
Bernoulli Numbers

Bernoulli numbers are named after the great Swiss mathematician Jacob Bernoulli(1654-1705) who used
these numbers in the power-sum problem. The power-sum problem is to find a formula for the sum of the
r-th powers of the first n natural numbers for positive integer exponents r.

σr(n) = 1r + 2r + . . .+ nr (1)

For small values of r expressions for σr(n) are well known. For example

σ1(n) = n(n+1)
2 (2)

σ2(n) = n(n+1)(2n+1)
6 (3)

σ3(n) =
[
n(n+1)

2

]2
(4)

We will not follow Bernoulli’s original method. We will use a shortcut involving the differentiation operator
D. To simplify the presentation we will consider the sum of the r-th powers till n− 1.

Sr(n) = 1r + 2r + . . .+ (n− 1)r =
n−1∑
k=0

kr (5)

Sr(n) satisfies the difference equation

Sr(n+ 1)− Sr(n) = nr (6)

with initial condition
Sr(0) = 0 (7)

It is easy to derive an expression for Sr(n) for the first few values of r.

S1(n) = n(n−1)
2 =

n2

2
− n

2
(8)

S2(n) = n(n−1)(2n−1)
6 =

n3

3
− n2

2
+
n

6
(9)

S3(n) = n2(n−1)2

4 =
n4

4
− n3

2
+
n2

4
(10)

S4(n) = n(n−1)(2n−1)(3n2−3n−1)
30 =

n5

5
− n4

2
+
n3

3
− n

30
(11)

From this small list we observe that the polynomial Sr(n) seems have the following interesting properties.

• The leading term of Sr(n) is nr+1

r+1 . The next term is −n
r

2 .

• Sr(0) = Sr(1) = 0

• Sr(−n) = (−1)r+1Sr(n+ 1)

• Sr(n) has factors n, (n− 1). When r is even, (2n− 1) is also a factor.

Operator-based Solution: In the past we have discussed how the Taylor series

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + . . . (12)

may be written as
f(x+ h) = ehDf(x) (13)

where D is the differentiation operator. We write Sr(n+ 1)− Sr(n) = nr as

(eD − 1)Sr(n) = nr (14)

where the operator D means differentiation with respect to n. A formal solution is

Sr(n) =
1

eD − 1
nr =

D
eD − 1

D−1nr =
D

eD − 1

(
nr+1

r + 1
+ C

)
(15)

where C is a constant of integration to be determined from Sr(0) = 0. Note that the D−1 factor was separated
so that D

eD−1
only contains positive powers of D. Now all that is needed is a power series expansion for D

eD−1
in powers of D.
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Definition:
z

ez − 1
=
∞∑
k=0

Bk
zk

k!
(16)

The numbers Bk, k = 0, 1, 2, . . . are known as Bernoulli numbers. Many problems in analysis can be
solved using Bernoulli numbers. Since z/(ez − 1) has simple poles at z = ±2πni, n = 1, 2, . . ., the expansion
here converges for |z| < 2π.
Properties: By letting z → 0 in the definition we see that

B0 = 1 (17)

Next we see that
z

2
+

z

ez − 1
=
z

2
ez + 1
ez − 1

=
z

2
coth

z

2
(18)

is an even function of z. So in its power series expansion about z = 0 the odd order coefficients are zero. So
B1 + 1

2 , B3, B5, B7, . . . are zero. This means that

B1 = −1
2

(19)

B2k+1 = 0, k = 1, 2, 3, . . . (20)

A recurrence formula for the computation of the Bernoulli numbers will now be given.

z

ez − 1
ez = z +

z

ez − 1
(21)

⇒

( ∞∑
k=0

Bk
zk

k!

)( ∞∑
m=0

zm

m!

)
= z +

∞∑
n=0

Bn
zn

n!
(22)

On the left hand side there is the product of two power series. The first is from the definition of the Bernoulli
numbers, and the second is the power series for the exponential function. We recall the rule for multiplying
two power series. If ( ∞∑

k=0

akz
k

)( ∞∑
m=0

bmz
m

)
=

( ∞∑
n=0

cnz
n

)
(23)

then

cn =
n∑
k=0

akbn−k (24)

Thus applying this rule to equation (22) we get

∞∑
n=0

(
n∑
k=0

Bk
k!(n− k)!

)
zn = z +

∞∑
n=0

Bn
zn

n!
(25)

We compare coefficients of zn on both sides for n > 1 to obtain

Bn
n!

=
n∑
k=0

Bk
k!(n− k)!

(26)

(Since B0 and B1 are already known we only care about n > 1.)

⇒ Bn =
n∑
k=0

n!
k!(n− k)!

Bk =
n∑
k=0

(
n

k

)
Bk, n > 1 (27)

This relation can be symbolically written as

Bn = (1 +B)n, n > 1 (28)

where (1 + B)n is to be expanded just like a binomial expansion except that instead of taking superscripts
to get powers such as Bk we take subscripts to get the various Bernoulli numbers Bk. Actually since the Bn
term cancels from both sides, we get a relation involving Bernoulli numbers till Bn−1. So

B0 + nB1 +
n(n− 1)

2
B2 + . . .+

(
n

n− 2

)
Bn−2 + nBn−1 +Bn = Bn, n > 1 (29)
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actually gives

Bn−1 = − 1
n

(
B0 + nB1 +

n(n− 1)
2

B2 + . . .+
(

n

n− 2

)
Bn−2

)
= − 1

n

n−2∑
k=0

(
n

k

)
Bk, n > 1 (30)

In this formula nearly half the terms on the right hand side do not contribute anything since B3 = B5 =
B7 = . . . = 0. We show the use of (30) to compute B2 and B4.

B2 = −1
3

(B0 + 3B1) = −1
3

(
1 + 3

−1
2

)
=

1
6

(31)

B3 is known to be 0.

B4 = −1
5

(B0 + 5B1 + 10B2 + 10B3) = −1
5

(
1 + 5

−1
2

+ 10
1
6

+ 10× 0
)

= − 1
30

(32)

Exercise: Using a suitable arbitrary precision arithmetic package write a program to compute Bk in frac-
tional form. Compare your program output with the table given here.

n Bn

2 1/6
4 −1/30
6 1/42
8 −1/30
10 5/66
12 −691/2730
14 7/6
16 −3617/510
18 43867/798
20 −174611/330
22 854513/138
24 −236364091/2730
26 8553103/6
28 −23749461029/870
30 8615841276005/14322
32 −7709321041217/510
34 2577687858367/6
36 −26315271553053477373/1919190
38 2929993913841559/6
40 −261082718496449122051/13530

What many consider to be the first computer program in the world was written to compute the Bernoulli
numbers by Lady Ada Lovelace(1815-1852) for the Analytical Engine of Charles Babbage(1791-1871).

Exercise: Show that

Sr(n) =
1

r + 1

r∑
k=0

(
r + 1
k

)
Bkn

r+1−k (33)

What is S10(n)? Compute S10(1000).

Expansions of some functions: From (16) and the even function of z in (18) it is clear that

z

2
coth

z

2
=
∞∑
k=0

B2k

(2k)!
z2k, |z| < 2π (34)

Substituting 2z for z we get

z coth z =
∞∑
k=0

22kB2k

(2k)!
z2k, |z| < π (35)

Substituting iz for z we get

z cot z =
∞∑
k=0

(−1)k
22kB2k

(2k)!
z2k, |z| < π (36)
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Since cot z has simple poles at z = kπ where k can be any integer,

cot z =
∞∑

k=−∞

ck
z − kπ

(37)

where the constants ck are determined as

ck = lim
z→kπ

(z − kπ) cot z = lim
z→kπ

z − kπ
sin z

cos z = 1 (38)

It should be noted that the sum (37) is understood to be the limit as N tends to infinity of the sum of terms
from k = −N to k = N . So

cot z =
1
z

+
∞∑
k=1

(
1

z − kπ
+

1
z − kπ

)
=

1
z

+ 2
∞∑
k=1

z

z2 − (kπ)2
(39)

and

z cot z = 1 + 2
∞∑
k=1

z2

z2 − (kπ)2
= 1− 2

∞∑
k=1

(
z
kπ

)2
1−

(
z
kπ

)2 (40)

This expansion is valid at all values of z except nonzero multiples of π. If we restrict z to the inside of the
circle of radius π with centre at the origin, then |z/(kπ)| < 1 on the right hand side. But

u

1− u
= u+ u2 + u3 + . . . =

∞∑
n=1

un, |u| < 1 (41)

So

z cot z = 1− 2
∞∑
k=1

∞∑
n=1

(
z2

k2π2

)n
= 1− 2

∞∑
k=1

∞∑
n=1

1
k2n

z2n

π2n
= 1− 2

∞∑
n=1

( ∞∑
k=1

1
k2n

)
z2n

π2n
, |z| < π (42)

The sum of inverse powers of the natural numbers is the famous zeta function of Riemann. When the real
part of the argument is greater than 1 the zeta function can be defined by

ζ(s) =
1
1s

+
1
2s

+
1
3s

+ . . . =
∞∑
k=1

1
ks
, (<(s) > 1) (43)

Now

z cot z = 1− 2
∞∑
n=1

ζ(2n)
π2n

z2n (44)

But by (36)

z cot z = 1 +
∞∑
n=1

(−1)n22nB2n

(2n)!
z2n (45)

Comparing coefficients of z2n for n = 1, 2, . . . in (45) and (44) we get

ζ(2n) =
(−1)n−122n−1B2n

(2n)!
π2n (46)

In particular

ζ(2) =
π2

6
(47)

ζ(4) =
π4

90
(48)

ζ(6) =
π6

945
(49)

ζ(8) =
π8

9450
(50)

Since for any natural number n, ζ(2n) is positive, (46) shows that B2n has the same sign as (−1)n−1 for
positive n. In other words successive even index Bernoulli numbers alternate in sign starting with B2. (There
is no change in sign from B0 = 1 to B2 = 1/6.)
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Exercise: Find

S =
∞∑
k=0

1
(2k + 1)4

=
1
14

+
1
34

+
1
54

+ . . .

The Euler-Maclaurin Summation Formula (Operator Derivation)

This is a formula relating sums to integrals. In analysis integrals are frequently easier to find than similar sums
and the Swiss mathematician L. Euler(1707-1783) used this formula first to estimate sums in terms of the
integrals. In direct numerical work integrals must be approximated by sums and the Scottish mathematician
C. Maclaurin(1698-1746) used this formula to estimate an integral in terms of a trapezoidal sum. The Euler-
Maclaurin formula is important not only because of the high accuracy it provides in numerical work but also
because of the asymptotic forms which originate from it. Stirling’s approximation for the factorial can be
derived using the Euler-Maclaurin summation formula. Let

F (x) =
∫ x

c

f(ξ) dξ = D−1f(x) (51)

so that
DF (x) = f(x) (52)

and
DmF (x) = F (m)(x) = f (m−1)(x) (53)

Now

h

2
[f(x+ h) + f(x)] =

h

2
(ehD + 1)f(x) =

hD
2

(ehD + 1)D−1f(x) =
hD
2

(ehD + 1)F (x)

=
hD
2
ehD + 1
ehD − 1

(ehD − 1)F (x) =
hD
2
ehD + 1
ehD − 1

(F (x+ h)− F (x))

=
hD
2

coth
hD
2

(F (x+ h)− F (x)) =

(
1 +

∞∑
k=1

B2k

(2k)!
(hD)2k

)
(F (x+ h)− F (x))

= F (x+ h)− F (x) +
∞∑
k=1

B2kh
2k

(2k)!

[
F (2k)(x+ h)− F (2k)(x)

]
=

∫ x+h

c

f(ξ) dξ −
∫ x

c

f(ξ) dξ +
∞∑
k=1

B2kh
2k

(2k)!

[
f (2k−1)(x+ h)− f (2k−1)(x)

]
=

∫ x+h

x

f(ξ) dξ +
∞∑
k=1

B2kh
2k

(2k)!

[
f (2k−1)(x+ h)− f (2k−1)(x)

]
(54)

Because the sum on the right hand side involves differences of end point derivatives only, telescoping can be
used to express any trapezoidal sum in the following way.

h

[
1
2
f(x) + f(x+ h) + . . .+ f(x+ (n− 1)h) +

1
2
f(x+ nh)

]
=
∫ x+nh

x

f(ξ) dξ +
∞∑
k=1

B2kh
2k

(2k)!

[
f (2k−1)(x+ nh)− f (2k−1)(x)

]
(55)

This is the celebrated Euler-Maclaurin summation formula. It shows the following remarkable facts.

• (TRAPEZOIDAL SUM) = (INTEGRAL) + (CORRECTION)

• The correction depends on derivatives of odd order only at the end points.

• The correction involves only even powers of the step size h. This fact makes Romberg integration a
great success.

• The sum on the right hand side is often asymptotic in nature.

• This formula uses the Bernoulli numbers.

The derivation just presented is not rigorous and gives no estimate of the error if one uses only a finite
number terms in the correction. A rigorous derivation will be presented later.
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