A Parallel Connectivity Algorithm for de Bruijn Graphs in
Metagenomic Applications

Patrick FIick*, Chirag Jain*, Tony Pan* and Srinivas Aluru
Georgia Institute of Technology, Atlanta, Georgia, USA
{patrick.flick, cjain, tony.pan}@gatech.edu, aluru@cc.gatech.edu

ABSTRACT

Dramatic advances in DNA sequencing technology have made
it possible to study microbial environments by direct se-
quencing of environmental DNA samples. Yet, due to the
huge volume and high data complexity, current de novo
assemblers cannot handle large metagenomic datasets or
fail to perform assembly with acceptable quality. This pa-
per presents the first parallel solution for decomposing the
metagenomic assembly problem without compromising the
post-assembly quality. We transform this problem into that
of finding weakly connected components in the de Bruijn
graph. We propose a novel distributed memory algorithm to
identify the connected subgraphs, and present strategies to
minimize the communication volume. We demonstrate the
scalability of our algorithm on a soil metagenome dataset
with 1.8 billion reads. Our approach achieves a runtime
of 22 minutes using 1280 Intel Xeon cores for a 421 GB
uncompressed FASTQ dataset. Moreover, our solution is
generalizable to finding connected components in arbitrary
undirected graphs.

Keywords

Metagenomic assembly, soil microbiology, de Bruijn graph,
connected component labeling.

1. INTRODUCTION

Metagenomics is an important emerging area in bioin-
formatics that involves the study of microbial genomes di-
rectly obtained from environmental samples. Whereas single
genome sequencing extracts short sequences (or reads) from
samples containing multiple copies of the same genome or
multiple cells from the same organism (e.g. bacterial cul-
ture, human tissue, tumor cells, etc), metagenomic sequenc-
ing samples the aggregate genomes of entire microbial com-
munities. In a complex natural environment, such as soil or

*The three authors should be regarded as joint first authors,
equally contributing to the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SC ’15, November 15 - 20, 2015, Austin, TX, USA

(© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3723-6/15/11...$15.00

DOI: http://dx.doi.org/10.1145/2807591.2807619

human gut, metagenomic samples can potentially contain
thousands or even millions of species [8]. High quality anal-
ysis of these microbial genomes requires sufficient coverage
during sequencing, resulting in huge data volumes. For in-
stance, the grand challenge Iowa corn soil data set sequenced
at the Joint Genome Institute contains 1.8 billion sequencing
reads [18].

Reconstructing the constituent genomes from metagenomic
sequencing reads is still an open problem. Individual reads
sequenced by widely used sequencing platforms such as Il-
lumina do not by themselves contain meaningful biological
information due to their short lengths (currently about 100-
125 base pairs). Prior to analysis, the genomes must be
reconstructed partially or completely from the reads. This
is done via resequencing where reads are mapped to refer-
ence genomes, or by de novo assembly where genomes are
reconstructed by finding sequences of overlapping reads. Re-
sequencing is therefore well suited for detecting variations
in genomes, while de novo assembly is useful when reference
genomes do not exists or are undesirable. Currently, most
short read de novo assemblers utilize de Bruijn graphs to
encode the overlap information. In a de Bruijn graph, ver-
tices are strings of size k, called k-mers, extracted from the
source reads. The edges represent (k — 1)-long suffix-prefix
overlaps between k-mers, and correspond to length k& + 1
substrings in a read. A read therefore exists as a path in the
de Bruijn graph. Finding a sequence of overlapping reads
can then be accomplished by finding an Eulerian path in the
graph, visiting each edge exactly once. In practice, assem-
bly using de Bruijn graphs is significantly more complex due
to errors in reads, chimeras (two unrelated reads joining to-
gether), contaminating sequences, repeats within and across
genomes, etc.

The assembly problem becomes highly compute and mem-
ory intensive as the size and complexity of the data set in-
creases. In the absence of errors, the size of the de Bruijn
graph is equivalent to the number of unique k-mers in the
data set, thus is bounded by the number of base pairs in the
genome(s). For metagenomic assembly, however, the pres-
ence of large number of species substantially increases this
bound. Currently, de novo assembly tools designed for single
genome would require multiple terabytes of memory to store
the graphs built from large metagenomic data sets [20]. For
example, Howe et al. [12] reported that Velvet [26] failed to
assemble a 3.3-billion-read metagenomic data set on a single
computer with 500 GB memory.

Recently, Howe et al. [12] presented the first successful
attempt of the assembly of two large soil metagenomic data

http://www.acm.org/publications/policies/artifact-review-badging

Figure 1: Example of graph connectivity with 5
reads and k-mer size = 5.

sets. They discovered that the high species level heterogene-
ity in the metagenomic data sets leads to a large number of
disjoint connected components in the de Bruijn graph. This
property was then exploited to partition the reads into dis-
joint sets and assemble each of them independently (See Fig.
1 for example). One interesting point reported in this study
was the existence of 31 million and 56 million connected
components with more than 5 reads in the Iowa corn and
prairie soil data sets, respectively. This observation can be
leveraged as a way to introduce parallelism to the metage-
nomic assembly process by way of read partitioning. How-
ever, there is one problem that needs to be addressed before
reaching that stage: How do we partition a data set with
1.8 billion reads, or equivalently, how do we identify the
connected components in a de Bruijn graph with more than
100 billion edges?

None of the previous known methods for computing con-
nected components is viable for such large problem sizes.
To address this limitation, we present a novel distributed
memory parallel algorithm for connected component label-
ing, which is scalable to very large sparse graphs and over a
thousand cores. The substantial size of the problem being
discussed justifies our focus on the distributed memory ar-
chitecture. To our knowledge, there is no parallel implemen-
tation for solving the connected component labeling prob-
lem that scales to thousand of cores on distributed memory.
Further, we demonstrate the practical significance of this al-
gorithm by partitioning the grand challenge lowa corn soil
metagenome data set. The final output of our algorithm is
the input reads segregated into species-level bins which can
be assembled independently in parallel with any assembler
of choice. To summarize the contributions of this paper:

1. We present a novel distributed connected component
labeling algorithm for partitioning a metagenomic data
set based on the de Bruijn graph connectivity.

2. We demonstrate the scalability of our algorithm by
partitioning one of the largest metagenomic data sets
with 1.8 billion reads, or approximately a graph with
135 billion vertices and edges, in 22 minutes.

3. We also discuss the general applicability of our algo-
rithm using the Graph500 benchmark, and compare
results against a state of the art parallel BFS imple-
mentation which can also be used to identify connected
components.

2. RELATED WORK

2.1 Metagenomic assembly

Metagenomic assembly is an actively pursued research
problem that is challenging due to unknown composition and
number of genomes in a metagenomic sample, potential over-
laps between constituent genomes, data complexity and its
size. Recently, Nagarajan et al. [16] highlighted the need for
memory efficient metagenomic assemblers due to the sheer
sizes of the data sets. One approach to reduce memory us-
age is by processing subgraphs of a de Bruijn graph indi-
vidually. Sequential metagenomic assemblers from Peng et
al. [21] and Namiki et al. [17] partitoned the graph by
pruning select edges and vertices to identify species-level
subgraphs. Howe et. al [12] successfully assembled a large
data set sequentially by first finding connected components
of a de Bruijn graph using a memory-efficient probabilis-
tic k-mer hash table, the khmer library [14]. However, the
probabilistic hash table induces a significant false positive
rate during the partitioning and assembly phase. Moreover,
based on direct correspondence with the authors, we con-
cluded that sequential connected components labeling for
such large data set requires multiple days.

An orthogonal approach utilizes distributed memory sys-
tems to circumvent single machine memory limitations. Geor-
ganas et al. [9] presented impressive scalability results while
parallelizing the Meraculous assembler, a single genome as-
sembly tool. However, the applicability of Meraculous or its
output quality on metagenomic data sets has not been estab-
lished. Boisvert et al. [4] proposed a distributed metagenome
assembler Ray Meta that can assemble a 3-billion-read data
set using 1024 processors in 15 hours, 46 minutes.

Our solution incorporates both approaches, by finding
connected components of a de Bruijn graph in a distributed
environment. The connected components allow us to parti-
tion the read set into smaller subsets for assembly indepen-
dently. Our approach allows users the flexibility to choose
any assembler, including parallel assemblers, for the parti-
tioned data set.

2.2 Connected Component Labeling

Connected component labeling for undirected graphs is
a well studied problem with applications in many scientific
domains. If m is the number of edges and n is the number of
vertices in an undirected graph, this problem can be solved
sequentially in O(m + n) time via depth or breadth first
search.

There have been numerous efforts to parallelize connected
components labeling. Hirschberg et al. [11] presented a
CREW PRAM algorithm that runs in O(log?n) time and
does O(n?logn) work, while Shiloach and Vishkin [22] pre-
sented an improved version assuming a CRCW PRAM that
runs in O(logn) time using O(m-+n) processors. There have
been multiple efforts to implement and test the scalability of
this algorithm on real-world architectures, but none of them
have reported scalability beyond 40 cores. Chiang et al. [6]
proposed multiple techniques to execute connected compo-
nent PRAM algorithms using external disks in an I/O effi-
cient manner. They generalized the impractical assumption
of concurrent indirect memory accesses made by p proces-
sors into as many I/O operations as required for sorting p
elements externally.

Bader el al. [1] and Patwary et al. [19] discussed shared

memory multi-threaded parallel implementations for com-
puting spanning forest and connected components on sparse
and irregular graphs. Recently, Shun et al. [23] reported
a work optimal implementation for the same programming
model. Cong et al. [7] proposed a parallel technique for
solving the connectivity problem on a single GPU.

There are also some recent parallel algorithms developed
for computing the breadth-first search (BFS) traversal on
distributed memory systems [5][25][2]. Even though BFS
methods are optimized for traversing a single component for
short diameter networks, they can still be utilized for com-
puting connectivity using multiple seed vertices, one from
each component. Slota et al. [24] presented a hybrid connec-
tivity algorithm on shared memory machines that combines
parallel BFS and Shiloach-Vishkin’s algorithm. In their al-
gorithm, BFS is used to initially label the largest compo-
nent before Shiloach-Vishkin’s algorithm is used to label the
remaining components. Slota et al. achieved better per-
formance with the hybrid approach than with BFS or the
Shiloach-Vishkin algorithm alone. Recently, there have also
been significant algorithmic advances for BF'S on distributed
memory systems, as reported by Buluc [5], Ueno [25], and
Beamer [2].

Previous works on BFS have largely concentrated on and
optimized for scale-free graphs, which tend to have a single
large component that contains the majority of vertices of the
graph. The Graph500 Kronecker generator [15] produces
graphs in this category. Metagenomic de Bruijn graphs,
however, have an extremely large number of connected com-
ponents, the largest of which occupies only a small fraction
of the total graph [12].

The Shiloach-Vishkin algorithm [22], by computing con-
nectivity from all vertices simultaneously, is better suited
for metagenomic de Bruijn graphs. Previous attempts to
adapt this algorithm to distributed memory parallel com-
puters [13, 10] did not achieve notable speedups. We pro-
pose a new algorithm for computing connectivity of metage-
nomic de Bruijn graphs on distributed memory systems. We
briefly discuss the Shiloach-Vishkin algorithm below as our
algorithm draws from some of the ideas behind it.

The Shiloach-Vishkin Algorithm

The Shiloach-Vishkin algorithm was designed assuming a
PRAM model. It begins with singleton trees correspond-
ing to each vertex in the graph and maintains this auxil-
iary structure of rooted directed trees to keep track of the
connected components discovered so far during the execu-
tion. Within each iteration, there are two phases referred as
shortcutting and hooking. Shortcutting involves collaps-
ing the trees using pointer doubling. On the other hand,
hooking connects two different connected components when
they share an edge in the input graph. This algorithm re-
quires O(logn) iterations each taking constant time. Since
this approach uses O(n+m) processors, the total work com-
plexity is O((m + n)logn).

3. DISTRIBUTED MEMORY CONNECTED
COMPONENTS LABELING

3.1 Definitions and Notation
Given an undirected graph G = (V, E) with n = |V| ver-
tices and m = |E| edges, our algorithm identifies its con-

nected components, and labels each vertex v € V' with its
corresponding component.

Our algorithm works on an array of tuples (p, ¢, u), where
p and ¢ are integers in the range {1,...,|V|}. The third
element u denotes the corresponding vertex u € V of the
graph. We initialize the array of tuples as follows: for each
vertex v € V we add the tuple (u,u,u), and for each edge
{u,v} € E we add tuples (v,u,v) and (u,v,u). The first
two elements of the tuples will be updated in each iteration,
whereas the last tuple element will never change during the
algorithm. The last element is required only for identify-
ing vertices to their final connected components. Since this
vertex identifier is not required during the algorithm, we
will subsequently simplify the notation and refer to tuples
(p, g, u) also by (p,q).

Let A; denote all the tuples in the global array A in it-
eration 7. We denote the set of unique values of any of
the first two entries of all tuples in A; by P;, therefore
Pi ={q | (g,r) € AiV (r,q) € A;}. We refer to the
unique values in P; as partitions, which represent interme-
diate groupings of tuples that eventually coalesce into con-
nected components. We say that a tuple (p, q) has the cur-
rent partition p and a potential next partition g. Note that
this definition of partition does not refer to vertices of the
original graph.

We define the bucket B;(p) of partition p as those tuples
which contain p in their first entry: B;(p) = {{q,r) € A; |
g = p}. Further, we define the candidates or the potential
next partition C;(p) of p as the values contained in the second
tuple position of the bucket for p: Ci(p) = {q | (p,q) €
Bi(p)}. We denote the minimum of the candidates of p as
Pmin = Mingec, (p) G- A partition p for which pmin = p is
called a root partition.

We say that two partitions p and ¢ are connected at any
point in the execution, if either of the tuples (p,q) or (g, p)
exists anywhere in the global array, i.e., if p € C(q) or ¢ €
C(p).

We define the neighborhood N;(p) of a partition p as all
those other partitions g which are connected to p, thus N;(p)
={q | q € Ci(p)}. We call the number of unique neighboring
partitions of p as the size of p’s neighborhood.

3.2 Algorithm

Prior to explaining the parallel algorithm, we first describe
how and why the algorithm works, assuming that all oper-
ations are executed sequentially. We will then describe the
parallelization strategies. We show an outline of the sequen-
tial algorithm in Algorithm 1.

The overall idea of the algorithm is similar to the Shiloach-
Vishkin algorithm. Initially, every vertex is its own partition
and partitions are connected via the edges of the graph. In
each iteration, we join each partition to the unique neighbor-
ing partition having the minimum index among its neighbor-
hood, until the partitions converge into the connected com-
ponents of the graph. In order to resolve long chains and
large diameter graphs quickly, we utilize a form of pointer
doubling.

As laid out in Section 3.1, we first create an array of tuples,
containing one tuple per vertex (self-loop) and two tuples per
edge. In every iteration, we first sort the array of tuples A by
the partition id, i.e., by the value of the first entry of each
tuple. This enables easy processing of each bucket B;(p),
since the tuples of a bucket are positioned contiguously in .A

ALGORITHM 1: Connected Components Labeling

Input: undirected graph G = (V, E)

Output: Labeling of Connected Components

// generate tuples, two for each edge,

// and one for each vertex (self loop)

A = array of tuples (p, q, v)

for v € V do A.append({u,u,u));

for {u,v} € E do A.append((u, v, u), (v,u,v));

i< 1

// initially: Py =V

while not terminated do

sort(A by first element)

// check for termination

if all partitions are roots then

| break

end

// for each bucket

for p € P; do

// determine minimum of candidates

Pmin < Milgec, (p) 4

if |B;(p)| = 1 then

‘ // if single element, update to minimum

(P, q) < (min(p, q), min(p, q))

else
// for all tuples but the minimum (¢ = pmin)
for each (p,q) € {Bi(p) \ (b, pmin)} do

// update p to new partition py,i, and reverse

// update tuples inside array A as:

(P, @) < (¢ Pmin)

end
// add update-request tuple as back reference to p
A.append((pmin, p))

end

end

i1+ 1

end

after sorting completes. For each bucket, we then determine
the minimum candidate value pmin using a simple linear
scan. Next, we join the elements of partition p into partition
Pmin by changing the first entry in each tuple from p to
Pmin. We then reverse the order of first two entries of each
tuple in the bucket, such that every initial tuple (p,q) of
the bucket becomes (g, pmin). Hence, after the sorting step
of the next iteration the candidate partitions receive the
updated partition values.

An updated partition p may be referred to in another par-
tition ¢ via (g, p) in iteration 7. Those tuples which contain
p as a second entry will also have to be updated to the new
Pmin. We therefore keep the information that p was updated
t0 Pmin around for one more iteration by excluding the min-
imum tuple (p, pmin) from the update step. This ensures
that after the next sort, the bucket for p will contain p’s
new partition ppin. If no tuple referred to p in its second
entry, then the next sort will yield only this single tuple for
bucket p. In this case we can simply promote the single,
left-behind tuple to pmin. This is handled as a special case
when |B;(p)| = 1.

On the other hand, if p is part of a longer chain of parti-
tions, we use a form of pointer doubling for quickly collaps-
ing the chain. For this, we append another tuple (pmin,p)
that serves as an update-request. In the next iteration, this
tuple will be updated to (p, 7min), where rpin is the mini-
mum neighbor of the partition » = pmin, and then, at the
start of the third iteration, return this information to par-
tition p via sorting. These updates will continue as long

as other partitions still refer to p, since the update-request
tuple is generated whenever the size of the bucket for p is
larger than one.

3.3 Correctness

First, we show that the algorithm correctly identifies con-
nected components, and then go on to show that it termi-
nates properly.

To do so, we use the notion of connected partitions as de-
fined in Section 3.1. Connected components can be defined
as the transitive closure over the edges of the graph. We
claim that the transitive closure over the connected parti-
tions is equivalent to the connected components of the orig-
inal graph at any iteration. In order to prove this, we show
that connected partitions are initially identical to the graph
structure, and that iterations preserve the connectivity.

Claim 1: The initial connectivity as defined by tuples is
identical to the graph G(V, E).

Proof: 1f there is an edge {u,v} € E in the graph, then
tuples (v,u,v) and (u,v,u) are added to A, thus u and v
are initialized as connected partitions. Conversely, if there is
no edge between vertices v and w in G, then their partitions
are not connected.

Claim 2: 1If two partitions p and q are connected through
a tuple (p,q) in any iteration of the algorithm, then they
remain connected throughout all successive iterations, thus
remaining in the same connected component.

Proof: Take the bucket for partition p at the given itera-
tion when it contains, among others, the tuple (p,q). Fur-
ther, let pmin be the minimum of the potential next parti-
tions in the bucket for p. By definition, p is connected to
both ¢ and pmin. We distinguish between two cases:

1. Case ¢ # pmin: The partition p is joined into partition
Pmin. In the update step of the bucket, the tuple (p, ¢)
will be changed into (g, pmin). Thus the connection
between p and ¢ persists via p’s new partition ppir.

2. Case ¢ = Pmin: In this case the partition p is joined
into partition gq. The connection remains further, since
in this case tuples (p, pmin = q) and (Pmin = ¢, p) will
be created.

Thus the algorithm preserves connectivity of partitions
with regards to their corresponding connected components.
Note further, that new connections are introduced only due
to the update step (p, q) < (¢, Pmin), which corresponds to
the transitivity since p was connected to both ¢ and pmin.
Hence, two partitions from two different connected compo-
nents can never be connected.

Claim 3: If after the sorting step of any iteration, all
partitions are roots, then termination is reached and each
partition corresponds to a connected component.

Proof: If all partitions are roots, then by the definition
of a root partition, there are no more connections between
any partitions. Due to claim 2, any connected partitions
will remain connected throughout all iterations until they
are joined into the same partition. If the tuples of two ver-
tices u’,v" € V end up in different root partitions, then they
cannot be connected in the original graph G, hence they are
in different connected components. Therefore each root par-
tition must be a separate connected component. Conversely,
if two vertices are in different connected components of G,
they will end up in different final partitions since at no point
are there tuples connecting the connected components.

Thus far, we have shown what a terminating state looks
like. We next show that the termination criteria will be
reached, i.e., that our algorithm will terminate. Termination
is reached for any input graph G, since the number of unique
partitions decreases in every step. Consider a partition p,
which is the minimum among the partitions of its connected
component. If this partition still has neighbors, then p will
absorb its neighbor partitions, thus decreasing the number of
partitions in each iteration. If p does not have any neighbors
remaining, then it is a root partition and contains the whole
connected component as explained above. Thus termination
is reached for this partition.

3.4 Parallel Algorithm

We now describe our parallel implementation of the above
algorithm for connected components labeling for metage-
nomic de Bruijn graphs in a distributed memory environ-
ment. Each processor in the environment has its own locally
addressable memory space. Remote data is accessible only
through well defined communication primitives over the in-
terconnection network. The algorithm consists of three com-
ponents: data distribution, parallel sort, and bucket update.
We designed our algorithm and its components using MPI
primitives.

Data Distribution: All data, including the input, in-
termediate results, and final output, are equally distributed
across all available processors. The pipeline begins by gen-
erating tuples from the input sequence file. To this end, the
file is evenly divided into blocks of size &, where N is the
size of the file, and p is the number of processors. Paral-
lel I/O is utilized to load each block into its corresponding
process, from which we then locally generate the tuples of
the form (p, q,u) as specified in section 3.1. By the end of
this operation, each process contains its equal share of |A|/p
tuples.

Parallel Sort: The main step of the algorithm is the
sorting of tuples by their first element in order to form the
buckets B(p). Parallel distributed memory sorting has been
studied extensively. Blelloch et al. [3] give a good review
of different methods. We implement a variant of samplesort
with regular sampling, where each process first sorts its local
array independently, and then picks equally spaced samples.
The samples are then again sorted and p—1 of these samples
are used as splitters for distributing data among processors.
In a final step, the sorted sequences are merged locally.

Bucket Update: In this step, we need to determine the
minimum pmqn for each bucket B(p). As a result of the par-
allel sorting, all tuples (p,q) belonging to the same bucket
are stored consecutively. However, any bucket might span
multiple processors. Thus, we need to take special care of
the first and last bucket of each process. All other, inter-
nal buckets are processed equivalent to the sequential case.
Note that the first and last bucket on a process might be
the same. Communicating the minimum of buckets with the
previous and next process would require O(p) communica-
tion steps in the worst case, since large O(n) size partitions
can span across O(p) processes. We thus use two parallel
prefix scan operations with custom operators to achieve in-
dependence from the size of partitions, requiring at most
O(log p) communication steps in addition to the local linear
time processing time.

We first perform an exclusive scan, where each process
participates with the minimum tuple from its last bucket.

This operation communicates the minimum of buckets from
left-to-right. The reduction operator for two tuples is to
choose the tuple (p,q) with the maximum p, and among
those with equal p, the minimum g, i.e., the minimum ¢ of
the right- most bucket. In a second reverse exclusive pre-
fix scan, we communicate the minimum from right-to-left.
Here, each processor participates with its minimum tuple
of its first bucket. The combination operation produces the
overall minimum tuple, according to lexicographical order-
ing of (p,q). Given the two results of the scan operations,
we can now determine the overall minimum py,., for both
the first and the last bucket of each processor.

3.5 Excluding Completed Partitions

As the algorithm progresses through iterations, small par-
titions become completed. A partition is completed if it is a
root partition which is not connected to any other partition.
Since such completed partitions will not undergo any further
changes during any further iterations, they can be excluded
from future sorting and tuples updates.

The property of Claim 3 (see Section 3.3) can be used to
detect the global termination. In order to detect whether
a single partition is completed, we need to take more than
the state of the current iteration into account. A given root
partition p is completed, i.e., contains an entire connected
component, if the size of its neighborhood is zero. This can
be checked via a linear scan of bucket B(p). We also need
to check that there are no further connections from other
partitions to p. This requires a second iteration, as each
tuple (g, p) that exists in the current iteration is updated to
(p, Gmin), and returned to bucket B(p) after the sort in the
next iteration. We can thus detect termination for a single
partition within a total of 2 iterations.

Completed partitions are marked as such and swapped to
the end of the local array. All following iterations treat only
the first, non-completed part of its local array as the local
working set. As a result, the size of the active working set
shrinks throughout successive iterations. This optimization
yields significant performance gains for our application, since
many small connected components are quickly excluded (see
Section 4).

3.6 Load Balancing

Although we start with block decomposition of the vector
A in the beginning of the algorithm, exclusion of completed
partitions introduces an increasing imbalance of the active
elements with each iteration. Since we join partitions from
larger ids to smaller ids, a large partition will have smaller
final partition ids than small partitions probabilistically. As
the sort operation maps large id partitions to higher rank
processes, the higher rank processes retain fewer and fewer
active tuples over time, while lower rank processes contains
growing partitions with small ids. Our experiments in Sec-
tion 4 study this imbalance of data distribution and its effect
on the overall run time. We resolve this problem and further
optimize our algorithm by evenly redistributing the active
tuples after each global sort. Our experiments show that
this optimization yields significant improvement in the total
run time.

3.7 Application to de Bruijn Graphs

For the metagenomic assembly problem, our goal is to
assemble connected components of the de Bruijn graph in-

Data set FASTQ | Reads Tuples Memory | Components| Sequence files

Size (Million) | (Billion) | Usage (Million)

(GB) (GB)
D1 6.2 37 1.71 27.39 29 649.4.815.fastq
D2 20 91 6.34 101.49 53 1424.1.1371.fastq
D3 44 203 14.27 228.35 100 1424.[3-4].1371 .fastq
D4 114 531 37.18 594.87 184 1425.[2-6].1367.fastq
D5 210 1063 65.37 1045.98 | 290 1424.]1-7].1371 fastq

868.[1-5].1053.fastq

D6 (FULL) | 421 1810 135.04 2160.65 393 All

Table 1: Sizes of test data sets in terms of file and read sizes, the number of tuples generated, the total
memory usage across all processors for storing the tuples, and the count of connected components in the

graphs.

dependently using existing assemblers. It is expedient and
flexible to provide such assemblers with subsets of reads cor-
responding to the de Bruijn graph connected components,
rather than modifying assemblers to ingest connected com-
ponents directly from our algorithm. To produce read sets
that correspond to de Bruijn graph connected components,
we conceptually transform the directed de Bruijn graph to
an undirected read graph, where each vertex represents a
read, and each edge represents a common k-mer between
two reads. We claim that this transformation preserves the
read connectivity in the read graph compared to the k-mer
connectivity in the de Bruijn graph. We note that a read
forms a path in the de Bruijn graph, and therefore each read
represents a path that is entirely contained in a de Bruijn
graph connected component.

Claim 4: Two reads in the same read graph component
are mapped to the same de Bruijn graph component, and
vice versa.

Proof: We prove the forward and reverse cases separately.

1. If two reads are in the same read graph component,
their k-mers are in the same de Bruin graph compo-
nent: There exists a path between the two reads in the
read graph component. The k-mers from the reads on
this path, including the terminal reads, are connected.
Hence they are in the same de Bruijn graph compo-
nent.

2. If two reads are in different read graph components,
the k-mers from each read are in separate de Bruijn
graph components: Assume the k-mers from these two
reads belong to the same de Bruijn graph component,
then there exist paths from the k-mers of one read to
the k-mers of the second read in the de Bruijn graph
component. Since a k-mer path consists of a sequence
of substrings of reads, it can also be represented as a
sequence of reads. The two reads then belong to the
same read graph component due to the existence of a
read path, thus contradicting the assumption.

The claim above establishes the equivalence between the
connected components in a de Bruijn graph and the corre-
sponding read graph. We can thus compute the disjoint read
sets from the read graph, and convert them to de Bruijn
graph connected components, which can be performed by
the chosen assembler directly.

To construct the read graph, we assign each read a 32 bit
unique partition id. For each k-mer in the read 7;, we insert a

tuple with the form (r;, 7;, k;) into the array A. DNA consist
of four nucleotides, hence each character requires only 2 bits
of memory. Since our target application requires k-mers of
size 31, we represent each k-mer by a single 64 bit integer.
At this point, each read is in its own partition without any
edges connecting the partitions.

As illustrated in Figure 1, two reads sharing the same
k-mer belong to the same connected component. We now
generate the edges between reads via common k-mers. More
formally, if a k-mer k is associated with the tuples (r;, i, k),
(rj,rj, k) ... (ri,ri, k), then all the reads r;,7; ... ry should
belong to the same component. If r,,q, denotes min{r;,r;

. 7k}, we modify these tuples to (ri, Tmin), (Vj, Tmin) ..
(r&, Pmin), while preserving the k-mer value k in the third
position of the tuples. This step ensures that identical k-
mers will start out in the same partition. Note that this
step can be realized using a single distributed sort by k-
mer and a linear scan. Once the edge relationships among
the reads have been established, we can find the connected
components and associated read sets using the algorithms
described before. Therefore, after the algorithm terminates,
each k-mer and corresponding reads will be associated with
their containing connected component.

4. EXPERIMENTS AND RESULTS

We used the CyFEnce cluster located at Iowa State Uni-
versity. Each node of the cluster has two 2GHz 8-Core Intel
Xeon E5-2650 CPUs and 128 GB of main memory. The
nodes are connected by a QDR (40 Gbps) Infiniband inter-
connect network. A Lustre parallel file system with 1 MDS
and 8 OST servers provides high speed parallel 1O for the
cluster. We implemented our algorithm using C++ and MPI
and run one MPI process per CPU core.

We used the lowa Continuous Corn Soil Metagenome data
set, from the DOE Joint Genome Institute Genome Portal
(Project ID: 402461). This data set contains a mix of Illu-
mina reads of lengths 76, 100 and 114. To test the scalabil-
ity of the proposed algorithm, we created subsets of varying
sizes from the complete data set by selectively grouping se-
quence files of biological samples together. From each read,
k-mers of length 31 are generated. The k-mers and their
current and next partition ids are stored as 3-tuples, requir-
ing 16 bytes per tuple. The number of reads and the total
count of tuples in each data set, as well as the total memory
requirement for each, are summarized in Table 1.

The data sets are each stored as a single FAST(Q file on
the Lustre file system. The FASTQ file is partitioned into

Computation and communication runtime along the iterations

Naive

Time (sec)

150 -

1
12

AP

10 -
0- II IIIII
100 -
. IIlIIll
1 1 1 1 1 1 1 1 1
4 8 16 4 8 16 4 8

AP_LB
Time

Communication

Computation

9od

1 1
12 12 16

Iterations

Figure 2: Time spent performing communication and computation in each iteration of the algorithm. Exper-
iments were conducted using data sets D3 and D6 on 1280 cores. The AP algorithm operates on tuples in
the active partitions only. The AP_LB algorithm balances work load between iterations of the AP algorithm.

equal-sized blocks, 1 per MPI process. The MPI processes
concurrently read the blocks from the file system and gen-
erate k-mer tuples in a streaming fashion. The generated
tuples are stored in a local vector for each MPI process. In
our strong scaling experiments, we observed that the file
reading and k-mer tuple construction time decreases nearly
linearly with the number of MPI processes. For data set
D3 with a FASTQ file of 46.6 GB, the loading time ranges
from approximately 18 seconds for 128 processes down to
2.3 seconds for 1024 processes. Since file loading and k-mer
tuple generation took only a small fraction of the overall run
time, for subsequent discussions we report only the time in-
volved in computing connectivity of the de Bruijn graph
represented by the k-mer tuples.

We first examined the performance of the algorithm as
it iteratively joins the partitions. These experiments were
conducted using each of the three versions of the algorithm:
Naive (Section 3.4), active partition only (AP, Section 3.5),
and active partition with load balancing (AP_LB, Section
3.6). For each algorithm variant, we performed two sets of
experiments with the D3 and D6 data sets using 1280 pro-
cesses, and measure the time spent on communication and
computation for each iteration. Figure 2 shows a stacked
bar chart of the time spent on communication and compu-
tation for each algorithm variant and data set. The total
run times for Naive, AP, and AP_LB for the D3 data set

are 140, 117, and 87 seconds, respectively. Howe et al. [12]
reported the runtime of 120 hours on the complete data
set D6, although the processor specifications were not dis-
closed. In contrast, the total run times for our Naive, AP,
and AP_LB algorithms for the D6 data set are 1840, 1880,
and 1350 seconds, respectively. After the second iteration,
communication occupies the majority of run time for all the
following iterations. Compared to the Naive variant, the
AP variant has smaller computation time due to fewer num-
ber of tuples involved in the iteration. Load balancing in
the AP_LB variant further reduces the per iteration com-
putation and communication times as the work is evenly
distributed among the processes.

Processes Naive AP AP_LB
128 771 595 356
256 437 368 216
512 254 220 142
1024 154 139 98

1280 140 117 87

Table 2: Run-time of the three algorithm variants
for data set D3, measured in seconds

To confirm our interpretation of these results, we also ex-
amined the distribution of active tuples across the processes

Balance of work across processors along the iterations

Naive AP AP_LB
W
= \
§90- :
% o Statistics
R L
I
360 - ! —e— Max
D_ 1]
2 Aaaa -4 - Mean
£30- L g -=- Min
=}] A‘A.
8 i AAdAA
0- LR o R
1 1 1 1 1 1 1 1 1 1
4 8 12 4 8 16 4 8 12 16

lterations

Figure 3: Tuple load balance across processes during each iteration of the three algorithm variants.
experiments were conducted using data set D2 and 60 processes.

The
The graphs illustrate the maximum,

average, and minimum count of tuples on all the processes.

800 - Benchmark
—o— Naive
-4 AP
600 - A
b -®:- AP_LB
)
[0}
L
[}
£
|_

I I
1024 1280

| | |
128 256 512
Number of cores

Figure 4: Performance of the three algorithm vari-
ants for data set D3, using increasing number of pro-
cessor cores.

during program execution (Figure 3). We show this result
for data set D2 partitioned using 60 cores. We measure the
maximum (max), mean, and minimum (min) number of tu-
ples across the 60 cores for each variant of the algorithms.
Clearly, the max load is important as it determines the par-
allel run-time. A smaller separation between the min and
max values indicate better load balance. As seen in Figure
3, the max, mean and min graphs are identical for the naive
version of our algorithm. The AP variant reduces the size
of the total working set with each iteration as illustrated
in the decrease in mean value. However, the separation re-

mained relatively constant after the first 3 iterations, indi-
cating imbalance for the remaining large components. With
load balancing in the AP_LB variant, we see an even distri-
bution of tuples, as the minimum and maximum count are
the same for each iteration. This explains the corresponding
reduction in both computation and communication times of
AP_LB variant in Figure 2 when compared to those of the
AP variant.

We conducted strong scaling experiments using the D3
data set, as its memory requirement is sufficiently low for
us to run the experiment using even 128 processes. Our
algorithm requires approximately 3 times the size of the in-
put vector in memory due to the use of distributed sample
sort, which can cause the data imbalance by approximately 2
times, and MPI_Alltoall requiring separate input and output
arrays. Computing using data set D3 on 128 processes, or
8 nodes in the CyEnce cluster, requires 28.5 GB of memory
for persistent data, and approximately 57 GB of transient
storage per 16-core node. Results of these experiments are
shown in Figure 4 and Table 2. We observe that all three
variants of our algorithm show scaling consistent with the
earlier observation that communication is the dominant fac-
tor in our algorithm. The AP variant performs consistently
better than the Naive variant through tuple pruning. The
AP_LB variant performs consistently better than both Naive
and AP variants, by a large margin, through load balancing
of computation and MPI message sizes.

4.1 Comparison with Parallel BFS

Recent works have greatly improved the performance of
parallel Breadth-First Search (BFS) methods on distributed
memory machines. Typically, these methods perform BFS
from a given seed vertex, and hence can be used to identify
the connected component containing the seed vertex. In this
section we compare and contrast our algorithm for connected
components labeling with one based on parallel BFS.

For parallel BFS, we chose a recent state-of-the-art im-
plementation by Buluc et al. [5]. To facilitate comparison,
we adapted this software so as to achieve the same objec-

ALGORITHM 2: Connected Components Labeling With BF'S

Input: undirected graph G = (V, E)

Output: Labeling of Connected Components

// Initialize unvisited vertex list ¢/ from vertices in V'

UV

// Find each connected component

while |U/| > 0 do
choose a seed s € U
// use BFS with the seed to find a connected component C
C < BFS(s)
// remove vertices of the component C' from unvisited list
U+—Uu\cC

end

tive as our algorithm, namely to compute all the connected
components in a graph. To do so, parallel BFS is run iter-
atively, each time selecting a new seed vertex from among
the vertices that were not visited during any of the prior
BFS iterations (see Algorithm 2). Buluc’s BFS implemen-
tation requires a distributed vertex array V and produces
a corresponding distributed component C. We distribute
our unvisited vertex list U using the same decomposition as
that for V. The minimum unvisited vertex, by id, among
all MPI processes is chosen as the seed vertex for the next
BF'S iteration. Our implementation of Algorithm 2 uses a
hash set implementation (C++11 std::unordered_set) for the
unvisited vertex container as it has O(1) complexity for both
single element deletion and access to the first element. Since
each vertex in V is visited only once by BFS, the total work
complexity for tracking the unvisited vertices is O(|V]).

For this experiment, we used Edison, NERSC’s Cray XC30
system, located at Lawrence Berkeley National Laboratory,
due to limited availability of the CyEnce cluster. Each com-
pute node in this system has two 12-core Intel Ivy Bridge
processors and 64 GB main memory. The high-speed in-
terconnect uses dragonfly topology and supports 8 GB/sec
MPI bandwidth.

We used synthetic graphs for our comparative study. The
graph was generated by the Kronecker generator using iden-
tical parameters as described in the Graph 500 benchmark
[15]. We set the scale value of the graph to 27 and the edge
to vertex ratio to 16. As stated in Section 2.2, Kronecker
graphs differ from metagenomic de Bruijn graphs and read
graphs in that they are short diameter networks and con-
tain a very large component that spans the majority of ver-
tices of the graph. An instance of the generated Kronecker
graph has 1 large component with approximately 63 million
vertices, 59 components with 3 vertices, and 20814 compo-
nents with 2 vertices or 1 vertex. In contrast, metagenomic
de Bruijn graphs have multiple orders of magnitude more
connected components. The smallest de Bruijn graph (D1)
contains 29 million components with more diverse sizes.

We experimentally compared the runtime of the AP_LB
variant of our algorithm against the BFS-based method.
Our algorithm performs better than the BFS-based method
by approximately a factor of 2 on varying number of pro-
cesses from 256 to 4096. Figure 5 and Table 3 show the total
runtimes of BFS-based method and our algorithm. Addi-
tionally, Table 3 shows the time spent on the BFS routine
for the largest component, and the mean time spent for all
other components.

Although the absolute time spent by parallel BES per
component is low, the large component count and the need

150 - A Method
' -e— AP_LB
-4 Using BFS
S100- A
@ .
L ..
°E> L
=\ T A
50 -
O -
I I I
256 1024 4096
Number of cores
Figure 5: Performance comparison of AP_LB

against the BFS-based method using Kronecker
graph with scale=27.

Processes | 256 | 484 [1024 | 4096

BFS-based method
Total time | 149.2 97.1 72.8 60.7
(sec)
Largest com- | 0.65 0.44 0.29 0.15
ponent time
(sec)
Mean time | 6.48E-3 | 4.46E-3 | 3.31E-3 | 2.68E-3
for remaining
components
(sec)

AP_LB

Total time | 75.1 47.0 27.6 21.4
(sec)

Table 3: Run-time of BFS-based method and AP_LB
variant of our algorithm for computing connectivity
on Kronecker graph with scale=27

to run parallel BF'S for each component sequentially resulted
in the cumulative time spent on small components dominat-
ing the runtime of the whole execution. This characteristics
of the BF'S-based method also prevented us from evaluating
its performance on our metagenomic data sets due to time
and resource limits. Since most of these small partitions
are of size 2, choice of seed does not significantly affect the
overall runtime for the BFS-based method. In contrast, our
AP_LB algorithm simultaneously labels all the connected
components. For Kronecker graphs, all the small compo-
nents were computed within the first three iterations of the
algorithm. The AP_LB algorithm terminated after labeling
the largest component in the 7th iteration.

Overall these results show that our algorithm performs
particularly well on graphs with a large number of connected
components. On the other hand, the BFS method offers sig-

nificantly superior performance when traversing the largest
component. We anticipate that a hybrid approach utiliz-
ing BFS for relatively large components and our method
for remaining small components would offer superior per-
formance for computing connectivity in the Kronecker and
many other real-world graph topologies on distributed mem-
ory systems.

5. CONCLUSIONS

This work constitutes the first scalable distributed-memory
algorithm for computing de Bruijn graph connectivity, and
it enabled fast labeling of very large-scale de Bruijn graphs.
As a comparison, our largest dataset is derived from an influ-
ential work by domain scientists [12] in which about a week
of computation time was spent in de Bruijn graph connected
components labeling. The motivation for our contribution
is to assist such scientific work through the development of
novel parallel algorithms and high performance implemen-
tations. As an outcome, we are able to label the same de
Bruijn graph in 22 minutes on 1280 Xeon cores. Besides the
metagenomic de Bruijn graphs, we also compared the per-
formance of our algorithm against parallel BF'S for comput-
ing connected components on graphs used in the Graph500
benchmark.

Acknowledgments

This research was supported in part by the National Sci-
ence Foundation under CCF-1360593 and IIS-1416259. The
CyEnce cluster used for experiments was supported by the
National Science Foundation under CNS-1229081.

6. REFERENCES

[1] D. A. Bader and G. Cong. A fast, parallel spanning
tree algorithm for symmetric multiprocessors. In
Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, page 38. IEEE, 2004.

[2] S. Beamer, A. Buluc, K. Asanovic, and D. Patterson.
Distributed memory breadth-first search revisited:
Enabling bottom-up search. In Parallel and
Distributed Processing Symposium Workshops € PhD
Forum (IPDPSW), 2013 IEEE 27th International,
pages 1618-1627. IEEE, 2013.

[3] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G.
Plaxton, S. J. Smith, and M. Zagha. A comparison of
sorting algorithms for the connection machine CM-2.
In Proceedings of the Third Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 3—16.
ACM, 1991.

[4] S. Boisvert, F. Raymond, E. Godzaridis, F. Laviolette,
J. Corbeil, et al. Ray Meta: Scalable de novo
metagenome assembly and profiling. Genome Biol,
13(12):R122, 2012.

[5] A. Bulug and K. Madduri. Parallel breadth-first
search on distributed memory systems. In Proceedings
of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, page 65. ACM, 2011.

[6] Y.-J. Chiang, M. T. Goodrich, E. F. Grove,

R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. In Proceedings of
the Sizth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 139-149. Society for Industrial and
Applied Mathematics, 1995.

[7] G. Cong and P. Muzio. Fast parallel connected
components algorithms on GPUs. In Furo-Par 201}:
Parallel Processing Workshops, pages 153-164.
Springer, 2014.

[8] J. Gans, M. Wolinsky, and J. Dunbar. Computational
improvements reveal great bacterial diversity and high
metal toxicity in soil. Science, 309(5739):1387-1390,
2005.

[9] E. Georganas, A. Bulug, J. Chapman, L. Oliker,

D. Rokhsar, and K. Yelick. Parallel de Bruijn graph
construction and traversal for de novo genome
assembly. In High Performance Computing,
Networking, Storage and Analysis, SC14:
International Conference for, pages 437-448. IEEE,
2014.

[10] S. Goddard, S. Kumar, and J. F. Prins. Connected
components algorithms for mesh-connected parallel
computers. Parallel Algorithms: 3rd DIMACS
Implementation Challenge, 30:43-58, 1994.

[11] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate.
Computing connected components on parallel
computers. Communications of the ACM,
22(8):461-464, 1979.

[12] A. C. Howe, J. K. Jansson, S. A. Malfatti, S. G.
Tringe, J. M. Tiedje, and C. T. Brown. Tackling soil
diversity with the assembly of large, complex
metagenomes. Proceedings of the National Academy of
Sciences, 111(13):4904-4909, 2014.

[13] A. Krishnamurthy, S. S. Lumetta, D. E. Culler, and
K. Yelick. Connected components on distributed
memory machines. In Parallel Algorithms: 3rd
DIMACS Implementation Challenge October 17-19,
1994, volume 30 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages
1-21. American Mathematical Society, 1994.

[14] E. McDonald and C. T. Brown. khmer: Working with
big data in bioinformatics. arXiv preprint
arXiv:1308.2223, 2013.

[15] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and
J. A. Ang. Introducing the Graph 500. Cray User’s
Group (CUG), 2010.

[16] N. Nagarajan and M. Pop. Sequence assembly
demystified. Nature Reviews Genetics, 14(3):157-167,
2013.

[17] T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara.
MetaVelvet: An extension of Velvet assembler to de
novo metagenome assembly from short sequence reads.
Nucleic Acids Research, 40(20):e155—-e155, 2012.

[18] H. Nordberg, M. Cantor, S. Dusheyko, S. Hua,

A. Poliakov, I. Shabalov, T. Smirnova, I. V. Grigoriev,
and I. Dubchak. The Genome Portal of the
Department of Energy Joint Genome Institute: 2014
updates. Nucleic Acids Research, 42(D1):D26-D31,
2014.

[19] M. M. A. Patwary, P. Refsnes, and F. Manne.
Multi-core spanning forest algorithms using the
disjoint-set data structure. In Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th
International, pages 827-835. IEEE, 2012.

[20] J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. M.

[21]

[22]

[23]

Tiedje, and C. T. Brown. Scaling metagenome

sequence assembly with probabilistic de Bruijn graphs.

Proceedings of the National Academy of Sciences,
109(33):13272-13277, 2012.

Y. Peng, H. C. Leung, S.-M. Yiu, and F. Y. Chin.
Meta-IDBA: A de novo assembler for metagenomic
data. Bioinformatics, 27(13):194-1101, 2011.

Y. Shiloach and U. Vishkin. An O(logn) parallel
connectivity algorithm. Journal of Algorithms,
3(1):57-67, 1982.

J. Shun, L. Dhulipala, and G. Blelloch. A simple and
practical linear-work parallel algorithm for
connectivity. In Proceedings of the 26th ACM
symposium on Parallelism in Algorithms and
Architectures, pages 143-153. ACM, 2014.

(24]

25]

(26]

G. M. Slota, S. Rajamanickam, and K. Madduri. BFS
and coloring-based parallel algorithms for strongly
connected components and related problems. In
Parallel and Distributed Processing Symposium, 201/
IEEE 28th International, pages 550-559. IEEE, 2014.
K. Ueno and T. Suzumura. Highly scalable graph
search for the Graph500 benchmark. In Proceedings of
the 21st International Symposium on
High-Performance Parallel and Distributed
Computing, pages 149-160. ACM, 2012.

D. R. Zerbino and E. Birney. Velvet: Algorithms for
de novo short read assembly using de Bruijn graphs.
Genome Research, 18(5):821-829, 2008.

