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ABSTRACT
Counting and indexing fixed length substrings, or k-mers,
in biological sequences is a key step in many bioinformat-
ics tasks including genome alignment and mapping, genome
assembly, and error correction. While advances in next gen-
eration sequencing technologies have dramatically reduced
the cost and improved latency and throughput, there ex-
ist few bioinformatics tools and libraries that can efficiently
process the data sets at the current generation rate of 1.8
terabases every 3 days. We present Kmerind, a high perfor-
mance k-mer indexing library for distributed memory envi-
ronments. The Kmerind library provides a set of simple and
consistent APIs with sequential semantics and parallel im-
plementations that are designed to be flexible and extensible.
Using Kmerind, a user can easily instantiate application-
specific indices, such as k-mer counter and position index,
from biult-in or user-supplied components without extensive
high performance computing expertise. Kmerind’s k-mer
counter performs similarly or better than existing, best-in-
class k-mer counting tools even on shared memory systems.
In a distributed memory environment, Kmerind counts k-
mers in a 120 GB sequence read data set in less than 13
seconds on 1024 Xeon CPU cores, and fully indexes their
positions in approximately 17 seconds. Querying for 1% of
the k-mers in these indices can be completed in 0.23 seconds
and 28 seconds, respectively. To our knowledge, Kmerind is
the first k-mer indexing library for distributed memory en-
vironments, and the first fully customizable and extensible
library for general k-mer indexing and counting. Kmerind is
available from https://github.com/ParBLiSS/kmerind.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
D.2.13 [Software Engineering]: Reusable Software—Reusable
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libraries; I.7.2 [Document and Text Processing]: Doc-
ument Preparation—Index generation
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1. INTRODUCTION
Advances in genome sequencing technology has dramat-

ically reduced the cost while improving the throughput of
sequencing. A single Illumina’s HiSeq X Ten system has the
capacity to sequence 18,000 whole human genomes a year at
a cost of under $1000 per genome and at a rate of approxi-
mately 150 genomes for each 3–day run. As a consequence,
biological sequence analysis has become a ubiquitous com-
ponent of biomedical research and an increasingly impor-
tant tool for healthcare. The same growth in data size and
production rate presents an increasing challenge for timely
analysis of biological sequence data.

Central to many bioinformatics tasks is k-mer counting
and indexing, which are length k substrings of biological
sequences. It is used in data processing tasks including er-
ror correction [14, 28, 19], sequence alignment [2, 15], de
novo assembly [4, 29, 26, 12], and applications that include
these as subtasks such as resequencing. Knowledge discovery
applications such as repeat detection, sequencing coverage
estimation [17] and single nucleotide polymorphism (SNP)
identification [14] also require k-mer counting.

Given the wide applicability of k-mer counting and index-
ing, there exist multiple tools that provide this capability.
However, most are standalone tools that target multi-core
shared-memory platforms and have performance or memory
limitations. In addition, often the tools do no allow online
queries, instead store counting or indexing results in files.

We have developed Kmerind, a generic k-mer indexing
library, to address both the performance and data scaling
challenges. We aim to satisfy the objectives that a Kmerind
user should be able to

1. readily scale problem size and/or performance with ad-
ditional hardware resources,

https://github.com/ParBLiSS/kmerind


2. easily configure and extend Kmerind with user speci-
fied data types and algorithms, and

3. invoke a consistent set of API for all Kmerind compo-
nents and functions.

The Kmerind application programming interface (API),
algorithms, and implementation directly reflect these objec-
tives. We target distributed memory environments as they
allow a user to scale to very large data sizes, up to the to-
tal available memory and the aggregate network bandwidth,
and to recruit additional computational resources when per-
formance is paramount. Kmerind has been designed to use
a bulk-synchronous-parallel model of communication to en-
force explicit coarse grain synchronization.

Kmerind classes and functions are templated to allow easy
creation of application specific indices. A user can customize
k-mer length, alphabet choice, and functions that affect in-
dex operations such as the hash function and the k-mer
parser. A developer can extend Kmerind’s capability by
providing novel algorithms and optimized implementations
for existing components. All Kmerind indices support the
same set of basic operations with sequential semantics and
parallel implementations: insert, find, count, and erase.

2. RELATED WORK
There has been extensive work related to k-mer counting

and indexing, due to its centrality in multiple bioinformat-
ics algorithms. For both counting and indexing, memory is
often the primary limitation. Majority of the k-mer count-
ing tools address this issue via external memory techniques,
Bloom filters [5], or a combination of both. Most k-mer po-
sition indices reduce their memory footprint via enhanced
suffix arrays [1] that also supports k-mer counting.

2.1 K-mer Counting
Jellyfish [20], perhaps the most well-known k-mer count-

ing tool, uses a lock-free hash table to support concurrent
updates from multiple threads. A bijective hash function
allows the lower bits of the key to be reconstructed from the
hash bucket id, thus only the upper bits need to be stored.
Memory usage is further minimized by widening the data
type only when the k-mer frequency is high.

A common approach for reducing the memory footprint is
to use disks as external memory. Tools in this group operate
with separate partitioning and counting phases. KAnalyze
[3] counts k-mers in each file block and stores the inter-
mediate results, which are aggregated during the counting
phase. DSK [24], MSPKmerCounter [18], and KMC 2 [7]
assign k-mers to on-disk buckets during partitioning, and
process each bucket individually during the counting phase.

Another approach to reduce memory consumption is by
excluding singleton k-mers, which are assumed to be the
results of sequencing errors. BFCounter [21] and Turtle [25]
both use Bloom filters to identify previously seen k-mers and
count only non-unique k-mers. JellyFish 2 [20] supports this
technique optionally. As Bloom filters can introduce false
positives, a second scan of the k-mer counts is necessary.

In contrast to BFCounter and Turtle, which counts k-mers
exactly, Khmer [30] relies entirely on a generalized proba-
bilistic counting data structure called Count-min Sketch [6].
Count-min Sketch hashes a k-mer to multiple hash tables of
varying sizes, and updates the hash table entries with the
frequency. When querying, all the hash tables are queried

using the k-mer, and the minimum frequency is used. Khmer
is memory efficient, but it can over-estimate the frequencies.

Kmerind circumvents single-machine memory limitations
by allowing the user to recruit additional nodes in a dis-
tributed system. In contrast to disk based tools [3, 24, 18, 7],
Kmerind’s performance is bound by the faster memory and
network rather than disk speed. Whereas techniques involv-
ing probabilistic data structures such as Bloom filter [21, 25]
or Count-min Hash [30] exclude singleton k-mers or intro-
duce errors, Kmerind supports exact counting and indexing,
and therefore is suitable for applications such as error cor-
rection. Furthermore, Kmerind provides both counting and
indexing capabilities, as well as an extensible library API.

2.2 K-mer Position Indexing
In a suffix tree, a subtree at depth k contains all suffixes

sharing the same k-mer as prefix. The subtree’s leaves rep-
resent positions where a k-mer occurs, and the number of
leaves is the k-mer count. Suffix trees, and the equivalent
memory efficient enhanced suffix array [1], have been used in
Tallymer [17] and Gk-Array [23] for k-mer counting and in-
dexing. FM Index [8] and Compressed Gk-Array [27] further
reduce memory consumption via compressed representations
of suffix arrays.

Suffix trees and arrays are not well-suited for distributed
memory k-mer counting and indexing. Distributed mem-
ory suffix array construction has been demonstrated previ-
ously [11]. However, distributed query processing requires
O(log(n)) iterations of sequence comparison, each iteration
requiring communication with remote processes. Kmerind
instead stores k-mers in hash tables that support local asso-
ciative look-up of values using k-mers as the keys.

2.3 Distributed K-mer Indexing
The k-mer counting and indexing tools discussed in sec-

tions 2.1 and 2.2 target shared memory systems. To our
knowledge, Kmernator [16] is the only distributed mem-
ory k-mer counting tool in existence . It is a hybrid MPI-
OpenMP application that implements a master-slave model
of work assignment at the node and the thread levels. How-
ever, Kmernator can only read FASTQ files and count canon-
ical k-mers. A canonical k-mer is defined as the lexicograph-
ical minimum of a k-mer and its reverse complement.

Distributed memory assemblers often embed specialized
k-mer indexing and counting capability for removing the er-
roneous k-mers and constructing the de Bruijn graph. ABySS
[26] is one of the first distributed memory assemblers. It
constructs a distributed de Bruijn graph by first distribut-
ing k-mers among MPI processes, and then identifying the
edges by querying for the 8 possible neighbors of each k-mer.
ABySS then traverses the graph by following each k-mer’s
edges. These operations can be viewed as k-mer index in-
sert and query operations. HipMer [12] similarly constructs
a distributed de Bruijn graph, and improves upon ABySS by
discarding the erroneous k-mers using a distributed Bloom
filter. Neighbor k-mer queries are not needed as HipMer
builds the graph edges directly using (k + 2)-mers from the
input sequences. Graph traversal requires neighbor queries
and HipMer uses UPC one-sided communication to increase
computation and communication overlap. In both assem-
blers, the k-mer indexing capabilities are specialized for as-
sembly only, and neither provides reusable indexing APIs.



3. PARALLEL K-MER INDEXING
We designed and implemented Kmerind as a distributed

memory library based on the objectives listed in Section 1.
Kmerind’s algorithms are designed to be efficient in both
computation and communication complexities. It leverages
bulk-synchronous parallel communication primitives with ex-
plicit synchronization semantics to avoid contention, fast
hash tables to store k-mers and associated data, and vec-
torized operations on k-mers. Kmerind does not use mul-
tithreading since thread-safety would incur additional over-
heads for this highly data parallel task. An index is kept
completely in memory for the duration of its use.

The following notations are used in subsequent discus-
sions. The number of processors or cores used is denoted
as p. Communication complexity is described in terms of
latency τ , bandwidth 1/µ, and message size m. The com-
plexity of point-to-point communication is O(τ + µm). The
number of times a k-mer appears in a data set is referred to
as its count or frequency. We use the term distinct to de-
scribe k-mers with different character sequences, and unique
to refer to k-mers with counts of 1. The sets of all k-mers
and distinct k-mers indexed by process i are referred to as
Ni and Ui, and the input k-mers for an index operation on
processor i is denoted as Mi. The un-subscripted N , U , and
M denote the corresponding complete k-mer sets across all
processors. The size of a set is represented by | · |. We note
that while N and M are concatenations of the sets Ni and
Mi across all processors, the same is not necessarily true for
U , as a locally distinct k-mer may appear on multiple pro-
cessors. The average global and local k-mer frequencies are
denoted by r = |N |/|U | and ri = |Ni|/|Ui|.

In section 3.1, we describe the distributed file parsing and
k-mer generation algorithm. We then describe in Section 3.2
Kmerind’s distributed data structures and the associated k-
mer mapping and data distribution functions. As counting
k-mers and indexing their positions are two common tasks,
in Sections 3.3 and 3.4, we describe the parallel distributed
algorithms for the operations of k-mer count and position
indices. While the choice of k is dictated by the application,
its effects on index performance is discussed as well.

3.1 Distributed K-mer Parsing

Figure 1: Parallel FASTA and FASTQ file reading
in distributed environment.

Kmerind supports parallel reading of FASTQ and FASTA
files. The FASTQ format is used primarily for storing se-
quencer output and contains numerous short sequences called
reads. The FASTA format can represent short sequences or
partial or complete genomes. We denote the length of the
file as F and the average sequence record length, including

header and other data, as R, and the average length of the
sequence data in the records as L.

Parallel file reading and k-mer parsing proceeds in 3 steps:
file partitioning, sequence segmentation, and k-mer genera-
tion (Figure 1). In the file partitioning step, the file is di-
vided into approximately equal partitions of F/p bytes and
loaded in parallel into memory. Subsequent file data process-
ing occurs in memory only. Kmerind partitions the input file
in order to process files that may cause the memory limits
of a single machine to be exceeded. Parallel file loading can
benefit from the use of local solid state drives (SSDs) due to
their high read performance. In a distributed memory en-
vironment with a parallel file system, however, the benefit
of SSD is less clear as the network bandwidth becomes the
limiting factor for large p.

Kmerind currently supports the common FASTQ format
where a sequence record consists of 4 lines: sequence header,
sequence data, quality score header, and quality scores. It
requires a sequence record to be shorter than the file parti-
tion size so it does not span more than 2 partitions. A se-
quence may still be split between 2 processors, however. To
simplify subsequent processing, we realign the partitions to
sequence boundaries. Each processor performs linear scans
of average length R from the beginning and the end of its
partition to find the starting offsets of the first complete se-
quences. The local partition is adjusted to include the file
data between the 2 offsets. The file data at the end of the
partition is read incrementally during this search to mini-
mize disk access and memory usage.

For the FASTA format, sequence lengths and counts can
vary widely between files, and a single sequence may span
multiple processors. We instead maintain exact block par-
titioning of size F/p with (k-1)-byte overlap to avoid load
imbalance. Each partition is scanned linearly and the start-
ing offsets of all sequence records are stored locally. The off-
sets of the split sequences are replicated to all the involved
processors via forward and reverse parallel prefix scans us-
ing max(·) and min(·) as operators, respectively. Global
sequence ids are computed via parallel prefix sum. Each
processor communicates one element per parallel prefix scan,
whose time complexity O(τ log(p)+µlog(p)) is small relative
to overall k-mer parsing time.

In the sequence segmentation step, the in-memory parti-
tions are segmented into sequence objects, each containing
an id and the sequence’s starting and ending offsets in the
file. For a FASTQ file, a linear scan for 4 complete lines
is sufficient to obtain a sequence object. For a FASTA file,
each sequence object is retrieved in constant time from the
previously computed sequence id and offset arrays.

Finally, during the k-mer generation step, k-mers are ex-
tracted in linear time from a sequence object in a sliding
window fashion. User supplied logic may simultaneously
generate other data such as positions and quality scores.

Table 1 summarizes the complexity of each of the steps of
parallel file reading and k-mer generation for FASTQ and
FASTA files. The overall time complexity for parallel file
reading and k-mer generation is O(F/p).

It is important to note that a user’s choice of k affects the
size of an index and the average frequency. Each sequence
record is parsed into L − k + 1 k-mers as the k-mer does
not extend past sequence data boundaries, therefore a file
produces |N | = (F/R)(L − k + 1) k-mers. The maximum
number of distinct k-mers, |U | = min(4k, (F/R)(L−k+1)),



Table 1: Time complexities for parallel FASTQ and
FASTA file reading and k-mer generation.

FASTQ FASTA
partition file O(F/p+R) O(F/p+ k)

segment sequences O(F/p) O((F/p+ k)/R)
generate k-mers O(F/p) O(F/p+ k)

is bounded by the organism’s genome size, the number of
k-mers in the file, and the size of the k-mer space. For the
human genome with 3 billion bases, the k-mer space size
exceeds the genome size at k ≥ 16. Below k = 16, |U | is an
exponential function of k, and the average k-mer frequency
r increases as k decreases. Above k = 16, r decreases while
both |N | and |U | decrease linearly with k.

3.2 Distributed Hash Table
All Kmerind indices are implemented as lightweight wrap-

pers to 2-level distributed hash tables with k-mer as the key
and count, position, or other user-specified data as the value.
Upper level hashing maps the k-mers to the processors, and
the lower level consists of a local hash table for storing k-
mers and associated data. The use of 2-level distributed
hash table provides flexibility as different hash functions can
be chosen for the two levels, and different local containers to
be used. It also allows a constructed k-mer index to easily
be redistributed to a different set of processors, potentially
of different size, without first writing the index to disk.

We chose hash table for local data storage due to its ex-
pected O(1) access time complexity. In the upper level,
we partition the entire k-mer space via surjective hashing
where a k-mer is uniquely and deterministically assigned to
a processor, which avoids broadcasting during insertions and
queries. Well chosen hash functions at both levels are crit-
ical and should satisfy two criteria. First, a hash function
should produce uniformly distributed hash values to avoid
load imbalance at the upper level and minimize collisions
in the lower level. Second, the upper and lower levels hash
functions should produce uncorrelated hash values. For ex-
ample, if the same hash function were used at both levels, a
processor with id i ≡ hash(·)%p would receive k-mers with
identical least significant dlog(id)e bits in its hash values.
The inserted k-mers would then cluster in buckets with id
j ∈ {j%p ≡ i} in the local hash tables.

Kmerind provides insert, count, find, and erase operations
for counting and position indices. Kmerind index operations
process arrays of input collectively in order to minimize com-
munications overhead and facilitate optimization. Each op-
eration requires the input k-mers to be assigned and then
sent to the remote processors, and any results to be sent back
to the originating processors. We define two function inter-
faces, map to process and distribute, to encapsulate these
two commonly used tasks.

The map to process task assigns k-mers to processors us-
ing the upper level hash function, and rearranges input k-
mers into buckets in order to simplify communication. The
number of k-mers for each processor is counted via a linear
scan, and the bucket offsets are computed using an exclu-
sive prefix scan. The k-mers and associated values are then
copied into contiguous regions in the output array at the
bucket offsets during a second linear scan. This is a local
operation with time complexity that is linear in the local
input size and processor count, i.e., O(|Ni|+ p).

The distribute function sends k-mers and associated data
to target processors using a single collective all-to-all com-
munication call. The time complexity of distribute depends
on the implementation of all-to-all communication. Here we
assume all-to-all communication uses hypercubic permuta-
tions with complexity of O(τ log(p) + µm log(p)).

An important consideration in parallel k-mer indexing
is load balancing between processors. Imbalance primar-
ily arise from two sources. If the distinct k-mer set U is not
uniformly distributed in the k-mer space, the k-mers may
be mapped non-uniformly to the processors. Well chosen
hash functions can help to alleviate this concern. A sec-
ond source of imbalance is the non-uniform distribution of
k-mer sets M and N , even when U is uniformly distributed.
This is the consequence of non-uniform k-mer frequencies
and results in computational and communication imbalance
during queries. We describe this situation and outline an
approach to address it in Section 3.4.

As described in Section 3.1, the choice of k affects the
size of the complete and distinct k-mer sets, as well as the
average k-mer frequency. The value of k consequently affects
the space and time complexities of the distributed hash table
and its operations indirectly through |N |, |U |, and r. High
average k-mer frequencies increase collisions at both levels of
the distributed hash table, and in the case of position index,
the number of associated values for a k-mer. A high |U | value
increases the number of local hash table entries required.
However, as k is chosen to satisfy application requirements
rather than as tuning parameter for our parallel algorithms,
the complexities discussions in subsequent sections are in
terms of N , U , M , r, and related quantities.

3.3 Distributed K-mer Count Index
Kmerind’s count index is a light weight wrapper around

a distributed hash table (Section 3.2) with 〈k-mer, count〉
as value type, where the k-mer ∈ U , and count stores the
number of occurrences of the associated k-mer. For k-mer
counting, the distributed hash table is modeled as a reduc-
tion map with + operator over the count field. In this Sec-
tion, we present the algorithms for the four distributed hash
table operations in the context of k-mer counting.

Figure 2: Inserting k-mers into the Kmerind’s dis-
tributed index.

All operations of the hash table follow the same basic flow.
Index insertion is illustrated in Figure 2. The erase opera-
tion follows a similar flow, while the count and find opera-
tions includes a final communication step to send responses.
The Master Algorithm in Algorithm 1 outlines the complete
distributed hash table query and modification pipeline and
step-wise complexities. The Master Algorithm distributes
the input to target processors using map to process (Line
2) and distribute (Line 3) functions described in Section 3.2.



Target processors then process the received k-mers and data
locally (Line 6). Any query results (Line 7) are communi-
cated back to the source processes (Line 9), if required, using
the inverse of map to process mapping. Duplicates in input
may be removed as needed for the distributed hash table
operation before map to process to reduce subsequent com-
munication volume (Line 1), or after distribute to reduce
computational load on the local hash table (Line 4).

Algorithm 1: Master Algorithm for distributed hash
table operations. Complexities of steps inside a loop are
colored gray, while loop total is shown on the first line.

Input: Mi: input array of k-mers
Input: ht: local hash table
Parameter: h: upper level k-mer hash function
Parameter: i: current processor rank
Output: Ri: output array of 〈k-mer, value〉 pairs

1 Qi ← distinct(Mi) O(|Mi|)
2 Qi ← map to process(Qi, h) O(|Qi|)
3 Di ← distribute(Qi) O(τ log(p) + µ|Qi| log(p))
4 D′

i ← distinct(Di) O(|Di|)
// process query k-mers

5 for x ∈ D′
i do O(|D′

i|)
6 v ← ht.operation() O(1)
7 R′

i.append(〈x, v〉) O(1)

8 end
9 Ri ← distribute(R′

i) O(τ log(p) + µ|D′
i| log(p))

Table 2: Customization of the Master Algorithm
for each count index operation. An index operation
requires a line in the Master Algorithm if the cor-
responding table cell is marked with •.

index operation
line insert count find erase

1 • •
4 •
6 ++ht[x] ht.count(x) ht.find(x) ht.erase(x)
7 • •
9 • •

The reduction map insert, count, find, and erase opera-
tions customize the steps in the Master Algorithm according
to Table 2. For insert, per-process duplicate removal (Line
1) provides limited benefit as the expected number of dupli-
cated k-mer on a processor, (1/|U |)(|N |/p) = r/p, decreases
with increasing p. For a typical whole genome sequencing
data set with 30× coverage and p = 32, we expect that most
k-mers are locally distinct. Experiments in Section 5 there-
fore do not invoke Line 1 during insert. In addition, Line 4
is functionally redundant as local hash table insertion per-
forms the same logic and Lines 7 and 9 are not required.

For count and find, the second distinct is bypassed so that
a response is generated for every query k-mer from each
source processor. The response distribute step (line 9) has
the same complexity as the query distribute step since one
response element is returned per query k-mer for counting.
As count operation returns the number of 〈k-mer, count〉
pairs with matching k-mer value, while the find operation
returns the value of the count field, k-mer counting relies
on the find operation. Erase operation is similar to insert

except that only globally distinct input k-mers are processed
(Line 4), so that each distinct k-mer is erased only once.

We utilize hash tables with appropriately selected hash
functions and dynamic arrays with amortized O(1) insertion
time to ensure that local operations have expected O(1) time
complexity per k-mer. The distinct function internally uses
a temporary hash table for the same reason. We enforce
that input data for index operations are block partitioned,
therefore |Mi| = |M |/p, and |Mi| ≥ |Qi|. Each processor
receives a k-mer set Di after the distribute step. As the
subsetD′

i contains distinct k-mers, the local k-mer frequency
after distribution is ri = |Di|/|D′

i| for processor i. The
Master Algorithm therefore has an overall time complexity
ofO(|M |/p+|Di|+τ log(p)+µ(|M |/p+|D′

i|) log(p)) for count
index operations, with the first two terms corresponding to
computation, and the last two representing collective all-to-
all communication.

Load balance is ensured by uniform distribution of Di

and D′
i. If the condition that k-mers in M are distributed

uniformly to the processors is met, then the global distinct
call is computationally balanced with |Di| = |M |/p. If the
second condition that M has the same distribution as U
is met, then the number of distinct k-mers received for lo-
cal processing is approximately the same for all processors
|D′

i| = O(|M |/p). The second condition also implies that
local average k-mer frequencies after distribute are identi-
cal between processors, ri = |M |/|U |. When both con-
ditions are met, the overall time complexity simplifies to
O(|M |/p+τ log(p)+µ(|M |/p) log(p)). A well chosen upper-
level hash function that maps k-mer to hash values uniformly
can help to ensure that these conditions are met.

3.4 Distributed K-mer Position Index
Similar to count index, Kmerind’s position index is a light

weight wrapper around a distributed hash table with 〈k-mer,
position〉 as value type. Unlike count index, the tuples do
not need to have distinct k-mers and a multimap is used for
local storage. The insert, count, and erase operations follow
the same Master Algorithm (Algorithm 1) and operation-
specific customizations (Table 2) as described in Section 2.1.
The complexities of the local hash table operations (Line
6) depend on the multimap implementation, however. We
use a customized version of Google SparseHash Dense Hash
Map with constant expected time per k-mer insert, count,
and erase operations. Its find operation scales with the k-
mer frequency, as described in Section 4.2. The run time
complexities of the insert, erase, and count operations for
position index are identical to those for the count index,
O(|M |/p+ |Di|+τ log(p)+µ(|M |/p+ |D′

i|) log(p)) in general
and O(|M |/p + τ log(p) + µ(|M |/p) log(p)) when the k-mer
uniform distribution conditions are met.

In contrast to the find operations for the count index, a
position index’s find operation returns each tuple instance
of a matching k-mer to the querying processor, thus ampli-
fying the computational, memory, and communication re-
quirement on processor i by the average frequency of the k-
mers, ri, in the indexed k-mer set N . Direct application of
Algorithm 1 results in complexity O(|M |/p+|Di|+τ log(p)+
µ(|M |/p+ri|D′

i|) log(p)+ri|D′
i|) where the query processing

and result communication time and space complexities are
increased by a factor of ri.

Furthermore, if we assume that the uniform input k-mer
distribution condition is met, then a highly repeated query



k-mer x, with frequency of sx in the query set M and rx in
the indexed data N , is expected to be sent from min(p, sx)
processors. After the distribute step, the target processor
holds all min(p, sx) instances of x, each from a different
processor. Query processing a single query k-mer x on the
target processor requires O(sxrx) time and similar space for
its results, and O(τ log(p) + µsxrx log(p)) time for commu-
nication. The complexity therefore has second order depen-
dence on the repeat rate distributions of the query k-mer set
M and the indexed k-mer set N . If M and N have identical
repeat rate distributions, then the complexity is quadratic in
the repeat rate of each k-mer, r2x. Non-uniformity in repeat
rate distribution can quickly cause load imbalance in com-
putation, memory usage, and communication for Algorithm
1, where collective all-to-all communication is sub-optimal.

Algorithm 2: Find all 〈k-mer, value〉 pairs with match-
ing k-mer in Position Index

Input: Mi: array of query k-mers
Input: ht: local hash table
Parameter: h: k-mer hash function
Parameter: i: current processor rank
Parameter: ri: average processor i k-mer frequency
Output: Ri: output array of k-mers and data

1 Qi ← distinct(Mi) O(|Mi|)
2 Qi ← map to process(Qi, h) O(|Qi|)
3 Di ← distribute(Qi) O(τ log(p) + µ|Qi| log(p))

// count results per source process

4 Ci ← empty array of size p
5 for j = 0 to (p− 1) do O(|Di|)
6 Dij ← subset of Di from processor j
7 for x ∈ Dij do O(|Dij |)
8 C[j] += ht.count(x) O(1)
9 end

10 end
11 Ci ← distribute(Ci) O(τ log(p) + µ log(p))
12 c ← sum(Ci) O(p)

// find k-mers in index per source process

13 Ri ← empty array of size c
14 for j = 0 to (p− 1) do O(τp+ (µ+ 1)ri|Di|)
15 k ← (i+ j) mod p
16 Dik ← subset of Di from processor k
17 T ← empty array
18 for x ∈ Dik do O(ri|Dik|)
19 T.append( ht.find(x) ) O(ri)
20 end
21

22 T ← send(T, t) O(τ + µri|Dik|)
23 Ri.append(T) O(ri|Dik|)
24 end

Instead, Kmerind’s position index’s find operation uses
a modified algorithm (Algorithm 2) that processes query
k-mers from one source processor at a time (Line 4) and
send results immediately (Line 22) before proceeding to the
queries from the next processor. This approach avoids the
quadratic query result space requirement for highly repeated
k-mers, reduces the query processing time and space com-
plexity from O(ri|Di|) to O(ri|Di|/p) and the communica-
tion message sizes similarly. Instead of collective all-to-all
communication, non-blocking point-to-point communication

is used, which also allows communication to overlap query
processing computations.

The modified find algorithm for the position index has
complexity that is dominated by query processing and re-
sults communication. The overall complexity is O(|M |/p+
ri|Di| + τ(p + log(p)) + µ((|M |/p) log(p) + ri|Di|)). Under
uniform k-mer distribution (|Di| = |M |/p) and uniform lo-
cal average k-mer frequency (ri = r) conditions, the overall
time complexity simplifies to O(r|M |/p + τp + µ(log(p) +
r)(|M |/p)).

4. SOFTWARE ARCHITECTURE
The Kmerind library has been designed with a tiered ar-

chitecture (Figure 3), built on C++ 11 language features,
Standard Template Library (STL) containers and algorithms,
and MPI functions. Each tier defines templated functions
and class interfaces as well as generic implementations. The
templated API is designed to allow functionality by composi-
tion and extension by specialization and inheritance. Where
possible, the API presents sequential semantics for simplic-
ity, and encapsulates distributed memory algorithm details.

At the lowest level, Data Types layer defines alphabet and
k-mer types and associated operations such as k-mer reverse
complement. The Operators layer defines transformations
that facilitate sequence segmentation and k-mer parsing.
The parallel file reader and k-mer generator in the Func-
tions layers use these operators as interchangeable modules
for reading files of different formats and generating 〈k-mer,
value〉 pairs of different types.

Figure 3: Kmerind Library’s tiered architecture.

The Distributed k-mer Index layer contains k-mer indices,
which are implemented as light-weight wrappers for Dis-
tributed Containers. Kmerind provides distributed hash map,
multimap, as well as map that performs reduction on inser-
tion, and its counting map specialization. Different local
hash tables, such as DHMM described in Section 4.2, can be
used with the distributed maps.

A user chooses library-provided or custom-developed com-
ponents as template parameters during index instantiation
to define its behavior. Through template specialization,
function overloading, or class inheritance, custom implemen-
tations of generic library API can be created. Kmerind’s
flexibility and extensibility is due largely to this approach.
For example, a simple de Bruijn graph can be constructed
by defining the value type to be edge labels and extending
the base k-mer parser to generate the edges.

4.1 K-mer Representation
In Kmerind k-mers are specified via length k and alpha-

bet Σ. Kmerind does not place restrictions on values of
k, including whether k is odd. Kmerind currently define 3



primary alphabets, DNA, DNA5, their RNA variants, and
IUPAC DNA. A user can also supply custom alphabets.
Each alphabet defines the allowable ASCII characters for
representing nucleotides. For DNA, the character set con-
sists of {A,C,G, T}, while DNA5 adds N to denote an un-
known nucleotide. IUPAC DNA uses 16 characters to rep-
resent the power set of the four DNA nucleotides, e.g. K
represents either G or T . An alphabet also defines the com-
plement mapping for each nucleotide.

Kmerind uses a compressed k-mer representation. Each
nucleotide is encoded using the minimum number of bits,
b = dlog(|Σ|)e. For DNA, DNA5, and IUPAC DNA, the bit
lengths are 2, 3, and 4 respectively. A k-mer is represented as
a bit vector of length kb in an array of machine words, with
unused bits in the most significant positions. Operations
on k-mers has complexities that depend linearly on k and
the machine word size, and is vectorized as described in the
remainder of this section.

As DNA is double stranded, given a k-mer x, the cor-
responding k-mer on the opposite strand x̄ can readily be
obtained via the reverse complement operation, revcomp.
A canonical k-mer, x̃, is the lexicographical minimum of x
and x̄. Kmerind does not explicitly model k-mers as double
stranded, instead accounting for the double stranded na-
ture in indexing operations. Kmerind can store and query
the input k-mers as is (single strand mode), convert all k-
mers to canonical (canonical mode), or store input k-mers
as is but treat x and x̄ as equivalent for queries (bimolecule
mode). Note that bimolecule mode is handled completely
on-demand by an index’s hash and comparison functions.
As revcomp is a central operation, it has been accelerated
using Single Instruction Multiple Data (SIMD) instructions
and the SIMD Within A Register (SWAR) [9] pattern where
only x86 instructions are used.

Revcomp proceeds in two conceptual phases: character
order reversal and character complement. To reverse the
order of characters, each word in a k-mer is byte-reversed,
and each byte is then character-reversed. Words in a k-mer
are processed in linear order. The pshufb instruction from
SSSE 3 and AVX 2 is used for byte- and character-reversal.
It copies bytes from a register into the output in O(1) time
using a second register as lookup index. The x86 instruction
set lacks a pshufb equivalent, so for character reversal, we
swap the upper and lower bit blocks using the mask-shift-or
pattern, halving the block size in each of the log(|word|/b)
iterations. Bswap is used for x86 byte reversal. Table 3
summarizes the instructions used.

Table 3: SIMD and x86 instructions used during k-
mer reverse complement. Word refers to the input
data. Index is a constant containing the ranks in
reversed order. LUT is an alphabet-specific lookup
table containing the character-by-character reversed
bit patterns of the look up table index, e.g. 01 00
for position 1 (00 01) in DNA LUT.

PHASE x86 SSSE 3, AVX 2
reverse bytes bswap(word) pshufb(word, index)

reverse bits mask-shift-or pshufb(LUT, word)

To accelerate character complement, we designed SIMD
friendly bit-encoding schemes for the Kmerind alphabets.
Specifically, the encodings are chosen such that the comple-
ment of a character can be computed via simple vectorized

functions. For DNA5 and IUPAC DNA, the bit reverse func-
tion is chosen, while for DNA alphabet, bitwise negation is
used (Table 4). For example, for DNA 5, ‘C’ is mapped to
011, whose bit-wise reversal is 110, corresponding to ‘G’ in
the alphabet. For encodings where complements are com-
putable via bit-reversal, the character reversal mechanism
can be extended to compute reverse complement in one step.
This approach also allows DNA5 revcomp to be implemented
in the same way and with similar running time as that for
IUPAC DNA, despite the lack of byte-alignment.

Table 4: SIMD-friendly bit encoding for DNA,
DNA5, and IUPAC DNA characters and cor-
responding character complement method. For
IUPAC DNA alphabet, not all characters are shown.
and the functions for computing the complements.

Character Complement Complement
Char Bits Char Bits Method

D
N
A A 00 T 11

negate
C 01 G 10

D
N
A
5

gap 000 gap 000

bit reverse
A 001 T 100
C 011 G 110
N 111 N 111

IU
P
A
C

gap 0000 gap 0000

bit reverse

A 0001 T 1000
C 0010 G 0100
R (A,G) 0101 Y (C,T) 1010
· · · · · ·
N 1111 N 1111

4.2 Local Hash Table
Kmerind incorporates Google SparseHash’s Dense Hash

Map (referred to as DHM ) [13] as the default local hash
table due to its performance. DHM uses open addressing
with quadratic reprobing, thus requiring 2 dedicated keys
to identify empty and deleted hash table slots. The choice
of these keys depends on k-mer parameters and the strand
mode of the index as defined in Section 4.1. Table 5 summa-
rizes the decision tree for selecting the strategy to generate
the empty key for DHM. Deleted key selection is similar.

Table 5: Strategies for choosing k-mers as the empty
key for DHM. Conditions listed are checked succes-
sively row by row. If a condition is met, the strategy
listed on that row is used. Examples shown are 3-
mers in ASCII or binary encoding.
Condition Strategy example
. DNA5 use unmapped encoding: 010 000 000 010
.. Has set highest unused bits 10 11 10 01
unused bits
. . . Is choose un-canonical k-mer TTT
canonical index
. . .. all others split k-mer space

lower k-mer space map TTT
higher k-mer space map AAA

Three conditions are evaluated based on k-mer parame-
ters. First, if the alphabet chosen is DNA5, bit patterns
that are not mapped to alphabet characters, (010, 101), are
used to create deleted and empty keys. If the alphabet is not
DNA5, and there are unused bits in a k-mer’s data structure,
then the unused bits indicate deleted and empty keys.

If all bits are used, we choose k-mers that are never in-
serted or queried in the index. For canonical mode indices,



the lexicographically smaller of a k-mer and its reverse com-
plement is inserted into the index, implying that any lex-
icographically larger k-mer can be used as the empty or
deleted key. We choose the lexicographically largest k-mer,
TTT . . . TTT as the empty key.

Finally, if none of the three previous conditions are met,
then any k-mer may be inserted into the index. In this case,
we partition the k-mer space into upper and lower halves
based on the most significant bit in the k-mer, and use 2
separate DHMs, one for each half. The lexicographically
largest and smallest possible k-mers are chosen as keys for
the lower and upper DHMs, respectively. For all cases, The
same keys are used for all DHMs in a distributed index.

We also extended DHM into a multimap, which is re-
quired by k-mer position index. Dense Hash MultiMap, or
DHMM, allows multiple values per k-mer key through an
indirection to secondary arrays. DHMM stores singleton k-
mers in one array, referred to as SA, and duplicated k-mers
in an array of arrays, referred to as MA, where each inner ar-
ray contains all values associated to a particular k-mer. An
internal DHM associates k-mers with SA or MA positions,
differentiated by the sign bit of the position value. Using
positions instead of pointers or iterators allows SA and MA
to dynamically resize without costly internal DHM rebuilds
and improves cache utilization. Separate arrays for unique
and duplicated k-mers minimizes the number of memory al-
locations for inner arrays of MA.

DHM has amortized O(1) insertion time complexity as
it can dynamically resize as needed. In practice, Kmerind
preallocates the local hash table if possible. DHM ’s find,
count and erase operations have expected O(1) complexity.
Insertion in DHMM has an amortized O(1) time complex-
ity as the SA and MA array as well as the internal DHM
may resize as needed. Counting requires constant time as
the count for singleton k-mers is 1, while the counts for re-
peated k-mers can be retrieved from the corresponding inner
arrays directly. Deletion requires constant time since only
the internal DHM needs to be modified to mark an entry as
deleted. To retrieve all values mapped to a k-mer, DHMM
requires time linear in the average size of the output, O(r).

5. EXPERIMENTAL RESULTS
We examined the performance of Kmerind and those of

a select subset of existing tools. Kmerind has been imple-
mented as a header-only C++ 11 library. MPI 2 collec-
tive and point-to-point operations were used for inter-node
communication and the mxx library [10] provided conve-
nience wrappers for MPI functions and large message sup-
port (greater than 2 billion elements). Kmerind is available
from https://github.com/ParBLiSS/kmerind.

Data sets used for the experiments include a filtered hu-
man genome read file (1000 Genome Project HG00096), the
Iowa Cornfield Soil Metagenomic data set (Joint Genome In-
stitute 402461), the complete human genome (1000 Genome
Project reference genome version GRCh37), and the Picea
abies pine genome (Nystedt et al [22]). The HG00096 read
data set is a 6.3 GB FASTQ file and identified as R1. The
humane and pine genomes are FASTA files with sizes 2.9 GB
and 12.4 GB, and are identified as G1 and G2, respectively.
The original metagenomic file is approximately 440 GB in
size. We extracted 7.5, 15, 30, 60, and 120 GB regions via
truncation. These are referred to as M1, M2, M3, M4,
and M5 data sets, respectively.

Unless otherwise stated, the tests were run with DNA 31-
mer. Kmerind indices were configured in canonical mode
and used the high and low bits of Google farmhash hash
values for the upper and lower levels of the distributed hash
table. DHM and DHMM are used as the local hash table
for count and position indices, respectively, as they achieved
up to 4x speedup in testing over STL’s unordered multimap
for position index count and find operations. All figures are
rendered with log(corecount) on the x-axis, and log(time)
on the y-axis in seconds, unless specially noted.

Both strong and weak scaling experiments were conducted.
In strong scaling experiments, the total input data set size
|M | is fixed while p is increased to demonstrate the soft-
ware’s capability to use additional resources to solve a prob-
lem faster. In weak scaling experiments, p is increased with
|M |, such that |M |/p is constant, to show the ability of the
software to solve larger problems by using more resources.
Ideal strong scaling means that parallel execution time is
1/p that of sequential execution, while ideal weak scaling
translates to constant execution time regardless of p.

Sequential and multi-threaded tests were conducted on
the CompBio system at Georgia Institute of Technology.
CompBio contains four 2.1GHz Intel Xeon E7-8870v3 pro-
cessors with 45MB L3 cache, 1TB of DDR4 RAM, and four
4TB rotating disks in RAID 5 configuration. All tested soft-
ware were compiled with GCC 5.3 and OpenMPI 1.10.2 if re-
quired. Distributed memory experiments were conducted on
Iowa State University’s CyEnce cluster. Each node contains
two 2.0Ghz 8-core Intel Xeon E5-2650 CPUs and 128GB of
RAM. The nodes are connected via quad data rate (QDR)
Infiniband interconnect, and supported by a 288TB Lustre
file system with one metadata server and 8 object storage
servers. All data files are stored on Lustre with 1MB block
size and stripe count of 8. All tested software were compiled
with GCC 4.9.3 and MVAPICH 2.1.7. We repeated each ex-
periment at least three times, and reported the fastest trials
as they most closely reflect system capabilities.

5.1 K-mer Operations

Table 6: Time in seconds to reverse complement 1
million 31-mers using SIMD instructions.

SEQ SWAR SSSE 3 AVX 2 AUTO
DNA 0.029 0.0018 0.0024 0.0036 0.0019

DNA5 0.049 0.0062 0.0023 0.0032 0.0023
IUPAC 0.049 0.0053 0.0023 0.0032 0.0023

We benchmarked the SIMD accelerated k-mer reverse com-
plement operation using the CompBio system. Table 6 sum-
marizes the time to reverse and complement 1 million DNA,
DNA5, and IUPAC DNA 31-mers using the x86 SWAR,
SSSE 3, and AVX 2 implementations. The “AUTO” imple-
mentation adaptively chooses the optimal instruction sets
at compile time based on k-mer parameters. We achieved
a throughput of approximately 2 microseconds per 31-mer.
SWAR implementation was approximately 16× faster than
sequential (SEQ in Table 6), while SSSE 3 was 21× faster.
Speed up depends on k-mer length, with SWAR performing
well for small k, and SSSE 3 the implementation of choice for
larger k-mers. AVX 2, contrary to expectation, performed
comparably to SSSE 3 instructions for k-mer reverse comple-
ments up to k = 256 (data not shown), due to the additional
instructions required to copy bits between the 128 bit lanes.

https://github.com/ParBLiSS/kmerind


5.2 Distributed File Reader
We benchmarked distributed file reading using the CyEnce

cluster. To prevent file system cache from affecting the re-
sults, we used copies of the same file during each iteration of
the test. Three different file access mechanisms were evalu-
ated: MPI-IO, memory mapping (MMAP), and POSIX file
access functions. Figure 4 shows that parallel reading of
the R1 data set scaled nearly linearly up to p = 64, beyond
which the network was likely saturated. MPI-IO and MMAP
mechanisms performed similarly given CyEnce’s configura-
tion. For 32 and 64 processor cores, the POSIX mechanism
showed an approximately 40% advantage.
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Figure 4: Time to read the R1 data set from disk
into memory via MPI-IO, POSIX, and memory
mapping, using varying number of processors. Only
the x-axis is in logarithmic scale.

The effect of file system caching is dramatic. Table 7
shows the time to read the M4 data set using 128 processor
cores with and without file caching. Caching had the most
benefit for POSIX mechanism with a 22.8× speed up. The
uncached file reading time suggests that saving and reading
k-mer indices to and from disk likely is time consuming, as
the network throughput to and from the parallel file systems
becomes the limiting factor. Timing results from Sections
5.3 and 5.4 further suggest that rebuilding an index is likely
preferable over loading a previously built index from disk.

Table 7: Time to read a file from the Lustre file
system using 128 processor cores, with and without
populated operating system file cache.

time (s) uncached cached speed up
MMAP 50.87 29.59 1.72
MPI-IO 57.65 13.26 4.35
POSIX 55.41 2.43 22.80

In subsequent tests, we used the POSIX mechanism for
parallel file reading, and pre-populated the cache with a
“warm up” iteration. For comparison with existing tools
in Section 5.3, parallel file reading time was included for all
tools, as KMC 2 did not measure it separately. For Kmerind
scalability experiments in Section 5.4, the file reading time
was excluded from the index construction and query times.

5.3 Comparisons with Existing Tools
We compared the performance of Kmerind to existing

best-in-class k-mer counting tools on shared and distributed
memory systems. JellyFish 2 [20] and KMC 2 [7] were cho-
sen as they represent the most commonly used and fastest
k-mer counting tools, respectively. Kmernator [16] was cho-
sen as it was the only existing distributed k-mer counter.

5.3.1 Shared Memory Environment
We used the CompBio system for single node, multi-thread

testing. For JellyFish 2 and KMC 2, we assigned one thread

per core. For Kmerind, we treat the system as if it is a
distributed memory system, assigning one MPI process per
core. Kmernator was executed using MPI only as its perfor-
mance worsened when multithreading was enabled in hybrid
MPI-OpenMP mode. During execution, each thread or MPI
process was locked to a single core using the numactl tool
or via mpirun. All tools were configured to count canonical
k-mers only and without any k-mer filtering.
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Varying k, 64 cores k = 31, Varying cores
time (s) 15 21 31 63 16 32 64

JellyFish 2 16.3 17.2 19.8 27.8 44.0 21.4 19.8
KMC 2 7.2 7.8 9.0 20.1 13.8 12.0 9.0

Kmernator 74.0 226.0 60.0 35.0 245.0 123.0 60.0
Kmerind 6.0 6.1 5.5 5.0 18.7 9.9 5.5

Figure 5: Strong scaling behavior for counting k-
mers in R1 data set using 16, 32, and 64 cores on a
shared memory system. Each plot corresponds to a
different k value. The table shows the timing results
for fixed core count p or fixed k

Strong scaling experiments were conducted with the R1
data set using 16, 32, and 64 cores. Figure 5 shows the per-
formance of each tool or library for varying core counts p
and k values. All tools showed performance improvement
as p increased. In contrast to JellyFish 2 and KMC 2, both
Kmerind and Kmernator showed nearly linear scaling, where
the time approximately halved as p doubled. The perfor-
mance of JellyFish 2 and KMC 2 decreased as k increased,
suggesting inefficiencies in their k-mer parsing and compar-
ison operations. The performance of Kmerind improved as
k increased due to reduction in the number of valid k-mers
in short input sequences as described in Section 3.1. For
the R1 data set, the numbers of valid k-mers in millions are
2052, 1909, 1670, and 906 for k values of 15, 21, 31, and
63, respectively. Kmernator showed similar improvements,
except when k was not near a power of 2 where we observed
a significant performance penalty due to unknown cause.

Table 8: Time to count 31-mers in metagenomic
read files and whole genomes using 64 cpu cores.

Metagenomic Reads Whole Genome
time (s) M1 M2 M3 G1 G2

JellyFish 2 36.27 67.35 84.46 20.60 66.13
KMC 2 23.44 48.19 83.28 115.63 341.35

Kmernator 84.00 172.00 349.00 – –
Kmerind 9.97 20.04 42.52 13.04 50.98

Overall, Kmerind’s performance was not strongly affected
by values of k, scaled linearly with the number of cores,
and consistently out-performed JellyFish 2 and Kmernator.
Kmernator was slower than other tools by up to an order
of magnitude. We observed that Kmerind performed worse
than KMC 2 at low core count due to the larger message



size |M |/p increasing Kmerind’s synchronous communica-
tion overhead. At higher core count, KMC 2’s performance
degraded, likely due to high thread synchronization over-
head. We expect the performance gap between KMC 2 and
Kmerind to widen in Kmerind’s favor as core count is in-
creased further. The table in Figure 5 shows the time for
index construction for all tools with k or p fixed. Kmerind
was up to 1.64× faster than KMC 2 for counting canonical
31-mers using 64 cores, and 3.6× faster than JellyFish 2.

Table 8 shows the performance of JellyFish 2, KMC 2,
Kmernator, and Kmerind for varying data sizes. The Metage-
nomic Reads experiments were conducted with M1, M2, and
M3 data sets using p = 64 and k = 31. All tools exhibited
near linear scaling with data size. Kmerind counted the M3
data set in less than 43 seconds and was 2 to 2.4 times faster
than KMC 2 for all data sets. The Whole Genome experi-
ments were conducted with G1 and G2 data sets. Kmerind
completed counting the human genome in 13 seconds and
pine genome in 51 seconds using 64 cores. JellyFish 2 was
1.6 and 1.3 times slower than Kmerind for G1 and G2, while
KMC 2 was up to 9 times slower. Kmernator was excluded
from the experiment due to its lack of FASTA file support.

Table 9: Time to query 1% of indexed k-mers with
JellyFish 2 and Kmerind.

Varying k, 1 Core
time (s) 15 21 31 63

JellyFish 2 0.66 1.284 0.821 2.074
Kmerind 0.09 0.10 0.11 0.20

Of the three existing tools tested, only JellyFish 2 pro-
vides a command line interface to query the database. KMC
2 does provide an option to find intersection between two
databases, but outputs the minimum counts for the entries
in the intersection. Table 9 shows the times to query Jel-
lyFish 2 and Kmerind count indices using 1% of indexed
k-mers on CompBio using a single core, as JellyFish 2 only
supports single threaded queries. As JellyFish 2 requires
loading the database file from disk, results are not directly
comparable but is illustrative of the benefit of Kmerind’s
in-memory index for online queries.

5.3.2 Distributed Memory Environment
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Core Count

time (s) 64 128 256 512 1024

(a)
Kmernator 76.00 40.00 34.00 30.00 6.00

Kmerind 10.43 5.42 2.85 1.46 0.95

(b)
Kmernator 76.00 81.00 143.00 254.00 115.00

Kmerind 10.43 10.71 11.45 11.75 12.94

Figure 6: Strong and weak scaling behaviors in
Kmerind and Kmernator for distributed DNA 31-
mer counting. Data set M1 was used for strong scal-
ing while sets M1–M5 were used for weak scaling.

We benchmarked index construction for Kmerind and Kmer-
nator using data sets M1–M5 and 64 to 1024 processor cores

on CyEnce for Kmerind and Kmernator. Figure 6 shows
Kmerind was consistently faster than Kmernator by at least
a factor of 6 for strong scaling and 8 for weak scaling. Kmerind’s
showed approximately linear strong scaling for up to 512 pro-
cessor cores, beyond which the parallel efficiency decreased
slightly. For weak scaling, Kmerind showed a gradual in-
crease of running time as core count increased. In both
cases, the behavior is attributable to the log(p) factor in the
collective all-to-all communication complexity. Kmernator
showed a reproducible non-linear scaling behaviors for 256
and 512 processor cores due to unknown cause.

5.4 Scalability
Kmerind’s indices are general and extend beyond just

counting. Figure 7 shows strong and weak scaling behav-
ior of Kmerind’s count and position indices for each index
operation. The count, find, and erase operations used 1% of
the indexed k-mers, selected randomly, as input. All exper-
iments were performed using data sets M1–M5 on CyEnce.
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(b) weak scaling
Core Count

time (s) 64 128 256 512 1024
Count insert 10.43 5.42 2.85 1.46 0.95
Index find 0.18 0.10 0.06 0.05 0.05

(a) Position insert 10.19 5.40 2.99 1.55 1.00
Index count 0.17 0.10 0.06 0.05 0.06

find 0.72 0.68 0.60 0.49 0.42
Count insert 10.43 10.71 11.45 11.75 12.94
Index find 0.18 0.19 0.21 0.23 0.23

(b) Position insert 10.19 11.20 12.95 14.12 16.57
Index count 0.17 0.21 0.23 0.25 0.28

find 0.72 1.59 3.94 9.79 27.77

Figure 7: Strong and weak scaling result for the in-
sert, count, find, and erase operations for Kmerind’s
count and position indices, using DNA 31-mers from
data sets M1–M5.

Kmerind count and position indices ingested the M1 data
set in approximately one second, and the M5 data set in
13 and 16.6 seconds respectively using 1024 processor cores.
Retrieving the counts in the count index required 0.05 and
0.23 seconds for M1 and M5, respectively, while counting
using position index required slightly more time. Retrieving
the positions took 0.42 and 28 seconds for M1 and M5.
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Figure 8: Strong scaling of internal steps in the
count and find operations for count and position in-
dices. The “map”, and “query” steps correspond to
the map to process and distribute functions in Algo-
rithms 1 and 2, while “resp” corresponds to all re-
maining algorithmic steps after the distribute step.

In both strong and weak experiments, the insert, count,
and erase operations behaved similarly between the count
and position indices, while the find operation diverged be-
tween them, reflecting the algorithmic and complexity dif-
ferences described in Sections 3.3 and 3.4. In strong scal-
ing experiments, insert showed near linear scaling, as ex-
pected, while count and erase reached minima at 512 proces-
sor cores. Figure 8a shows that the presence of the minima
is largely due to communication in the “query” and “resp”
steps with complexity τ log(p)+µ(|M |/p) log(p). For strong
scaling, as p increases, the bandwidth term decreases at the
rate of log(p)/p, while the latency term increases at a rate
of log(p). For large p > µ|M |/τ , latency dominates.

Scaling of the find operation for k-mer position index is
dominated by the “resp” step (Figure 8b) with complexity
(r|M |/p) + τp + µ(r|M |/p) (Section 3.4). In contrast to a
count index, the “resp” step for the position index has sig-
nificantly higher latency and computation complexities. In
addition, the average k-mer frequency r can increase the
bandwidth term contribution for r > log(p), and highly re-
peated k-mers in a processor can introduce load imbalance
that further causes the run time to scale sub-optimally.
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Figure 9: Weak scaling of internal steps in the count
and find operations for count and position indices.
The “map”, “query”, and “resp” steps are defined
identically as those in Figure 8.

Weak scaling experiments showed a slight increase of run
time as p increased for insert, count, and erase operations
(Figure 7b). Figure 9a shows that this is due primarily to
the “query” step and to a lesser degree the “resp” step. As
the per-processor data size |M |/p is kept constant in weak

scaling experiments, both the latency and bandwidth terms
in the communication complexity increases with log(p). The
time for the find operation in position index increased lin-
early with p and r. As the expected k-mer frequency scales
with p since the data size is kept constant per processor
for weak scaling experiments, the find operation complexity
τp + (µ + 1)(r|Mi|) (Section 3.4) scales linearly with p, as
evident in the “resp” step scaling in Figure 9b and in the
average repeat rates of data sets M1–M5, which are 1.11,
1.17, 1.26, 1.37, and 1.54 respectively.

6. CONCLUSIONS
K-mer counting and indexing are central to many bioin-

formatics applications including de novo assembly, genome
mapping, and error correction. The widespread availabil-
ity of next generation sequencers and their high throughput
and low cost have fundamentally changed the way genomic
data are used in biology and medicine. Consequently, it has
become increasingly critical to develop k-mer counting and
indexing tools and libraries that can efficiently and scalably
operate on very large sequence data.

We present Kmerind, a generic distributed memory k-mer
counting and indexing library that is high performance, flex-
ible, and extensible. To our knowledge, it is the first k-
mer indexing library for distributed memory environments,
and the first generic k-mer counting and indexing library.
By using distributed memory, entire index can be stored in
memory for fast access, and additional memory and com-
putational resources can be recruited for larger data sets.
Kmerind has also been optimized with efficient SIMD imple-
mentation and data structures. We showed that Kmerind
indices are capable of index construction and query with
linear scaling on distributed systems. On shared memory
systems, Kmerind is competitive with current best-in-class
k-mer counting tools at low core counts and out-performs
them at high core counts.

While the library was implemented using distributed mem-
ory parallel algorithms, Kmerind’s API has been designed
with sequential semantics to facilitate application develop-
ment. The API is templated to allow a user to create cus-
tom indices for different applications through composition of
predefined logic and user-specified data types. The generic
API also allows a developer to extend Kmerind’s functional-
ity with novel algorithms and application specific functional
modules and data types in order to improve communication
efficiency, minimize local computation and memory utiliza-
tion, or to integrate novel indexing strategies. For example,
a Bloom filter can be used, similar to the approach taken
by JellyFish 2, in a preprocessing step to minimize number
of k-mer indexed, provided that singleton k-mer exclusion is
compatible with the application requirements.
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[12] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr,
C. Aluru, R. Egan, L. Oliker, D. Rokhsar, and
K. Yelick. HipMer: An Extreme-scale De Novo
Genome Assembler. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15,
pages 14:1–14:11. ACM, 2015.

[13] Google SparseHash.
https://github.com/sparsehash/sparsehash.

[14] D. R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake:
quality-aware detection and correction of sequencing
errors. Genome Biology, 11(11):1–13, 2010.

[15] W. J. Kent. BLAT–the BLAST-like alignment tool.
Genome Research, 12(4):656–664, Apr. 2002.

[16] Kmernator. https:
//github.com/JGI-Bioinformatics/Kmernator.

[17] S. Kurtz, A. Narechania, J. C. Stein, and D. Ware. A
new method to compute K-mer frequencies and its
application to annotate large repetitive plant genomes.
BMC Genomics, 9:517, 2008.

[18] Y. Li and XifengYan. MSPKmerCounter: A Fast and
Memory Efficient Approach for K-mer Counting.

arXiv:1505.06550 [cs, q-bio], May 2015. arXiv:
1505.06550.
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