −

r

4
(un

m+1 − un
m−1).

• Stable for all r.

A =
1 − i(r/2) sin(k∆x)

1 + i(r/2) sin(k∆x)

• Implicit, not subject to CFL constraint

r
4

1 −r
4

−r
4

1 r
4

(m − 1, n + 1)(m, n + 1) (m + 1, n + 1)

(m, n)(m − 1, n) (m + 1, n)

Level n

Level n + 1

Crank-Nicolson MATLAB Code

function unew = stepCN(u, r)

N = length(u) - 1;

w = zeros(N + 1, 1);

A = eye(N+1);

for ii = 2:(N+1)

A(ii-1,ii) = 0.25 * r;

end

for ii = 1:N

A(ii+1,ii) = -0.25 * r;

end

for ii = 2:N

w(ii) = u(ii) - 0.25*r*(u(ii+1) - u(ii-1));

end

unew = A \ w;

unew(1) = 0.0;

unew(N+1) = 0.0;

Crank-Nicolson/Gaussian Pulse

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• No Dispersion, Stable

• r = 2 (No CFL Constraint)

• Each step requires the solution of a tridiagonal

system

Crank-Nicolson/Square Pulse

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• Spurious Oscillations

• Not good for waveforms with sharp edges

• All central difference schemes have this prob-

lem

Upwind Differencing

The only way to suppress spurious oscillations at

sharp edges is to use the upwind differencing scheme.

un+1
m − un

m

∆t
= −c

un
m − un

m−1

∆x

This gives the explicit scheme

un+1
m = un

m − r(un
m − un

m−1)

1

r 1 − r

(m, n + 1)

(m, n)(m − 1, n)

Level n

Level n + 1

r = c∆t
∆x

Upwind Differencing Properties

Stability:

A = 1 − r(1 − cos(k∆x)) − ir sin(k∆x)

So

|A|2 = 1 − 2r(1 − r)(1 − cos(k∆x))

|A| < 1, for all k provided r < 1. So the CFL

condition needs to be satisfied.

This method is only first-order accurate in space.

Upwind Differencing/Square Pulse

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• No oscillations

• Stable if CFL condition is satisfied

• Still dispersive

Upwind Differencing/Gaussian Pulse

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• Not as dispersive as Lax

Lax-Wendroff Scheme

u(x, t + ∆t) = u(x, t) + (∆t)
∂u

∂t

+
(∆t)2

2

∂2u

∂t2
+ · · ·

But by the advection equation,

∂u

∂t
= −c

∂u

∂x

and

∂2u

∂t2
= c2

∂2u

∂x2
.

So

u(x, t + ∆t) = u(x, t) − (c∆t)
∂u

∂x

+
(c∆t)2

2

∂2u

∂x2
+ · · ·

The advantage of having spatial derivatives in-

stead of time derivatives is that at one level we

have many points to compute the space deriva-

tives.

Lax-Wendroff Scheme

Discretizing the above equation gives us the more

stable and more accurate scheme

un+1
m = (1 − r2)un

m +
r2 + r

2
un

m−1 +
r2 − r

2
un

m+1

known as the Lax-Wendroff scheme. It is very

popular.

1

r2+r
2 1 − r2

r2−r
2

(m, n + 1)

(m, n)(m − 1, n) (m + 1, n)

Level n

Level n + 1

Lax-Wendroff/Square Pulse

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• Less oscillations than Crank-Nicolson

Lax-Wendroff/Gaussian Pulse

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
x-ct

t=0
t=0.5

• Not very dispersive

Which Method?

• No one knows a differencing scheme which

is both non-dispersive and can handle sharp

wave-fronts.

• There has been a lot of research in this area.

• There is a need to understand hyperbolic PDEs

better.

Conclusion

• All numerical methods need to be analyzed for

stability and accuracy.

• What seems like a minor change can have a

profound effect on the stability and the accu-

racy of a numerical method.

