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Abstract—The Smith-Waterman algorithm is used in Bio-
informatics to perform pairwise local alignment between a query
sequence and a subject sequence. We present a GPU based
parallel version of this algorithm that is able to perform pair-
wise alignment faster than previous algorithms. In particular, it
parallelizes each alignment, rather than relying on parallelism
across multiple pair alignments, which many other proposed GPU
algorithms do. As a result it scales better. We further extend
our algorithm to work efficiently on a cluster of GPUs. At a
high level, our approach subdivides the iterative computation
of elements of a matrix among blocks of processors such that
each block can simply recompute the data it needs instead of
waiting for other processors to compute them. Sometimes this
may lead to excessive recomputation, however. We evaluate these
cases and employ a hybrid approach, recomputing only limited
data and communicating the rest. Our algorithm is also extended
to produce not only the best but all ‘best K’ alignments. Our
results on SSCA#1 benchmark show that our method is upto
5-24 times faster than previous method.

I. INTRODUCTION

Comparing a pair of nucleotide or protein sequences and

identifying regions of similarity allows biologists to discover

functional, structural and evolutionary characteristics. This

problem is commonly referred to as sequence alignment in

Bio-informatics. Further, global alignment matches the com-

plete sequence of characters. Local alignment on the other

hand computes similarity of all sub-sequences, which may

be well separated. In local alignment, non-identical characters

and gaps are placed so as to align the identical characters

of a subject and a query sequence (Fig. 1). Local alignment

is computationally more challenging and often heuristics and

approximation algorithms ([1], [2]) are applied. However,

dynamic programming approaches like the Smith-Waterman

algorithm (SW, for short) [3] are able to compute the best

alignment based on a provided scoring scheme. If m is the

length of the subject sequence and n is the length of the query,

SW takes O(mn) time. This quadratic time complexity is still

prohibitive for large sequences and parallelization, including

on GPUs, has been a popular area of research. Ours is an

algorithm in this genre. First we describe the basic approach

of Smith and Waterman.

A. Smith-Waterman algorithm

The local alignment algorithm of Smith and Waterman [3]

uses dynamic programming to find the maximally similar
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Fig. 1. A possible local alignment of two given sequences

segments from a given pair of sequences. It compares segments

of all possible lengths and evaluates the similarity measure

exhaustively for all options, before picking the best. This

algorithm comprises three main steps:

1) Set up the dynamic programming matrix (i.e., SW ma-
trix).

2) Iteratively compute the scores of the cells of the matrix.

3) Identify the optimal alignment through a final traceback.

We place the two given sequences respectively as the top row

and the first column in the SW matrix. Let the score of cell

(i, j) be denoted by H(i, j). Let Gs, Ge and Sij denote the gap

opening-penalty, the gap extension-penalty and the similarity-

score, respectively. Two buffers E(i, j) and F (i, j) are used

to preserve the values from the previous iterations that are

needed in the current one. The SW algorithm is defined by

the following recurrences:

H(i, j) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(i− 1, j − 1) + Sij

E(i, j)

F (i, j)

0

E(i, j) = max

{
E(i− 1, j)−Ge

H(i− 1, j)−Gs −Ge

F (i, j) = max

{
F (i, j − 1)−Ge

H(i, j − 1)−Gs −Ge
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Fig. 2. SW Matrix Example

The cells of the first row and the first column are initialized

to zero. The similarity scores Sijs are application dependent.

In our experiments we have used the scores given by [4]:

match score of 5, mismatch score of -3, gap opening-penalty

of 8 and gap extension-penalty of 1. Fig. 2 shows an example

of two sequences being aligned using this algorithm. Note that

the computation corresponding to each cell (i, j) depends on

the values in the cells above it in its column, to its left in

its row and the top-left diagonals. After iteratively filling the

matrix, a final traceback yields the resulting alignments. This

traceback is a small fraction of the total alignment time, as also

observed by Wirawan et al. [5]. Sandes and de Melo [6] also

report 97.86% of time being spent in finding the optimal score

and the end point of the optimal alignment while performing

chromosome alignment on GPU GTX 285. Therefore, work in

this paper focusses on optimizing the runtime for computing

the SW matrix.

B. GPGPU memory architecture

Graphics Processing Units (GPUs) provide a general pur-

pose processing platform as they offer compelling performance

to cost ratio. GPU is well suited for many parallel compute-

bound applications. It usually includes its own random ac-

cess memory (RAM) separate from the system memory and

supports thousands of concurrent resident hardware threads.

Multiple threads are grouped together into blocks and blocks

into a grid. A kernel is launched that spawns a grid of threads,

each executing the kernel function. Threads of the same block

run on one SM (multi-processor) and can share data through

fast on-chip shared memory and can be synchronized by

barriers. Such synchronization is not available between the

blocks [7], however.

Efficient coherent access of the on-chip and off-chip mem-

ory resources (Fig. 3) can significantly impact the observed

memory throughput. Higher throughput can be critical to

performance of memory intensive applications like sequence

alignment. The off-chip global memory is slower and larger

in size. Global memory access on the GPU takes more than

100x as many clock cycles as the faster memory access

and the memory bandwidth can be dramatically improved

if threads within a SIMD warp access contiguous global

SM-0

Registers

SharedL1

SM-1

Registers

SharedL1

SM-N

Registers

SharedL1

…

L2 

Global memory

Fig. 3. Memory hierarchy on GPU with N+1 multiprocessors

memory addresses, resulting in fewer memory transactions.

The shared memory is smaller but faster and can be used to

communicate between threads within the same block. Shared

memory bandwidth can also be affected due to bank conflicts.

We demonstrate in Section II how our algorithm makes an

efficient use of this memory hierarchy.

C. Previous Work

Many parallel versions of SW algorithm have been designed

for clusters ([8], [9], [10], [11]), FPGAs ([12], [13], [14]),

Grids ([15], [16]) and CellBEs ([17], [18], [19]). However,

recent advent of GPUs has lead to a significant spurt in

research in this area yielding impressive speedups ([20], [21],

[22], [4], [23], [24], [25]). Many of these algorithms solve

a variant of pairwise sequence alignment, where they align

a query against multiple subject sequences in a database and

therefore solve many independent SW problems using inter-

task parallelization. These techniques do not present an op-

timal solution for alignments involving very large sequences,

however. For example, it has been shown that CUDASW++

2.0 cannot handle strings longer than 70,000 characters on

NVIDIA Tesla C2050 [24].

Efficient alignment of large sequences is important in Bio-

informatics because cross-species chromosome alignments can

reveal ancestral relationships and may be used to identify

the peculiarities of the species [6]. In this paper, we focus

on improving the execution times of a single but very large

alignment problem. The sizes of the subject sequence and

query sequence in the typical biological applications are in

the range 107 − 1010 and 104 − 105, respectively [4]. Much

relevant literature exists in this context as well ([4], [23],

[24], [26], [6], [27]). Khajeh-Saeed et al. [4] reformulate the

SW algorithm to use sequential memory accesses. This is

achieved using a parallel scan approach to account for the

horizontal dependency of each cell’s score in the algorithm

though it induces a significant computational and synchro-

nization overhead. Siriwardena and Ranasinghe [23] propose

two implementations for the global pairwise alignment with

different memory access strategies but their runtime has been

reported to be slower than the one in [4]. More recently, Li et

al. [24] divide the SW matrix into many strips and compute

them on individual SMs. CUDAlign 1 tool [26] is able to

compare DNA sequences with more than 106 base pairs using

a GPU version of the SW algorithm. CUDAlign 2 [6] extends
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CUDAlign 1 to produce both the score and the full optimal

alignment in linear space by using Myers-Miller algorithm.

Their work is further optimized by Sandes et al. [27] by

pruning the cells in the SW matrix that have no impact on

the final optimal score. More recently, [28] reports a multi-

GPU version.

Each of these algorithms require synchronization between

blocks and have high I/O traffic between global memory and

the SMs. In this paper, we propose a new technique to solve

this problem, which not only obviates the issue of inter-

block synchronization but also brings a significant reduction

in the I/O traffic. Requisite attention to the detail that efficient

utilization of the memory hierarchy plays an important role in

the performance of memory-intensive applications on GPUs

has helped us achieve better execution times for this problem

on the target architecture.

We next describe two of the per-pair parallel alignment

algorithms in more detail. Our approach is partly inspired by

these algorithms.

1) ParallelScan method: The ParallelScan method of

Khajeh-Saeed et al. [4] reformulates the SW algorithm to

allow sequential memory accesses of SW matrix rows. This

is achieved using parallel scan to account for the horizontal

dependency of each cell in the algorithm. The parallel scan

adds a significant computational overhead on the execution

times (approximately 70% of the total time). There are two

reasons for this behavior. First, the tree based reductions is

a non-ideal match for GPU’s architecture. Second, this ap-

proach requires inter-block synchronization. This can only be

achieved by employing multiple sequential kernels computing

each row of the score matrix.

If m is the size of the subject sequence, n that of the query

sequence (with m > n) and p the number of processors, the

algorithm fills the alignment matrix cells horizontally (parallel

to the subject sequence) and works on p cells simultaneously.

First step involves computing scores assuming only the vertical

dependency of each cell and the second step involves resolving

horizontal dependency (using Blelloch’s scan algorithm). In

the SW algorithm, the score at each cell depends on the O(n)
scores to its left because the sizes of aligned subsequences are

limited due to the negative mismatch and gap penalties. These

n elements can be scanned by n processors in O(log n) time.

So for each row, time

r(m,n, p) = O

(
m

p
log(n)

)
(1)

and therefore the total time

t(m,n, p) = O

(
mn log(n)

p

)
(2)

Note that it is the time required to complete O(mn) work

using p processors. Equation 2 shows the additional log(n)
factor introduced due to parallel scan computation. Executing

multiple sequential GPU kernels on the GPU is expensive:

they require 12n kernel calls. The implementation uses O(m)
global memory and an expensive O(mn) I/O traffic between

global memory and SMs. Their implementation assumed the

size of optimal alignments to be shorter than 1024 as they

resolve the horizontal dependency of a cell with 1024 cells

only. This implementation returns incorrect results when size

of alignments goes beyond 1024. ParallelScan method pro-

duces the best-K alignments.

2) StripedAlignment method: The StripedAlignment ap-

proach of Li et al. [24] is based on dividing the SW matrix into

�m/s� strips of constant width s and height n. SM i works

on every strip j s.t. j mod sm = i, where sm is the count

of SMs on the GPU. Hence each strip needs some boundary

scores from the previous one to commence its own work. The

time taken by this strategy not only depends on the matrix

size, but also the workload of each SM per strip because the

small workload forces the SMs to wait for the data needed

to start working on the next strip. Our experiments in Section

III indicate that this factor leads to poor performance of this

algorithm unless the query size is very large.

Further, this method performs inter-SM communication

using global memory and each strip shares O(n) data with its

neighbor strip. So the total global I/O traffic is O(ms ×n). The

results of their experiments prove that the I/O traffic introduces

a significant overhead. If we exclude the high global memory

access time however, this algorithm has optimal complexity of

O(mn/p) when both m and n are sufficiently large. Unlike

ParallelScan, the SW matrix is computed through a single

kernel invocation. This algorithm is designed to return only

the single best alignment of the given pair of sequences.

The main contribution of this paper include:

• An efficient GPU based parallel algorithm to compute

the SW matrix, which uses efficient memory operations,

mostly in shared memory, and eliminates most synchro-

nization

• An adaptatable algorithm that works efficiently on both

small and large query sizes

• An extension to the algorithm that returns the best K
scores

In the rest of this paper, we describe the details of our

algorithm in Section II and evaluate it using experiments in

Section III. Section IV concludes the paper and presents future

work.

II. NEW OVERLAP-BASED APPROACH

Both implementations discussed in the previous section

require inter-block or inter-thread communication using shared

or global memory because of dependency between cells. We

have designed an Overlap-based approach, which attempts to

eliminate the inter-block dependencies.

A. Parallelization strategy

The Overlap-based approach exploits two key observations

of the SW algorithm to overcome the need for communication

and synchronization. First, the scores of the cells along the

diagonal of the score matrix can be computed in parallel (see

Fig. 4). So at each time step, threads within a GPU block

work on the cells that are diagonally placed in the matrix.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 16,2020 at 17:30:35 UTC from IEEE Xplore.  Restrictions apply. 



A G G C A T T C A G G G T A A A G T C A C T G

A

G

C

T

C

G

Single block

Subject sequence
Q

ue
ry

Fig. 4. The gray cells, computed by threads within a block, are only
dependent on the scores of previous two diagonals. The successive diagonals
are computed iteratively by the same block.
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Fig. 5. Illustration of our parallelization strategy for query length n < 1024

Each diagonal depends upon the score of the previous two

diagonal scores, and that is all we need to store in the shared

memory. The threads of the block iteratively compute the

scores of successive diagonals. Second, due to the negative

gap penalty values, the lengths of the alignments are restricted

to O(min(m,n)), i.e., O(n) in our case. We decompose the

matrix into overlapping chunks of columns, with an overlap

of O(n) between successive chunks. Introducing the overlaps

of size O(n) allows us to assign each chunk to a separate

GPU block. Threads of the block adopt the diagonal strategy

and work without any synchronization or communication

with other blocks. Any alignment spanning the cells in the

overlapped region would fall at least in one of the overlapping

chunks. Fig. 5 illustrates this, where gray cells represent the

cells being computed in parallel. Each thread maintains its

locally best score and its corresponding position for final

aggregation later.

Each thread of a CUDA block computes the score of a

single cell in the current diagonal being computed by this

block. During the complete kernel execution, this thread is

responsible for computing the complete row of the chunk that

is assigned to the block. At the same time, there is an upper

bound on the number of threads per block: 1024 on Kepler and

Fermi architectures. Thus only upto 1024 cells-long diagonal

may be computed simultaneously by threads of a block. For

each chunk then, we handle a maximum of 1024 rows at each

horizontal sweep and store the horizontal boundary values

in the global memory (Fig. 6). These values are used while

computing the next 1024 rows of the chunk. Please note that a

single buffer of the size equal to the chunk’s width is sufficient

for this purpose. The interleaved thread decomposition ensures

Subject sequence
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Fig. 6. Handling query length n > 1024 using a horizontal buffer in each
block

that different threads of a warp access different shared memory

banks, maximizing memory throughput. The overall benefits

of adopting the Overlap-based scheme are:

• There is no need of synchronization or communication

between different GPU blocks. The entire SW matrix can

be filled using a single kernel invocation.

• This method makes better utilization of GPU memory re-

sources. In each GPU block, the access to global memory

for reading the subject sequence is maximally coalesced

into few memory transactions. The intermediate score

(H,E, F ) buffers of size (min(n, 1024)) per block fit

in the fast shared memory.

• The I/O traffic between global memory and SMs is now

reduced to O(m+m× �n/1024�).

B. Complexity analysis

We start with a PRAM like analysis, which is useful

to compute the optimal number of chunks into which the

SW matrix should be decomposed. It also helps us evaluate

the additional computational overhead incurred due to the

overlaps. Please recall the notation introduced in Section I-C

for the analysis below.

Let the length of the diagonal be n′ = min(n, 1024). Here

we assume p to be a multiple of n′ for simplicity, say p =
kn′. The length of each overlap is known to be O(n). If k′

is the number of chunks into which we decompose the SW

matrix, the number of cells computed per row of the matrix

is O(m + k′n), after double-counting the overlap. To have

balanced load distribution among k′ GPU blocks, the width

of each chunk ought to be

w = O

(
m+ k′n

k′

)
(3)

If n′ processors are assigned to each chunk, the number

of time steps t′ required for scoring one chunk diagonal-wise

would be O((w + n′)× �n/1024�), i.e.,

t′ = O

(
m+ k′n

k′
×
⌈ n

1024

⌉)
(4)

Since there are only p = kn′ processors, by work scheduling
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principle the actual time is:

t = O

(
t′ × k′

k

)

= O

((
m+ k′n

k′
×
⌈ n

1024

⌉)
× k′

k

)

= O

(
(m+ k′n)(n)

p

)
(5)

The main point of equation 5 is to show that the total time t is

positively correlated with the number of chunks k′, suggesting

a small k′. At the same time, we have n′ processors working

on each chunk, and hence k′ = p/n′ in order to utilize all

the processors. If we plug this value back into equation 5 and

simplify,

t = O

((
m+ p

⌈
n

1024

⌉ )
(n)

p

)
(6)

Now, this algorithm for computing the best alignment is well-

defined on a PRAM model:

With p processors, divide the whole SW matrix into

k′ = p/n′ chunks and let n′ processors work on each

chunk.

GPUs, however, hide the actual number of processors be-

hind many more logical threads. Using the actual number of

hardware GPU cores as p in the above analysis will leave

a GPU with a very low occupancy. We instead empirically

determine the effective number of useful threads for different

input sizes. By experimenting with different count of threads

on multiple input sizes using NVIDIA Tesla K20M, which

has 13 SMs, we find that having 13 × 2048 threads yields

the best or close to the best timings by ensuring 100% GPU

occupancy. Considering that the length of the query sequence,

n, is much smaller than that of the subject sequence, m,

even if m > 102 × n, Equation 6 reduces to t = O(mn/p)
implying that the additional computational overhead due to the

overlaps is not significant. The experimental evaluation of this

algorithm against the existing methods is done in Section III.

C. Best-K alignments

Biologists are often interested in discovering the best-K
alignments for a more comprehensive analysis of the match

possibilities. That is why the BLAST tool hosted by NCBI [29]

displays the 100 best aligned sequences by default. To support

such queries, we use a parallel priority queue data structure

per block that maintains the best K scores and their locations.

The queue is implemented using a sorted array. Updates to

the queue are made after each time step of the single diagonal

computation of the block. Note that the score of a cell needs

to be registered in the priority queue only when

• the score is greater than the minimum value in the priority

queue.

• this cell involves a match: an optimal local alignment

cannot have a gap or mismatch at the ends.

23 25

1. atomic push to  
insert_to_queue stack

2. constant time insertion of  
each element to queue

19 20 23 24 25 28 30Subject sequence

Q
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ry
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X
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Fig. 7. Insertion of two scores 23 and 25 to priority queue at a particular
iteration

The rest of the scores are ignored. The steps to insert the new

“high” scores to the priority queue of size at most K after

each diagonal computation are:

1) Each thread of the block which has a score higher than

the current minimum score in the priority queue makes

an atomic push to insert to queue stack (Fig. 7).

2) Barrier-synchronize the threads of the block.

3) Iterating for each element in insert to queue stack:

K threads parallely determine its index in Pri-
orityQueue and if in best-K, insert the element

in in O(1) time.

The insertion of v elements in the queue at a particular

iteration takes O(v) time.

The storage buffers required above are allocated in the

shared memory. But still this is not a work-efficient algorithm.

In the worst case, this method can increase the runtime by

O(n) times compared to the best-1 version if many cells report

successively better scores. However, in practice we find that

the actual number of updates to the priority queue are quite

low after a few initial iterations. The average count of elements

inserted per iteration in the first 100 iterations is close to 1

and it further reduces to about 0.06 if we consider the first 104

iterations (See table I). This happens because the minimum

value in the priority queue continues to increase during the

execution and therefore the count of updates to the queue

continues to decline. After all blocks report their best-K scores

as sorted arrays, the final best-K scores are aggregated on the

CPU instead of a GPU because even sequential merge takes

an insignificant fraction of the time (less than a millisecond

in our experiments). We compare both the best-1 and best-K
implementations of Overlap-based scheme in Section III.

TABLE I
TOTAL COUNT OF HIGH SCORES IN FIRST BLOCK DURING FIRST I

ITERATIONS

I
Count of high scores

m = 106 m = 108 m = 108

n = 103 n = 102 n = 103

102 112 122 122

103 422 299 410

104 605 440 604
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TABLE II
PERFORMANCE EVALUATION OF OVERLAP-BASED METHOD ON TESLA K20M

Subject
sequence (m)

Query sequence
(n)

Timings (ms) Speedups
Overlap-based (t1) ParallelScan(t2) StripedAlignment(t3) t2/t1 t3/t1

105

128

3.4 50.9 1189.0 14.97 349.71
106 15.1 165.3 11788.1 10.95 780.67
107 133.0 1217.2 117519.5 9.15 883.61

108 1018.2 * 1172986.2 - 1152.02

105

1024

12.7 301.7 1323.4 23.76 104.20
106 87.1 1039.8 13084.1 11.94 149.58
107 754.0 8295.1 129855.5 11.00 172.22

108 7359.1 * ** - -

105

10240

411.4 2617.1 2348.6 6.36 5.71
106 1411.7 9599.1 22343.3 6.80 15.83

107 11488.7 80962.2 ** 7.05 -

108 112303.7 * ** - -

2 ∗ 105

100352
29358.1 32745.8 42488.0 1.12 1.45

106 38102.0 93799.9 ** 2.46 -

107 136037.5 789906.0 ** 5.81 -
* Out of memory
** CUDA launch error

TABLE III
EVALUATION OF OVERHEAD OF OVERLAPS IN OVERLAP-BASED METHOD FOR LONG QUERY LENGTHS

Subject
sequence (m)

Query sequence
(n)

Timings (ms) Slowdown factor due to overlaps
Overlap-based (t1) Without overlaps(t2) t1/t2

105

10240

411.4 133.5 3.08
106 1411.7 1150.2 1.23
107 11488.7 11305.1 1.02
108 112303.7 112922.5 0.99

2 ∗ 105

50176
8101.4 1194.1 6.78

106 12506.8 5617.6 2.23
107 62124.2 55330.0 1.12

2 ∗ 105

100352
29358.1 2400.0 12.23

106 38102.0 11214.9 3.40
107 136037.5 110278.6 1.23

TABLE IV
REDUCTION IN OVERHEAD OF OVERLAPS USING MODIFIED OVERLAP-BASED METHOD FOR LONG QUERY LENGTHS

Subject
sequence (m)

Query sequence
(n)

Timings (ms) Slowdown factor due to overlaps
Modified Overlap-based (t3) t3/t(Without overlaps)

105

10240

178.6 1.34
106 1534.4 1.33
107 12365.0 1.09
108 120690.2 1.07

2 ∗ 105

50176
1597.2 1.34

106 7467.3 1.33
107 66379.8 1.20

2 ∗ 105

100352
3179.5 1.32

106 14925.9 1.33
107 147291.4 1.34

D. Large query length

If the length of the query sequence is comparable to that

of the subject sequence (m ≈ n), the Overlap-based method

discussed above fails to achieve optimal time. The overhead

of overlaps in this case dominates the overall execution time

of the complete algorithm. In the worst case, the optimal

sequence alignment can span across most of the SW matrix.

Therefore, we propose a modification to our Overlap-based
approach to perform well on average cases without significant

impact on the worst-case performance.

Recall that in the Overlap-based method, to remove the

inter-block synchronization overhead, we used the overlap size

of O(n). If m ≈ n, we reduce the size of the overlap to a

small value r and restore inter-block synchronization, although

at lower frequency, to ensure correctness. The overlap size r
is kept to be min(n,m/100) so that the overhead of overlaps

doesn’t dominate (argued in section II-B). The steps we follow

are as follows:
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TABLE V
PERFORMANCE EVALUATION OF MODIFIED OVERLAP-BASED METHOD ON TESLA K20M

Subject
sequence (m)

Query sequence
(n)

Timings (ms) Speedups
Overlap-based (t1) ParallelScan(t2) StripedAlignment(t3) t2/t1 t3/t1

105

128

3.4 50.9 1189.0 14.97 349.71
106 15.1 165.3 11788.1 10.95 780.67
107 133.0 1217.2 117519.5 9.15 883.61

108 1018.2 * 1172986.2 - 1152.02

105

1024

12.7 301.7 1323.4 23.76 104.20
106 87.1 1039.8 13084.1 11.94 149.58
107 754.0 8295.1 129855.5 11.00 172.22

108 7359.1 * ** - -

105

10240

178.6 2617.1 2348.6 14.65 15.59
106 1534.4 9599.1 22343.3 6.26 18.12

107 12365.0 80962.2 ** 6.55 -

108 120690.2 * ** - -

2 ∗ 105

100352
3183.0 32745.8 42488.0 10.29 16.37

106 14959.3 93799.9 ** 6.27 -

107 146096.4 789906.0 ** 5.41 -
* Out of memory
** CUDA launch error

Block  i

Subject sequence

Q
ue

ry

Block  i+1

Partial 
Overlap

Vertical 
buffers

Fig. 9. Modified Overlap-based approach when m ≈ n

1) Invoke the kernel with a partial overlap size r and let

each block save its intermediate scores (E and H scores)

corresponding to the rth and the last column of its chunk

to the global memory (Fig. 9) using a coalesced write

access.

2) After the kernel execution, the scores of the rth column

of each block are compared with the scores of last col-

umn of the previous block on the CPU. An exact match

of scores for any block with its neighbor implies that

its precomputed scores are correct. (In other words, the

match does not extend beyond the overlap.) Otherwise

it recomputes its scores after receiving the intermediate

scores from the previous block, again through a coa-

lesced read from the global memory.

3) Algorithm stops when no blocks require recomputation.

We have evaluated the improvement of this Modified Overlap-
based method over the earlier Overlap-based method with

large query lengths in section III.

E. Scaling to multiple GPUs

As the blocks working on different chunks hardly need inter-

block synchronization during an iteration, scaling the Modified

Overlap-based method beyond a single GPU is straightforward

by having overlapping chunks distributed over multiple GPUs

on multiple nodes. Now the communication of the boundary

values is done over MPI. Also, the optimal scores and locations

produced by each device can be aggregated on the master

node. We evaluate the performance of this method on up to

16 GPU devices in section III.

III. RESULTS AND DISCUSSION

In this paper, the timings being reported cover the complete

execution time of application from reading the sequences until

alignments are saved in the host memory. SSCA#1 bench-

mark [30] represents a Bio-informatics problem that involves

performing a local pairwise alignment of two synthetic long

codon sequences, finding the end-points of subsequences that

are good matches according to the specified criteria. This

is followed by identifying actual codon sequences already

located. We perform this final traceback using a naive serial

implementation on CPU, although efficient backtracking GPU

algorithms also exist ([6], [31]). The time spent in traceback is

inconsequential to the overall execution time of this problem.

Moreover, this benchmark tends to produce relatively small

alignments (less than 64 units long). The tests on a single

GPU are carried out on a Tesla K20M graphics card with 13

SMs, 192 CUDA cores per SM and 5GB RAM. It is installed

on a PC with Intel Sandybridge 2.60 GHz processor running

the linux OS.

The timings of our Overlap-based method are compared to

both ParallelScan and StripedAlignment methods on different

values of m and n when the single best alignment is expected

(Table II). The Overlap-based method achieves a speedup of

at least 5 times if the query size is less than 104. However, the

computational overhead due to the overlaps starts dominating

when we choose the query size to be 105 or longer. The

StripedAlignment is executed with an optimal width s = 400.

As argued before, it exhibits good performance only when
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Fig. 8. Time taken by Modified Overlap-based method on different number of GPUs.

query lengths are much longer than s. We also find that this

method runs out of memory for very large input sizes as it

makes use of global memory for inter-SM communication.
In order to find the empirical value of the computational

overhead due to overlaps on large query lengths, we compare

the timings of the standard Overlap-based method to that ob-

tained by setting the overlap length to 0. Of course, this change

yields incorrect results as no synchronization is actually per-

formed but it has an idealized best-case performance. It helps

us understand the slowdown factor solely due to the presence

of overlaps for different values of m and n (Table III). Results

corroborate our argument for the poor performance of the

Overlap-based method when query length is large and close to

m. However, the slowdown factor improves to just over 1.3 if

we use the Modified Overlap-based method for handling long

queries (Table IV).
The experiments shown in Table II are re-evaluated using

the Modified Overlap-based method and the new speedup val-

ues are shown in Table V. Due to the absence of a significant

overlap overhead, this method maintains a speedup factor of

at least 5 times in every row. Next, we compare the best-
1 and best-K implementation of Overlap-based method which

return the best 1 and the best K alignments, respectively (Table

TABLE VI
ESTIMATING OVERHEAD OF MAINTAING PRIORITY QUEUE FOR

RETURNING BEST K ALIGNMENTS (K=100)

m n
Timings (ms) Slowdown

Best 1(t1) Best K(t2) t2/t1

106

1024

80.5 166.4 2.1

107 737.4 1255.1 1.7

108 7406.0 12368.5 1.7

106

10240

1427.4 2812.7 2.0

107 11592.0 21495.5 1.9

108 113305.4 208235.9 1.8

VI). We observe a slowdown factor of about two on different

input sizes because of the priority queue operations. These

timings when compared against the best-k implementation of

ParallelScan are still faster by atleast 3 times.

We have also performed our tests on a cluster of nodes

connected via Ethernet, each containing an Intel Xeon CPU

clocked at 2.67GHz and two NVIDIA Fermi GPUs M2070

to find the multi-GPU performance of the Modified Overlap-
based algorithm. The results in Figure 8 indicate that this
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TABLE VII
RESULTS OF MODIFIED OVERLAP-BASED METHOD ON DROSOPHILA

MELANOG CHROMOSOME

m n Iterations Timings (ms)

105

2048

2 69.3

106 1 267.5

107 1 2400.4

105

10240

7 1127.4

106 2 3007.0

107 1 12488.9

algorithm can gain 2x and 8x speedup with 4 GPUs and 16

GPUs, respectively.

The performance of the Modified Overlap-based algo-

rithm also depends on the similarity of the two sequences

being considered: the higher the similarity (size of opti-

mal match), the more the recomputation. Alignment size on

SSCA benchmark is not large enough to require recomputa-

tions. So, we also perform single GPU experiments involv-

ing real nucleotide sequences. For this, we picked subse-

quences of Drosophila melanog chromosome 3L (accession

no. NT 037436.3) and Drosophila melanog chromosome 2L

(accession no. NT 033779.4) as our subject and query se-

quence respectively. The timings and the count of times re-

computation happens has been shown in Table VII. Traceback

on CPU is ignored in this case. We see that the count of

iterations decreases with increasing value of m/n due to the

increasing overlap size.

IV. CONCLUSION AND FUTURE WORK

We have presented a technique to parallelize a dynamic-

programming problem that allows the computation at different

processors to overlap. In particular, this leads to an effi-

cient algorithm for pairwise sequence alignment of two large

sequences using a parallel version of the Smith-Waterman

algorithm on GPU. It achieves a speedup of at least five

times on subject sequence of sizes up to 100 million. Our

method also either reduces or entirely eliminates the inter-

block synchronization on the GPU and makes efficient use

of its memory resources. The use of a parallel priority queue

while computing scores also allows us to obtain the best K
alignments. We have presented results for K = 100 and see

a slowdown factor of only about 2. This method can handle

large sequence sizes comparable to the size of genomes and

easily scales to multiple GPUs using MPI due to reduced

communication among blocks. This work also opens inter-

esting perspectives as similar strategies of acceleration could

be applied to more general dynamic programming problems.

This remains an area of future research.

As future work, we intend to further optimise the recom-

putation phase of the Modified Overlap-based method. In this

version of the algorithm, we recompute the complete blocks

where boundaries mismatch. We can reduce the magnitude

of recomputation by concentrating on the regions which can

actually affect the final result. Secondly, we also wish to

rebalance the load among GPU SMs as the count of blocks

active at a particular iteration can decrease to very few

depending on the input sequences.
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