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Abstract—We present an efficient distributed memory parallel algorithm for computing connected components in undirected graphs

based on Shiloach-Vishkin’s PRAM approach. We discuss multiple optimization techniques that reduce communication volume as well

as load-balance the algorithm.We also note that the efficiency of the parallel graph connectivity algorithm depends on the underlying

graph topology. Particularly for short diameter graph components, we observe that parallel Breadth First Search (BFS)method offers

better performance. However, running parallel BFS is not efficient for computing large diameter components or large number of small

components. To address this challenge, we employ a heuristic that allows the algorithm to quickly predict the type of the network by

computing the degree distribution and follow the optimal hybrid route. Using large graphswith diverse topologies from domains including

metagenomics, web crawl, social graph and road networks, we show that our hybrid implementation is efficient and scalable for each of

the graph types. Our approach achieves a runtime of 215 seconds using 32 K cores of Cray XC30 for ametagenomic graphwith over

50 billion edges. When compared against the previous state-of-the-art method, we see performance improvements up to 24�.

Index Terms—Parallel algorithms, distributed memory, breadth first search, undirected graphs
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1 INTRODUCTION

COMPUTING connected components in undirected graphs
is a fundamental problem in graph analytics. The sizes

of graph data collections continue to grow in multiple scien-
tific domains, motivating the need for high performance
distributed memory parallel graph algorithms, especially
for large networks that cannot fit into the memory of a sin-
gle compute node. For a graph GðV;EÞ with n vertices and
m edges, two vertices belong to the same connected compo-
nent if and only if there is a path between the two vertices in
G. Sequentially, this problem can be solved in linear
Oðmþ nÞ time, e.g., by using one of the following two
approaches. One approach is to use graph traversal algo-
rithms, i.e., either Breadth First (BFS) or Depth First Search
(DFS). A single traversal is necessary for each connected
component in the graph. Another technique is to use a
union-find based algorithm, where each vertex is initially
assumed to be a different graph component and compo-
nents connected by an edge are iteratively merged.

Parallel BFS traversal algorithms have been invented that
are work-optimal and practical on distributed memory sys-
tems for small-world graphs [1], [2]. While parallel BFS algo-
rithms have been optimized for traversing a short diameter
big graph component, they can be utilized for finding con-
nected components. However, connectivity can be deter-
mined for only one component at a time, as BFS cannot merge

the multiple partial search trees in the same component that
are likely to arise during concurrent runs. For an undirected
graph with a large number of small components, parallel BFS
thus has limited utility. On the other hand, BFS is an efficient
technique for scale-free networks that are characterized by
having one dominant short diameter component.

The classic Shiloach-Vishkin (SV) algorithm [3], a widely
known PRAM algorithm for computing connectivity, simul-
taneously computes connectivity of all the vertices and
promises convergence in logarithmic iterations, making it
suitable for components with large diameter, as well as for
graphswith a large number of small sized components. Note
that compared to simple label propagation techniques, the
SV algorithm bounds the number of iterations to OðlognÞ
instead of OðnÞ, where each iteration requires Oðmþ nÞ
work. In this work, we provide a novel edge-based parallel
algorithm for distributed memory systems based on the SV
approach. We also propose optimizations to reduce data vol-
ume and balance load as the iterations progress.

To achieve the best performance for different graph
topologies, we introduce a dynamic pre-processing phase to
our algorithm that guides the algorithm selection at run-
time. In this phase, we try to classify the graph as scale-free
by estimating the goodness of fit of its degree distribution to
a power-law curve. If and only if the graph is determined to
be scale-free, we execute one BFS traversal iteration from a
single root to find the largest connected component with
high probability, before switching to the SV algorithm to
process the remaining graph. While the pre-processing
phase introduces some overhead, we are able to improve
the overall performance by using a combination of parallel
BFS and SV algorithms, with minimal parameter tuning.

Our primary application driver is metagenomic assem-
bly, where de Bruijn graphs are used for reconstructing,
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from DNA sequencer outputs, constituent genomes in a
metagenome [4]. A recent scientific study showed that high
species-level heterogeneity in metagenomic data sets leads
to a large number of weakly connected components, each of
which can be processed as independent de Bruijn graphs
[5]. This coarse grained data parallelism motivated our
efforts in finding connected components in large metage-
nomic de Bruijn graphs. However, our work is applicable to
graphs from domains beyond bioinformatics.

In this study, we cover a diverse set of graphs, both small
world and large diameter, to highlight that our algorithm
can serve as a general solution to computing connected
components for undirected graphs. We experimentally eval-
uate our algorithm on de Bruijn graphs from publicly avail-
able metagenomic samples, road networks of the United
States and European Union, scale-free networks from the
internet, as well as Kronecker graphs from the Graph500
benchmark [6]. The graphs range in edge count from
82 million to 54 billion. Even though we focus on computing
connected components in undirected graphs, ideas dis-
cussed in this work are applicable to finding strongly con-
nected components in directed graphs as well. Our C++
and MPI-based implementation is available as open source
at https://github.com/ParBLiSS/parconnect.

To summarize the contributions of this paper:

� We provide a new scalable strategy to adapt the
Shiloach-Vishkin PRAM connectivity algorithm to
distributed memory parallel systems.

� We discuss and evaluate a novel and efficient
dynamic approach to compute weakly connected
components on a variety of graphs, with small and
large diameters.

� We demonstrate the scalability of our algorithm by
computing the connectivity of the de Bruijn graph
for a large metagenomic dataset with 1.8 billion
DNA sequences and 54 billion edges in less than
4 minutes using 32 K cores.

� Depending on the underlying graph topology, we
see variable performance improvements up to 24 �
when compared against the state-of-the-art parallel
connectivity algorithm.

2 RELATED WORK

Due to its broad applicability, there have been numerous
efforts to parallelize the connected component labeling
problem. Hirschberg et al. [7] presented a CREW1 PRAM
algorithm that runs in Oðlog 2nÞ time and does Oðn2 lognÞ
work, while Shiloach and Vishkin [3] presented an
improved version assuming a CRCW2 PRAM that runs in
OðlognÞ time using Oðmþ nÞ processors. As our parallel SV
algorithm is based on this approach, we summarize the SV
algorithm in separate section. Krishnamurthy et al. [8]
made the first attempt to adapt SV algorithm to distributed
memory machines. However, their method is restricted to
mesh graphs, which they could naturally partition among
the processes [9]. Goddard et al. [10] discussed a practical
implementation of SV algorithm for distributed machines

with mesh network topology. Their method, however, was
shown to exhibit poor scalability beyond 16 processors for
sparse graphs [11].

Bader et al. [12] and Patwary et al. [13] discussed shared
memorymulti-threaded parallel implementations to compute
spanning forest and connected components on sparse and
irregular graphs. Recently, Shun et al. [14] reported a work
optimal implementation for the same programming model.
Note that these solutions are not applicable for distributed
memory environments due to high frequency of remotemem-
ory accesses. Cong et al. [15] proposed a parallel technique for
solving the connectivity problem on a single GPU.

There have been several recent parallel algorithms for
computing the breadth-first search traversal on distributed
memory systems [1], [2], [16]. However, parallel BFS
does not serve as an efficient, stand-alone method for com-
puting connectivity. There are also several large-scale dis-
tributed graph analytics frameworks that can solve the
connectivity problem in large graphs, including GraphX
[17], PowerLyra [18], PowerGraph [19], and GraphLab [20].
Iverson et al. [21] proposed a distributed-memory connec-
tivity algorithm using successive graph contraction opera-
tions, however, the strong scalability demonstrated for this
method was limited to 32 cores.

Slota et al. [22] proposed a shared memory parallel
Multistepmethod that combines parallel BFS and label propa-
gation (LP) technique and was reported to perform better
than using BFS or LP alone. In their Multistep method, BFS is
first used to label the largest component before using the LP
algorithm to label the remaining components. More recently,
they proposed a distributedmemory parallel implementation
of this method and showed impressive speedups against the
existing parallel graph processing frameworks [23]. However,
their algorithm design and experimental datasets are
restricted to graphs which contain a single massive connected
component. While our algorithm likewise employs a combi-
nation of algorithms, in contrast toMultiStep, we use BFS and
our novel SV implementation, and determine dynamically at
runtimewhether the BFS should be executed.

This paper is an extension of our previous work [24]
which described a parallel connected components algorithm
based on the SV approach for large diameter metagenomic
graphs. Here we propose a hybrid approach using both BFS
and SV and present a generalized efficient algorithm for find-
ing connected components in arbitrary undirected graphs.
We show that using runtime algorithm selection and our SV
implementation, our method generalizes to diverse graph
topologies and achieves superior performance.

2.1 The Shiloach-Vishkin Algorithm

The Shiloach-Vishkin connectivity algorithm was designed
assuming a PRAMmodel. It begins with singleton trees cor-
responding to each vertex in the graph and maintains this
auxiliary structure of rooted directed trees to keep track of
the connected components discovered so far during the exe-
cution. Within each iteration, there are two phases referred
to as shortcutting and hooking. Shortcutting involves col-
lapsing the trees using pointer doubling. On the other hand,
hooking connects two different connected components
when they share an edge in the input graph. This algorithm
requires OðlognÞ iterations each taking constant time. Since

1. CREW = Concurrent Read Exclusive Write.
2. CRCW = Concurrent Read Concurrent Write.
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this approach uses Oðmþ nÞ processors, the total work
complexity is Oððmþ nÞ � lognÞ.

3 ALGORITHM

3.1 Parallel SV Algorithm

3.1.1 Notations

Given an undirected graph G ¼ ðV; EÞ with n ¼ jV j verti-
ces and m ¼ jEj edges, our algorithm identifies its con-
nected components, and labels each vertex v 2 V with its
corresponding component. Our algorithm works on an
array of three-tuples hp; q; ri, where p, q, and r are inte-
gers. The first two elements of these tuples will be
updated in each iteration of the algorithm. The third ele-
ment r corresponds to a vertex r 2 V of the graph and is
not changed throughout the algorithm. This element will
also be used to identify the vertices of G with their final
connected components after termination.

Let Ai denote the array of tuples in iteration i. We initial-
ize A0 as follows: for each vertex x 2 V , we add the tuple
hx; ; xi, and for each undirected edge fx; yg 2 E, we add
tuples hx; ; yi and hy; ; xi. The middle elements will be ini-
tialized later during the algorithm.

We denote the set of unique values in the first entry of
all the tuples in Ai by Pi, therefore Pi ¼ fp j hp; q; ri 2 Aig.
We refer to the unique values in Pi as partitions, which
represent intermediate groupings of tuples that eventu-
ally coalesce into connected components. We say that a
tuple hp; q; ri is a member of the partition p. Once the
algorithm converges, all tuples for a vertex r will have a
single unique partition p, which is also the unique con-
nected component label for this vertex.

In order to refer to the tuples of a partition p, we define
the partition bucket PBiðpÞ of p as those tuples which contain
p in their first entry: PBiðpÞ ¼ fhp̂; q; ri 2 Ai j p̂ ¼ pg. Further,
we define the candidates or the next potential partitions CiðpÞ
of p as the values contained in the second tuple position
of the partition bucket for p: CiðpÞ ¼ fq j hp; q; ri 2 PBiðpÞg.
We denote the minimum of the candidates of p as
pmin ¼ minCiðpÞ. A partition p for which pmin ¼ p is called a

stable partition. Further, to identify all the vertices in a parti-
tion, we define the vertex members of a partition p as
ViðpÞ ¼ fr j hp; q; ri 2 PBiðpÞg.

Each vertex u 2 V is associated with multiple tuples in
Ai, possibly in different partitions p. We define vertex bucket
VBiðuÞ as those tuples which contain u in their third entry:
VBiðuÞ ¼ fhp; q; ri 2 Ai j r ¼ ug. We define the partitions
MiðuÞ as the set of partitions in the vertex bucket for u:
MiðuÞ ¼ fp j hp; q; ri 2 VBiðuÞg. The minimum partition in
MiðuÞ, i.e.,minMiðuÞ is called nominated partition by u.

For a small example graph with vertices u; v1; v2, (Fig. 1),
we show the array of tuples A. At the initialization stage,
the vertex bucket VB0ðuÞ of u is the set of tuples
fhu; ; ui; hv1; ; ui; hv2; ; uig. The set of unique partitions P0

equals fu; v1; v2g. The partition bucket PB0ðuÞ for partition u
is given by the set fhu; ; ui; hu; ; v1i; hu; ; v2ig. At termina-
tion of our algorithm, all tuples will have the same common
partition id, which for this example will beminðu; v1; v2Þ.

Each partition is associated with a set of vertices, and the
tuples for a vertex can be part of multiple partitions. We
define the neighborhood for a partition p as those partitions
which share at least one vertex with p, i.e., those which
share tuples with a common identical value in the third
tuple element. More formally, we define the neighborhood
partitions of p as N iðpÞ ¼ [u2ViðpÞMiðuÞ. In the above exam-
ple, the neighborhood partitions N 0ðv1Þ for the partition v1
are u; v1 and v2. All the notations introduced in this section
are summarized in Table 1 a for quick reference.

3.1.2 Algorithm

We first describe the sequential version of our algorithm,
outlined in Algorithm 1 (see Fig. 2). Our algorithm is struc-
tured similar to the classic Shiloach-Vishkin algorithm. How-
ever, our algorithm is implemented differently, using an
edge-centric representation of the graph.

At a high level, every vertex begins in its own partition,
and partitions are connected via the edges of the graph. In
each iteration, we join each partition to its numerically
minimal neighbor, until the partitions converge into the
connected components of the graph. In order to resolve

Fig. 1. (a) Summary of the notations used in Section 3. (b) Initialization of array A for a small connected component with three vertices u; v1; v2 in our
algorithm. Partitions are highlighted using different shades. Desired solution, assuming v1 ¼ minðu; v1; v2Þ, shown on the right will be to have all three
vertices in a single component v1. Accordingly, all the tuples associated with this component should contain the equal partition id v1.
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large diameter components quickly, we utilize the pointer
doubling technique during shortcutting. To implement
pointer doubling, we will require the parent partition id of
the newly joined partition in each iteration. We use tempo-
rary tuples hp; q; ritmp to fetch this information. These tuples
will be created and erased within the same iteration.

As laid out in Section 3.1.1, we first create an array of
tuplesA, containing one tuple per vertex and two tuples per
edge (Algorithm 1 (see Fig. 2)). In each iteration i, we per-
form four sorting operations over Ai. During the first two
sorting operations, we compute and join each partition p to
its minimum neighborhood, i.e.,minN iðpÞ. SortingAi by the
third entry, namely the vertex ids enables easy and cache effi-
cient processing of each vertex bucket VBiðuÞ; u 2 V , since
the tuples of a bucket are positioned contiguously in Ai due
to the sorted order (line 9-15). For each vertex bucket VBiðuÞ,
we scan all the partition ids containing u, i.e., MiðuÞ and
compute the nominated partition umin which becomes the
candidate (potential next partition). We save the candidate
partition id in the second element of the tuples.

After computing all the candidate partitions, we perform
a second global sort of Ai by the first tuple element in order

to process the partition buckets PBi (line 16-24). Each parti-
tion p 2 Pi then computes and joins the minimum candidate
partition, i.e., pmin ¼ minCiðpÞ. In other words, partition p
joins its minimum neighbor pmin. We loop over these two
sort-and-update steps until partitions converge into the con-
nected components of the graph. Convergence for a partition
p is reachedwhen its neighborhoodN iðpÞ contains p as its only
member. Consequently, we can determinewhen to terminate
the algorithm by checking whether all the partitions have
fully converged, i.e., if they do not have any further neigh-
boring partitions. For any partition p, p 6¼ pmin implies the
existence of at least one neighbor partition around p (line 19).

Iteratively invoking lines 7-24 until convergence produ-
ces connected components of the graph within OðnÞ itera-
tions in the worst-case. By following the pointer doubling
technique described in the SV algorithm [3], we achieve log-
arithmic convergence. We summarize the role of all the four
sorting operations in Fig. 3. After joining partition p to pmin,
we revise pmin to minMiðpminÞ. The revision is effected by
introducing temporary tuples hpmin; ; pminitmp in Ai (line
25), then repeating the two sorts by the third and first ele-
ment respectively (line 27, 28). In a way similar to the first
two sorts of this iteration, the third sort forces the vertex
pmin to nominate minMiðpminÞ as the candidate partition id
in the second element of the temporary tuples. Partition
pmin, then, joins the partition id minMiðpminÞ after the final
sort. The temporary tuples are removed from Ai after the
pointer doubling phase is completed (line 30).

Note that the global count of the temporary tuples equals
jPij in each iteration, and we know jPij � jV j (by the defini-
tion of Pi). Therefore, the Oðmþ nÞ bound holds for jAij
throughout the execution. After the algorithm converges,
the unique connected component label c of a vertex u 2 V
can be projected from the first element of any tuple hc; ; ui
in A.

3.1.3 Parallel Algorithm

We now describe our parallel implementation of the above
algorithm for connected components labeling in a distrib-
uted memory environment. In this setting, each processor
in the environment has its own locally addressable memory
space. Remote data is accessible only through well defined
communication primitives over the interconnection net-
work. The algorithm consists of three components: data dis-
tribution, parallel sorts, and bucket updates. We designed
our algorithm and its components using MPI primitives.

Data Distribution. All data, including the input, interme-
diate results, and final output, are equally distributed across
all available processors. As specified in Section 3.1.2, the
pipeline begins by generating tuples of the form hp; q; ri
from the block distributed input GðV;EÞ as edge list. By the
end of this operation, each of the r processes contains its
equal share of jAj=r tuples.

Parallel Sorts. The bulk step of the algorithm is the sorting
of tuples by either their third or first element in order to
form the buckets VBi or PBi, respectively. Parallel distrib-
uted memory sorting has been studied extensively. Blelloch
et al. [25] give a good review of different methods. With suf-
ficiently large count of elements per process, which is often
true while processing large datasets, the study concluded
that samplesort is the fastest. Accordingly, we implement a

Fig. 2. Our parallel SV algorithm, presented using sequential semantics.
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variant of samplesort with regular sampling, where each
processor first sorts its local array independently, and then
picks equally spaced samples. The samples are then again
sorted and r� 1 of these samples are used as splitters
for distributing data among processors. In a final step, the
sorted sequences are merged locally.

Bucket Updates. After each sort, we need to determine the
minimum element for each bucket, either umin for VBiðuÞ or
pmin for PBiðpÞ. As a result of the parallel sorting, all the
tuples hp; q; ri belonging to the same bucket are stored con-
secutively. However, a bucket might span multiple process-
ors. Therefore, the first and last bucket of each processor
require global communication during processing, while the
internal buckets are processed in the same way as in the
sequential case. Note, the first and last bucket on a proces-
sor may be the same if a bucket spans an entire processor.
Communicating the minimum of buckets with the previous
and next processor would require OðrÞ communication
steps in the worst case, since large OðjAjÞ size partitions can
span across OðrÞ processes. We thus use two parallel prefix
(scan) operations with custom operators to achieve indepen-
dence from the size of partitions, requiring at most Oðlog rÞ
communication steps in addition to the local linear time
processing time.

We describe the custom reduction operation to compute
the pmin within the partition buckets PBiðpÞ. Note that when
computing pmin in the algorithm, Ai is already sorted by the
first element of the tuples and pmin is the minimum second
element for tuples in each bucket. We first perform an
exclusive scan, where each processor participates with the
minimum tuple from its last bucket. This operation commu-
nicates theminimum of buckets from lower processor rank to
higher rank. The binary reduction operator chooses from two
tuples the tuple hp; q; ri with the maximum p, and between
those with equal p, the minimum q. Next we perform a
reverse exclusive prefix scan to communicate the minimum
from high rank to low rank. Here, each processor participates
with its minimum tuple of its first bucket. Given the two
results of the scan operations, we can compute for each pro-
cessor the overall minimum pmin for both the first and the last
buckets. Computing umin follows a similar procedure.

Runtime Complexity. The runtime complexity of each iter-
ation is dominated by sorting A, and the number of itera-
tions is bounded by OðlognÞ. If T ðk; rÞ is the runtime to sort
k elements using r processes, the runtime of our algorithm

for computing connectivity of graph GðV;EÞ equals
OðlogðnÞ � T ðmþ n; rÞÞ.

3.1.4 Excluding Completed Partitions

As the algorithm progresses through iterations, certain par-
titions become completed. A partition p is completed if p has
no neighbor partition except itself, i.e., N iðpÞ ¼ fpg. Even
though we have described how to detect the global conver-
gence of the algorithm, detecting as well as excluding the
completed partitions reduces the active working set through-
out successive iterations.

By the definition of N iðpÞ in Section 3.1.1, N iðpÞ ¼ fpg
implies that [u2ViðpÞMiðuÞ ¼ fpg. Since the third elements
of the tuples are never altered, each vertex is associated with
at least one partition throughout the algorithm, therefore
jMiðuÞj > 08u 2 V . Using these arguments, we claim the fol-
lowing: p is completed , MiðuÞ ¼ fpg 8u 2 ViðpÞ. Once the
partition is completed, it takes us onemore iteration to detect its
completion. While processing the vertex buckets after the first
sort of the algorithm,we label all the tuples in VBiðuÞ; u 2 V as
potentially completed if jMiðuÞj ¼ 1. While processing the parti-
tion buckets subsequently, partition p ismarked as completed if
all the tuples inPBiðpÞ are potentially completed.

Completed partitions are marked as such and swapped
to the end of the local array. All following iterations treat
only the first, non-completed part of its local array as the
local working set. As a result, the size of the active working
set shrinks throughout successive iterations. This optimiza-
tion yields significant reduction in the volume of active
data, particularly for graphs with a large number of small
components, since many small connected components are
quickly identified and excluded from future processing.

3.1.5 Load Balancing

Although we initially start with a block decomposition of
the array A, exclusion of completed partitions introduces an
increasing imbalance of the active elements with each itera-
tion. Since we join partitions from larger ids to smaller ids, a
large partition will have smaller final partition ids than
small partitions probabilistically. As the sort operation
maps large id partitions to higher rank processes, the higher
rank processes retain fewer and fewer active tuples over
time, while lower rank processes contain growing partitions
with small ids. Our experiments in Section 5 study this
imbalance of data distribution and its effect on the overall
run time. We resolve this problem and further optimize our
algorithm by evenly redistributing the active tuples after
each iteration. Our results show that this optimization
yields significant improvement in the total run time.

3.2 Hybrid Implementation Using BFS

Connected components can be found using a series of BFS
traversals, one for each component. The known parallel BFS
algorithms are asymptotically work-optimal, i.e., they main-
tain Oðmþ nÞ parallel work for small-world networks [1].
Parallel BFS software can be adapted to achieve the same
objective as our parallel SV algorithm, namely to compute
all the connected components in a graph. To do so, parallel
BFS can be executed iteratively, each time selecting a new
seed vertex from among the vertices that were not visited

Fig. 3. Role of the four sorting phases used in each iteration of the
algorithm. Using the first two sorts, partition p joins pmin. The next two
sorts enable pointer-jumping as pmin joins minMiðpminÞ. The temporary
tuple hpmin; ; pminitmp used in the algorithm simulates a link between the
partition pmin and the vertex pmin to allow jumping.
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during any of the prior BFS iterations. However, we note the
following strengths and weaknesses associated with using
BFS methods for the connectivity problem:

� Pro: For a massive connected component with a
small diameter, the large number of vertices at each
level of the traversal yields enough data parallelism
for parallel BFS methods to become bandwidth
bound, and thus efficient.

� Con: When the diameter of a component is large and
vertex degrees are small, for instance in mesh
graphs, the number of vertices at each level of BFS
traversal is small. The application becomes latency-
bound due to the lack of data parallelism. This leads
to under-utilization of the compute resources and
the loss of efficiency in practice [1].

� Con: For graphs with a large number of small compo-
nents, parallel BFS needs to be executed repeatedly.
The application becomes latency-bound as the syn-
chronization and remote communication latency
costs predominate the effective work done during the
execution. In this case, BFS method’s scalability is
greatly diminished. Slota et al. [22] draw a similar
conclusion while parallelizing the strongly connected
components problem using sharedmemory systems.

A small world scale-free network contains a single large
connected component [26]. To compute the connectivity of
these graphs, we note that identifying the first connected
component using a BFS traversal is more efficient than
using the SV algorithm over the complete graph. For
parallel BFS, we use Buluç et al.’s [1] state-of-the-art imple-
mentation available as part of the CombBLAS library [27]
and integrate this software as an alternative pre-
processing step to our parallel SV algorithm.

Scale-free networks are characterized by a power-law
vertex degree distribution [28]. Therefore, we classify the
graph structure as scale-free by checking if the degree distri-
bution follows a power-law distribution. We use the statisti-
cal framework described by Clauset et al. [29] to fit a power-
law curve to the discrete graph degree distribution, and esti-
mate the goodness of fit with one-sample Kolmogorov-
Smirnov (K-S) test. The closer the K-S statistic value is to 0,
the better is the fit. If this value is below a user specified
threshold t, then we execute a BFS iteration before invoking
our parallel SV algorithm. Algorithm 2 (see Fig. 4) gives the
outline of our hybrid approach.

In our implementation, we choose to store each undi-
rected edge ðu; vÞ as two directed edges ðv; uÞ and ðu; vÞ
in our edge list. This simplifies the computation of the
degree distribution of the graph (line 2). We compute the
degree distribution D of the graph by doing a global sort of
edge list by the source vertex. Through a linear scan over
the sorted edge list, we compute the degree of each vertex
u 2 V . In practice, it is safe to assume that the maximum
vertex degree c is much smaller than number of edges jEj
(c � jEj). Thus each process can compute the local degree
distribution in an array of size c, and a parallel reduction
operation is used to solve for D. Once D is known, evaluat-
ing the degree distribution statistics takes insignificant time
as size of D equals c. Therefore, we compute the K-S statis-
tics as described before, sequentially on each process.

If the K-S statistic is below the set threshold, we choose to
run the parallel BFS on GðV;EÞ (line 3). Buluç’s BFS imple-
mentation works with the graph in an adjacency matrix
format. Accordingly, we relabel the vertices in GðV; EÞ
such that vertex ids are between 0 to jV j � 1 (line 5). This
process requires sorting the edge list twice, once by the
source vertices and second by the destination vertices.
After the first sort, we perform a parallel prefix (scan)
operation to label the source vertices with a unique id
2 ½0; V � 1�. Similarly, we update the destination vertices
using the second sort.

Next, we execute the parallel BFS from a randomly
selected vertex in GðV;EÞ and get a distributed list of visited
vertices VI as the result. Note that the visited graph compo-
nent is expected to be the largest one as it spans the majority
of GðV;EÞ in the case of scale-free graphs. To continue solv-
ing for other components, we filter out the visited compo-
nent VI from GðV;EÞ (line 10,11). VI is distributed
identically as V , therefore vertex filtering is done locally on
each process. We already have the edge list E in the sorted
order by destination vertices due to the previous operations,
therefore we execute an all-to-all collective operation to dis-
tribute VI based on the sorted order and delete the visited
edges locally on each processor. Finally, irrespective of
whether we use BFS or not, we run the parallel SV algorithm
on GðV;EÞ (line 13). In our experiments, we show the over-
all gain in performance using the hybrid approach as well
as the additional overhead incurred by the prediction
phase. We also report the proportion of time spent in each
of the prediction, relabeling, parallel-BFS, filtering, and
parallel-SV stages.

4 EXPERIMENTAL SETUP

4.1 Hardware

For the experiments, we use Edison, a Cray XC30 supercom-
puter located at Lawrence Berkeley National Laboratory.
In this system, each of the 5,576 compute nodes has two
12-core Intel Ivy Bridge processors with 2.4 GHz clock
speed and 64 GB DDR3 memory. To perform parallel I/O,
we use the scratch storage supported through the Lustre

Fig. 4. Hybrid approach using parallel BFS and SV algorithms to com-
pute connected components.
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file system. We assign one MPI process per physical core for
the execution of our algorithm. Further, we only use square
process grids as CombBLAS [27] requires the process count
to be a perfect square.

4.2 Datasets

Table 1 lists the nine graphs used in our experiments. These
include four de Bruijn graphs constructed from different
metagenomic sequence datasets, one social graph from Twit-
ter, one web crawl, one road network and two synthetic Kro-
necker graphs from the Graph500 benchmark. The sizes of
these graphs range from 83million edges to 54 billion edges.

For each graph, we report the relevant statistics in Table 1
to correlate them with our performance results. Computing
the exact diameter is computationally expensive and often
infeasible for large graphs [32]. As such, we compute their
approximate diameters by executing a total of 100 BFS runs
from a set of random seed vertices. For all the graphs but
M4, this approach was able to give us an approximation.
However, the size of M4 required a substantial amount of
time for completing this task and as such it did not com-
plete. We estimate that only 4 of the 9 tested graphs are
small world networks.

4.2.1 Metagenomic de Bruijn Graphs

M1-M4 are built using publicly available metagenomics
samples from different environments. We obtained the
sequences in FASTQ format. We discarded the sequences
with unknown nucleotides using the fastx_clipper utility
supported in the FASTX toolkit [33]. The size of the
sequence dataset depends upon the amount of sampling
done for each environment. We build de Bruijn graphs from
these samples using the routines from the parallel distrib-
uted memory k-mer indexing library Kmerind [34]. It is
worth noting that in de Bruijn graphs, vertex degrees are
bounded by 8 [4]. One motivation for picking samples from
different environments is the difference in graph properties
associated with them such as the number of components
and relative sizes. These are dependent on the degree of
microbial diversity in the environments. Among the envi-
ronments we picked, it has been estimated that the soil
environments are the most diverse while the human micro-
biome samples are the least diverse of these environments
[35]. This translates to large number of connected compo-
nents in the soil graphs M3 and M4.

4.2.2 Other Graphs

Graphs K1-K2 and G1-G3 are derived from widely used
graph databases and benchmarks. We use the synthetic Kro-
necker graph generator from the Graph500 benchmark
specifications [6] to build Kronecker graphs with scale 27
(K1) and 29 (K2). Graphs G1-G3 are downloaded directly
from online databases in the edge list format. G1 and G2 are
small world scale-free networks from twitter and online
web crawl respectively. G3 consists of two road networks
from Europe and USA, downloaded from the Florida Sparse
Matrix Collection [31]. Among all our graphs, G3 has the
highest estimated diameter of 25 K. To read these data files
in our program, a file is partitioned into equal-sized blocks,
one per MPI process. The MPI processes concurrently read
the blocks from the file system and generate distributed
arrays of graph edges in a streaming fashion.

5 PERFORMANCE ANALYSIS

In all our experiments, we exclude file I/O and de Bruijn
graph construction time from our benchmarks, and begin
profiling after the block-distributed list of edges are
loaded into memory. Profiling terminates after computing
the connected component labels for all the vertices in the
graph. Each vertex id in the input edge list is assumed to
be a 64 bit integer. The algorithm avoids any runtime
bias on vertex naming of the graph by permuting the
vertex ids using Robert Jenkin’s 64 bit mix invertible hash
function [36].

5.1 Load Balancing

We first show the impact of the two optimizations per-
formed by our parallel SV algorithm (Sections 3.1.4 and
3.1.5) for reducing and balancing the work among the pro-
cesses. Our algorithm used 10 iterations to compute the con-
nectivity of M1. Fig. 5 shows the minimum (min), maximum
(max), and mean size of the distributed tuple array per pro-
cess as iterations progress in three variants of our algorithm,
using 256 cores. The max load is important as it determines
the parallel runtime. A smaller separation between the min
andmax values indicates better load balance. The first imple-
mentation, referred to as Naive (Section 3.1.3), does not
remove the completed components along the iterations and
therefore the work load remains constant. Removing the sta-
ble components reduces the size of the working set per each
iteration as illustrated by the desirable decrease in mean

TABLE 1
List of the Nine Graphs and Their Sizes Used for Conducting Experiments

Id Dataset Type Vertices Undirected
Edges

Components Approx.
diameter

Largest
component

Source

M1 Lake Lanier Metagenomic 1.1 B 1.1 B 2.6 M 3,763 53% NCBI (SRR947737)
M2 Human Metagenome Metagenomic 2.0 B 2.0 B 1.0 M 3,989 91.1% NCBI (SRR1804155)
M3 Soil (Peru) Metagenomic 531.2 M 523.6 M 7.6 M 2,463 0.3% MG-RAST (4477807.3)
M4 Soil (Iowa) Metagenomic 53.7 B 53.6 B 319.2 M - 44.2% JGI (402461)
G1 Twitter Social 52.6 M 2.0 B 29,533 16 99.99% [30]
G2 sk-2005 Web Crawl 50.6 M 1.9 B 45 27 99.99% [31]
G3 eu-usa-osm Road Networks 74.9 M 82.9 M 2 25,105 65.2% [31]
K1 Kronecker (scale = 27) Kronecker 63.7 M 2.1 B 19,753 9 99.99% Synthetic [6]
K2 Kronecker (scale = 29) Kronecker 235.4 M 8.6 B 73,182 9 99.99% Synthetic [6]

Edge between two vertices is counted once while reporting the graph sizes. Largest component’s size is computed in terms of percentage of count of edges in the
largest component relative to complete graph.
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tuple count. The difference betweenmin andmax grows sig-
nificantly after four iterations.With our load balanced imple-
mentation, we see an even distribution of tuples across
processors, as the minimum and maximum count are the
same for each iteration. We see that the mean drops to about
50 percent of the initial value because the largest component
inM1 contains 53 percent of the total edges (Table 1).

Consequently, we see improvement in the execution time
for M1 and M3 in Fig. 6 as a result of these optimizations. Of
the three implementations, the load balanced implementa-
tion consistently achieves better performance against the
other two approaches. For the M2 graph, we get negligible
gains using our load-balanced approach against the Naive
approach because the largest component in M2 covers
91 percent of the graph. Therefore, the total work load stays
roughly the same across the iterations.

5.2 Hybrid Implementation Analysis

As discussed in Section 3.2, BFS is more efficient for com-
puting the first component in the small world scale-free
graphs. We use an open-source C++ library [37] which fits
the power-law distributions to discrete empirical data based
on the procedure described by Clauset et al. [29]. Table 2
shows the K-S statistic value computed using the degree
distribution for all our graphs. For each of the graphs with
scale-free topology (G1, G2, K1, K2), there is a clear distinc-
tion of these values against rest of the graphs. Based on

these observations, we set a threshold of 0.05 to predict the
scale-free structure of the underlying graph topology and
execute a BFS iteration for such cases.

To measure the relative improvement obtained by run-
ning BFS iteration based on the prediction, we compare the
runtime of this dynamic approach against our implementa-
tion that does not compute K-S statistics and is hard-coded
tomake the opposite choice, i.e., executing BFS iteration only
for the graphs M1-M4, G3. This experiment, using 2,025 pro-
cessor cores, measures whether the prediction is correct and
if correct, howmuch performance benefit do we gain against
the opposite choice. As illustrated in Fig. 7a, we see positive
speedups for all the graphs except M2. We see more than 3�
performance gains for all the small world graphs as well as
G3. For M1 and M3, we gained approximately 25 percent
improvement in the runtime. This experiment confirms that
using BFS to identify and exclude the largest component is
much more effective for small world graphs while running
BFS on large diameter graph such as G3 is not optimal.More-
over, using the degree distribution statistics, we can choose
an optimal strategy formost of the graphs.

Note that computing the degree distribution of a graph
and measuring K-S statistics adds an extra overhead to the
overall runtime of the algorithm. We evaluate the additional
overhead incurred by comparing the dynamic approach
against the implementation which is hard-coded to make
the same choice, i.e., execute BFS iteration only for G1-G2,
K1-K2 (Fig. 7b) using 2,025 processor cores. The overhead
varies from 60 percent for G1 to only 2 percent for M1. In
general, we find this overhead to be relatively high for
small-world graphs. Fitting the degree distribution curve
against a power-law model is a sequential routine in our
implementation, and it takes us about a second for scale-
free graphs because they tend to have long-tailed degree
distributions. We leave parallelizing and optimizing this
routine as future work. Overall, we observe that the perfor-
mance gains significantly outweigh the cost of computing
the degree distribution and K-S test.

5.3 Strong Scaling

With the optimizations in place, we conducted strong scal-
ing experiments on our algorithm. In this experiment, we
use 256-4,096 cores for G1-G3, K1, and M1-M3. Results for
M4, the largest graph are discussed separately as we could
not process it with fewer than 4,096 cores. Graph K2 is

Fig. 5. Work load balance in terms of tuples per processes during each
iteration of the three algorithm variants for parallel SV algorithm. Illus-
trated are the maximum, average, and minimum count of tuples on all
the processes. The experiments were conducted using the M1 graph
and 256 processor cores. Each edge is represented as two tuples inter-
nally in the algorithm.

Fig. 6. Performance gains due to load balancing for graphs M1-M3 using
256, 1,024 processor cores.

TABLE 2
Kolmogorov-Smirnov Test Values Used to Estimate

the Goodness of Power Law Curve Fit to the
Degree Distribution of Each Graph

Dataset K-S statistic Run BFS iteration? Correct Decision

M1 0.41 � @
M2 0.24 � �
M3 0.39 � @
M4 0.31 � @
G1 0:01 @ @
G2 0:03 @ @
G3 0.21 � @
K1 0:01 @ @
K2 0:01 @ @

BFS is executed if K-S statistic value is less than 0.05.
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ignored for this experiment because it has same topology as
K1. In Fig. 8, we show the runtimes as well as speedups
achieved by our algorithm. Most of these graphs cannot
fit in the memory of a single node, therefore speedups
are measured relative to the runtime on 256 cores. Ideal rela-
tive speedup on 4,096 cores is 16. We achieve maximum
speedup of more than 8 � for the metagenomic graphs M1
and M2 and close to 6 � speedup for small world graphs
G1, G2 and K1. G3 shows limited scalability due to its much
smaller size relative to other graphs. We are able to compute
connectivity for our largest graph M4 in 215 seconds using
32,761 cores (Table 3).

In Section 3.1.3 we discussed how each iteration of our
parallel SV algorithm uses parallel sorting to update the
partition ids of the edges. As a majority of time of this
algorithm is spent in performing sorting, we also execute
a micro benchmark that sorts 2 billion randomly gener-
ated 64 bit integers using 256 and 4,096 cores. Interest-
ingly, we achieve speedup of 8.06 using our sample
sorting method which is close to our scalability for M1
and M2. We anticipate that implementing more advanced

sorting algorithms [38] may further improve the efficiency
of our parallel SV algorithm.

5.4 Performance Anatomy

We also report the percentage of total execution time on
2,025 cores that are attributable to each stage of our algo-
rithm (Fig. 9). This figure is noteworthy especially for the
graphs for which our algorithm chooses to execute BFS. For
G1, G2, K1 and K2, more than 50 percent of the total per-
centage of time is devoted to predicting the graph structure
and relabeling the vertices before running the parallel BFS
and SV algorithm. This figure is not meant to convey the
true overhead due to the relabel and prediction operations
individually, as the time for relabeling is reduced after we
sort the edges during the prediction stage (Section 3.2). Fur-
ther, we measure the percentage time spent in the sorting
operations in our parallel-SV algorithm for the graphs M1,
M2, M3 and G3. As we expected, this measure is high and
ranges from 91-94 percent for all the four graphs.

Fig. 7. Evaluation of prediction heuristics in our algorithm.

Fig. 8. Strong scalability results of our algorithm on different graphs
using 4,096 cores. Speedups are computed relative to the runtime on
256 cores.

TABLE 3
Timings for the Largest Graph M4 with

Increasing Processor Cores

Cores 8,281 16,384 32,761

Time for M4 (sec) 429.89 291.19 214.56
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5.5 Comparison with Previous Work

We achieve notable speedups when the performance of our
algorithm is compared against the state-of-the-art Multistep
algorithm [23] using 2,025 cores. As before, we begin count-
ing the time once the graph edge list is read into the mem-
ory in both cases. We ran the Multistep algorithm with one
process per physical core as we observed better perfor-
mance doing so than using hybrid MPI-OpenMP mode.
Also, because the Multistep method expects the vertex ids
to be in the range 0 to jV j � 1, we inserted our vertex relab-
eling routine in their implementation in order to run the
software. Fig. 10 shows the comparison of our approach
against the MultiStep method. We see > 1 speedups for
our method in all the graphs except G1. The speedup
achieved ranges from 1.1 � for K2 to 24.5 � for G3. The
speedup roughly correlates with the diameter of the graphs.
The improvements achieved for the graphs M1, M2, M3 and
G1 can be attributed to two shortcomings in the Multistep
approach: 1) It executes BFS for computing the first compo-
nent in all the graphs. BFS attains limited parallelism for
large diameter graphs due to small frontier sizes. 2) It
uses the label propagation technique to compute other

components which in the worst case can take as many itera-
tions as the diameter of the graph to reach the solution.

We could not compare our approach against the distrib-
uted-memory graph contraction algorithm [21] proposed to
solve the connectivity problem, as the implementation is not
open-source. Based on their experiment description, the
graph contraction algorithm showed strong scalability only
till 32 cores. Other distributed graph frameworks such as
GraphX [17], and FlashGraph [39] based on in-memory
Apache Spark and external-memory framework, respectively,
can compute the connectivity of large-scale graphs as well.
Slota et al. [23] show that their Multistep algorithm achieves
superior performance against both of these methods. Because
our algorithmperforms better thanMultistep,we skip a direct
comparison against GraphX and FlashGraph.

5.6 Comparison with Sequential Implementation

We examine the performance of our algorithm against the
best known sequential implementation for computing con-
nectivity, for graph instances which can fit in the single
node memory (64 GB)-these are relatively small. Previous
works [13], [40] have shown that the Rem’s method [41]
based on the union-find approach achieves the best sequen-
tial performance. The sequential implementation we use in
this algorithm was obtained from the authors of [13]. Again,
because the disjoint-set structure used in the algorithm
requires the vertices to be numbered from 0 to n� 1, we
placed our relabeling routine in the implementation. This
experiment uses graphs M3 and G3, as all the other graphs
require more than 64 GB memory. We also add a Kronecker
graph of scale 25 (m ¼ 537 M, n ¼ 17 M) to include a short
diameter graph instance. Results of this experiment are
shown in Table 4. For these three graphs, our algorithm
selects BFS iteration for Kronecker graph only. For the Kro-
necker graph, our algorithm achieves a 100 � speedup
using 1,024 cores. For the other graphs, M3 and G3, where
the SV algorithm is selected, the speedup decreases with
respect to the sequential algorithm-which is partially due to
the fact that the algorithm is not work optimal.

5.7 Comparison with Shared-Memory
Implementations

The objective of the following comparative discussion
between the distributed and shared-memory algorithms is
not only to discuss the performance difference where
shared-memory implementations tend to get good scaling
per core, rather it is to highlight some of the constraints that
shared-memory implementations have in contrast to their
distributed counterparts.

Shared-memory parallel methods [13], [14] exhibit good
speedups over the best sequential implementation. It is

Fig. 9. Percentage time spend in different stages by the algorithm for dif-
ferent graphs using 2,025 cores. BFS is executed only for graphs G1,
G2, K1 and K2.

Fig. 10. Performance comparison of our algorithm against the Multistep
method [23] using multiple graphs with 2,025 cores.

TABLE 4
Performance Comparison Against Rem’s Sequential
Connectivity Algorithm [40], [41] using 1,024 Cores

Dataset Fastest Seq. Time (s) Speedup

p = 64 256 1,024

Kronecker (25) 228.8 10.1 34.3 100.6
M3 406.2 2.5 9.3 27.0
G3 45.9 0.9 3.5 7.6
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therefore of no surprise to us that these algorithms can out-
perform our algorithm, especially for small to mid-range
graphs. However, there are numerous problem scales that
these shared memory algorithms cannot cope with due to
the size of the graph; whereas our algorithm can easily deal
with such networks. Our parallel algorithmutilizes bulk syn-
chronous communication instead of the fast asynchronous
communication found in shared-memory frameworks.
While such communications are inherently slower, they do
enable processing larger networks. Consider the largest net-
work analyzed in this paper (Table 1): metagenomic graph
M4which has 53.6 billion edges and an equal number of ver-
tices. Processing this graph in memory requires at least the
following amount of memory: 2 � ðjV j þ jEjÞ � 8 bytes. This
assumes that the graph requires jV j elements for the vertices
and 2 � jEj elements for the edges.3 Also, jV j integers are
required for tracking the connected component labels. Given
the size of the graph, 4 byte integers are not large enough to
store all the unique keys and as such this requires using
8 byte integers. For the M4 network, a total of 1.7 TB DRAM
is needed. As the sequencing cost continues to decline much
faster thanMoore’s law [42], we envision the need to analyze
even larger metagenomic graphs that require even more
memory, in the near future. The problems of optimizing
distributed-memory parallel algorithms while trying to
attain peak performance continues to be an important chal-
lenge and one that deserves additional attention, especially
the ability to reduce the overhead of communication.

Overall, we see that our proposed algorithm and the
optimizations help us improve the state-of-the-art for
distributed-memory parallel solution to the graph connec-
tivity problem. Simple and fast heuristics to detect the
graph structure enables our algorithm to choose the appro-
priate method dynamically for computing connectivity. This
approach enabled us to compute connectivity for a graph
with more than 50 billion edges and 300 million components
in less than 4 minutes. The speedup we achieve over the
state-of-the-art algorithm ranges from 1.1� to 24.5�.

6 CONCLUSION

In this work, we presented an efficient distributed memory
algorithm for parallel connectivity, based on the Shiloach-
Vishkin PRAM algorithm. We proposed an edge-based
adaptation of this classic algorithm and optimizations to
improve its practical efficiency in distributed systems. Our
algorithm is capable of finding connected components in
large undirected graphs. We show that a dynamic approach
that analyzes the graph and selectively uses the parallel BFS
and SV algorithms achieves better performance than a static
approach using one or both of these two methods. The
dynamic approach prefers BFS execution only for a large
short-diameter graph component.

Our method is efficient as well as generic, as demon-
strated by the strong scalability of the algorithm on a variety
of graph types. We also observed better performance when
compared to a recent state-of-the-art algorithm. The mea-
sured speedup is significant, particularly in the case of large
diameter graphs.
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