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Abstract—Counting and indexing fixed length substrings, or k-mers, in biological sequences is a key step in many bioinformatics tasks

including genome alignment and mapping, genome assembly, and error correction. While advances in next generation sequencing

technologies have dramatically reduced the cost and improved latency and throughput, few bioinformatics tools can efficiently process

the datasets at the current generation rate of 1.8 terabases per 3-day experiment from a single sequencer. We present Kmerind, a high

performance parallel k-mer indexing library for distributed memory environments. The Kmerind library provides a set of simple and

consistent APIs with sequential semantics and parallel implementations that are designed to be flexible and extensible. Kmerind’s

k-mer counter performs similarly or better than the best existing k-mer counting tools even on shared memory systems. In a distributed

memory environment, Kmerind counts k-mers in a 120 GB sequence read dataset in less than 13 seconds on 1024 Xeon CPU cores,

and fully indexes their positions in approximately 17 seconds. Querying for 1 percent of the k-mers in these indices can be completed in

0.23 seconds and 28 seconds, respectively. Kmerind is the first k-mer indexing library for distributed memory environments, and the

first extensible library for general k-mer indexing and counting. Kmerind is available at https://github.com/ParBLiSS/kmerind.

Index Terms—k-mer counting, k-mer index, next generation sequencing, distributed computing, parallel computing, MPI, SIMD
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1 INTRODUCTION

ADVANCES in next-generation sequencing (NGS) technol-
ogies have enabled high-throughput sequencing of

DNA at dramatically reduced cost, and are continually
propelling bioinformatic research into the era of big data.
For instance, with respect to whole genome sequencing,
one Illumina HiSeq X ten system is able to deliver over
18,000 human genomes with 30� coverage each, in a sin-
gle year, at a sequencing cost of <$1000 per genome.
This high sequencing throughput results in a data volume
of about 90 billion base-pairs (bps) per genome and about
1.6 quadrillion bps per year with only one sequencing
system. Consequently, big biological sequence analytics
have become an increasingly important methodology in
biological research and health care, enabled by these cost-
affordable and high-throughput sequencing technologies.
Projects including The Cancer Genome Atlas [1], The
1,000 Genome Project [2], The 10K Genome Project [3],
and even clinical research and health care [4] attest to the
ubiquity of NGS and its impacts. The continued adoption
of and improvements in sequencing technologies amplify
the demand for efficient management and timely process-
ing of biological sequence data using sophisticated bioin-
formatic algorithms and tools that support data-driven
computational tasks [5], [6].

Central to many bioinformatic tasks are k-mer (defined
as a length k sequence) counting and indexing, which are
widely used in data processing tasks such as sequence
search [7], [8], [9], NGS read error correction [10], [11], [12],
NGS read alignment [13], [14], [15], and de novo assembly
[16], [17], [18], [19]. K-mer analysis is also a critical part of
applications including sequencing coverage estimation [20],
single nucleotide variant identification [10], and metage-
nomic sequence classification [21], [22]. The broad applica-
bility of k-mer counting and indexing have motivated the
development of a diversity of tools providing this capabil-
ity. Section 2 briefly summarizes the existing works.

In this paper, we present a generic in-memory k-mer
indexing and counting library, named Kmerind, to address
both the performance and data scaling challenges due to or
arising from big biological sequence data analysis. In gen-
eral, the objectives of developing Kmerind include (i) realiz-
ing ready scaling of problem size and/or performance with
additional hardware resources, (ii) allowing easy configura-
tion and extension with user-specified data types and algo-
rithms, and (iii) offering a consistent set of application
programming interfaces (APIs).

In Kmerind, these objectives are directly reflected by our
algorithms, APIs, and implementation. Shared-memory
computers are inherently limited by computational resour-
ces including the number of processor cores and size of
memory. In this work, we target distributed-memory envi-
ronments to support scaling to very large datasets, utilizing
very large amounts of memory, and recruiting substantial
extra computational resources when performance is para-
mount. Kmerind classes and functions are written as C++
templates, thus enabling convenient creation of application-
specific indices and easy customization of k-mer length,

� The authors are with the School of Computational Science and Engineering,
Georgia Institute of Technology, Atlanta, GA 30332. E-mail: {tpan7, patrick.
flick, cjain, yliu860}@gatech.edu, aluru@cc.gatech.edu.

Manuscript received 2 Dec. 2016; revised 5 July 2017; accepted 20 Sept. 2017.
Date of publication 9 Oct. 2017; date of current version 5 Aug. 2019.
(Corresponding author: Srinivas Aluru.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2017.2760829

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 16, NO. 4, JULY/AUGUST 2019 1117

1545-5963� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 17,2020 at 08:05:04 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7945-6534
https://orcid.org/0000-0001-7945-6534
https://orcid.org/0000-0001-7945-6534
https://orcid.org/0000-0001-7945-6534
https://orcid.org/0000-0001-7945-6534
https://orcid.org/0000-0003-3343-2398
https://orcid.org/0000-0003-3343-2398
https://orcid.org/0000-0003-3343-2398
https://orcid.org/0000-0003-3343-2398
https://orcid.org/0000-0003-3343-2398
https://orcid.org/0000-0001-7837-2128
https://orcid.org/0000-0001-7837-2128
https://orcid.org/0000-0001-7837-2128
https://orcid.org/0000-0001-7837-2128
https://orcid.org/0000-0001-7837-2128
https://orcid.org/0000-0003-4279-469X
https://orcid.org/0000-0003-4279-469X
https://orcid.org/0000-0003-4279-469X
https://orcid.org/0000-0003-4279-469X
https://orcid.org/0000-0003-4279-469X
https://github.com/ParBLiSS/kmerind
mailto:
mailto:
mailto:


alphabet, and functions associated with index operations.
All Kmerind indices are built upon the same set of basic
operations, i.e., insert, find, count, and erase, with
sequential semantics and parallel implementations. Appli-
cation developers can readily extend the capability of our
library by adding new algorithms or optimizing the imple-
mentations of existing components.

2 RELATED WORK

K-mer counting and indexing have been extensively inves-
tigated in the literature due to their centrality in many bioin-
formatics algorithms. Most algorithms and software for
k-mer analysis target shared memory systems, and operate
serially [20], [23], [24], [25], [26], [27] or use multiple threads
[28], [29], [30], [31], [32], [33], [34], [35]. To the best of our
knowledge, Kmernator [36] is currently the only stand-
alone distributed memory k-mer counter available.

These software target different use cases and provide dif-
ferent interfaces and functionalities. While k-mer indexing
software [20], [24], [25] can be used for k-mer counting, the
converse may not hold true. A k-mer analysis software may
also be designed for a specific pipeline, e.g., assembly, and
therefore provides only application-specific query interfaces
[33], [36], or only supports off-line queries [28].

Memory is often the primary limitation for shared mem-
ory environments. Several specialized approaches have
been employed to address this issue, including out-of-core
techniques, Bloom filters [37], and succinct data structures
such as enhanced suffix arrays [38].

2.1 K-mer Counting
Jellyfish [28] is a popular in-memory k-mer counter and
introduces a lock-free hash table to support thread-level con-
current updates. It reduces memory consumption by using a
bijective hash function that allows the lower bits of a key to
be reconstructed from its hash bucket identifier, thus only
the upper bits need to be stored. The memory usage is fur-
ther minimized by widening the data type only when the
k-mer frequency is high. KCMBT [27] is an in-memory k-mer
counter that employs cache efficient burst tries.

Out-of-core approach for reducing memory footprint
includes the use of disks as external memory. Tools in this
group operate with separate partitioning and counting
phases. KAnalyze [30] counts k-mers in each input file block
and stores the intermediate results, which are aggregated
during the counting phase. DSK [29], MSPKmerCounter
[26], KMC 2 [33], KMC 3 [35], and Gerbil [34] assign k-mers
to on-disk buckets during partitioning, and process each
bucket individually during the counting phase.

Probabilistic data structures such as Bloom filters and
Count-min Sketch [39] have also been used to reduce
memory requirements. BFCounter [23] and Turtle [32] are
two examples using Bloom filters. JellyFish 2 [28] also
provides an option to support this technique. As Bloom
filters can introduce false positives, a second scan of the
k-mer counts is necessary. Khmer [31] is a k-mer counter
based on Count-min Sketch that, while memory efficient,
can overestimate k-mer counts.

Kmerind circumvents single-machine memory limita-
tions by allowing users to recruit additional nodes in a dis-
tributed system. In contrast to disk based tools, Kmerind’s
performance is bound by the faster memory and network
rather than disk speed. Unlike techniques involving

probabilistic data structures such as Bloom filter [23], [32] or
Count-min Hash [31] that exclude singleton k-mers and
introduce errors, Kmerind supports exact counting and
indexing, and therefore is suitable for a wider spectrum of
applications. In addition, Kmerind provides both counting
and indexing capabilities via an extensible library API.

2.2 K-mer Position Indexing
Besides k-mer counts, some works further trace the position
of each k-mer occurrence through string indexing data
structures. Tallymer [20] and Gk-Array [24] are two tools
based on enhanced suffix array [38] (an equivalent repre-
sentation of suffix tree). V€alim€aki and Rivals [25] extended
Gk-Array by proposing a compressed representation based
on FM-index [40] that further improves memory efficiency.

Suffix trees and arrays are not well-suited for distrib-
uted-memory k-mer counting and indexing. Distributed-
memory suffix array construction has been demonstrated
previously [41]. However, distributed query processing
requires Oðlog ðnÞÞ iterations of sequence comparison, each
iteration requiring communication with remote processors.
Kmerind instead stores k-mers in data structures that
support local associative look-up or comparison-based
searches using k-mers as keys.

2.3 Distributed k-mer Indexing
The k-mer counting and indexing tools discussed in Sections
2.1 and 2.2 target shared-memory systems. Kmernator [36] is
a hybrid MPI+OpenMP application that implements node-
and thread-level master-slave work assignment. However,
Kmernator only supports FASTQ files and canonical k-mers.

Distributed-memory assemblers often embed k-mer ind-
exing and counting capability for erroneous k-mer removal
and de Brujin graph construction. Examples of such assem-
blers include ABySS [18], PASHA [42] and HipMer [19].
ABySS uses hash tables, PASHA adopts a combination of
hash tables and sorted vectors, while HipMer associates
hash tables with Bloom filters. As these k-mer indexing and
counting procedures are specialized for assembly only, none
of themprovides general purpose indexingAPIs.

3 ALGORITHMS

Kmerind’s algorithms are designed to be efficient in both
computation and communication complexities. We leverage
bulk-synchronous parallel communication primitives with
explicit synchronization semantics to enforce coarse grain
synchronization that avoids contention, reduces overhead,
and encourages optimization. Specifically, Kmerind algo-
rithms employ primitives defined in version 2 of the Mes-
sage Passing Interface (MPI) standard [43]. Kmerind does
not use multithreading as thread-safety incurs additional
overheads for this highly data parallel task. To minimize
costly file system access, Kmerind indices are memory resi-
dent for the duration of their use.

The number of processors used is denoted as p. Com-
munication complexity is described in terms of latency t,
bandwidth 1=m, and message size m. Point-to-point com-
munication, e.g., MPI_Send, has complexity Oðt þ mmÞ,
while collective communication, e.g., MPI_Alltoallv,
has Oðt logðpÞ þ mm logðpÞÞ assuming hypercubic permu-
tation based implementation.

The number of occurrences of a k-mer in a dataset is
referred to as its count or frequency. We use the term distinct
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to describe k-mers with different character sequences, in
contrast to unique k-mers whose frequency is 1. The set of
all indexed k-mers is denoted by N , whose distinct k-mer
subset is denoted by U . The set of input k-mers for an
index operation is denoted by M. The subscripted versions
Ni, Ui, and Mi denote the corresponding subsets on proces-
sor i. The size of a set is represented by j � j. The average
global and per-processor k-mer frequencies are denoted by
r ¼ jNj=jU j and ri ¼ jNij=jUij.

References to lines in algorithms use the formats “Ax:y”,
“Ax:y; z” and “Ax:y–z” for efficiency, where x is the algo-
rithm number and y and z are the line numbers.

3.1 Distributed k-mer Parsing
Kmerind supports parallel file reading and k-mer parsing.
Currently, FASTQ format, which is primarily used for stor-
ing NGS sequence reads, and FASTA format, which is used
for sequence reads as well as whole genomes, are sup-
ported. We denote the sequence file as F .

Parallel file reading and k-mer parsing proceeds in 3
steps, file partitioning, sequence segmentation, and k-mer gener-
ation, as shown in Fig. 1 and Algorithm 1. Parallelization cir-
cumvents single machine limits. Each step maintains load
balance across processors and linear time complexity.

During file partitioning (A1:2–3), F is divided into approxi-
mately equal partitions of jF j=p bytes and loaded in parallel
into main memory as a character array S. The sequence seg-
mentation step (A1:5,6,15) employs linear-time, format-spe-
cific logic to identify in S individual sequences, from which
k-mers, positions, and other data are extracted. For each seg-
mented sequence, the k-mer generation step (A1:8-14) extracts
k-mers via a sliding window and stores the results in an
array to be used as input for the distributed index operations.
When an unknown character is encountered, one of three
strategies is used: discard the sequence; discard the k-mer; or
replace the unknownwith a known character such as “N”.

Sequence segmentation algorithms for the FASTQ
and FASTA formats are outlined in the Appendix, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TCBB.
2017.2760829. Briefly, for a FASTQ file the partition bound-
aries are adjusted to begin and end at sequence boundaries.

Algorithm 1. Distributed k-mer Parsing

1: function PARSEKMERS(F , rank, p)
2: hstart; endi  jF j=p� hrank; rankþ 1i
3: S  read_file(F , start, end)
4: kmers empty array
5: InitSequenceSegmention(S, rank, p)
6: seq GetNextSequence(S, start, end)
7: while seq 6¼ empty do
8: for j 0; jseqj do
9: kmer ðkmer� 1Þ
10: kmer kmer.append(seq[j])
11: if j � k� 1 then
12: kmers.append(kmer)
13: end if
14: end for
15: seq GetNextSequence(S, seq:end, end)
16: end while
17: return kmers
18: end function

Sequences in S are then identified iteratively leveraging
FASTQ format regularity. For FASTA files, the starting and
ending positions of all sequences are computed and stored,
since a sequence may span multiple processors and com-
puting the positions requires global communication. Subse-
quent segmentation uses the stored positions.

3.2 Distributed Indices: Overview
Kmerind’s distributed k-mer indices are modeled as either
hash maps or sorted arrays of k-mers and associated data.
In both cases the k-mer space is partitioned amongst the
processors so that an input k-mer for an index operation is
deterministically assigned to and processed by one and
only one processor. We also considered look-up tables and
suffix arrays. While a distributed look-up table can enumer-
ate the entire k-mer space as a 4k array for small k, non-uni-
formity in k-mer distribution of the genome or read file can
translate to computational load imbalance. Suffix arrays
and trees, while flexible and memory efficient, are not well
suited for distributed-memory queries as stated in Section 2.

Kmerind’s distributed hashed index is designed as a two-
level hash map. The upper level hash function maps k-mers
to processor ranks uniquely and deterministically, while the
lower level consists of a local hash map for storing k-mers
and associated data. Hash function for each level is user
definable and should be chosen to produce (1) uniformly
distributed hash values to ensure load balance across pro-
cessors and minimize hash collisions within local hash
maps, and (2) uncorrelated upper and lower level hash val-
ues to avoid clumping, where k-mers mapping to the same
processors are assigned to the same map buckets.

Kmerind’s distributed sorted index stores a k-mer and its
associated data as a tuple in a distributed, sorted array. A
size p� 1 array of splitter k-mers, replicated on all processors,
maps a k-mer to its assigned processor via binary search.

User preference and application needs dictate the choice
of hashed versus sorted indices. Hashed index allows
expected Oð1Þ time access to the k-mers, at the expense of
extra space for emptymap buckets and hashmap overheads.
Sorted index carries an additional logarithmic factor in time
but requires only asmuch space as the k-mer data and can be
partitioned equally across processors for non-uniformly dis-
tributed k-mer set. A sorted index may facilitate integration
with an application’s native data structures and simplify
communication by avoiding extraneous copies.

Kmerind indices are further classified as uni- and multi-
indices. Uni-indices store one instance of each k-mer and
associated data, for example for k-mer counting. Multi-
indices store multiple instances of each k-mer, for example
to index k-mer’s positions.

Kmerind defined 4 basic operations that are categorized
as update or query operations. Update operations include
insert and erase, where communication is one-way only.
Query operations, on the other hand, require round-trip com-
munication and include count and find operations.

Fig. 1. Parallel sequence file reading in distributed environment.
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We expand the set of notations with Ri, which denotes
the results of a query operation. Subscript “r” before a vari-
able, e.g., rMi, denotes the remote copy of the variable, Mi,
after a collective communication such as MPI_Alltoallv.
Apostrophe, in M 0

i for example, indicates that a variable has
been locally permuted for a purpose such as bucketing prior
to collective communication. Note that permutation does
not change the size of the array. The local data store is
denoted by C, with jCj ¼ jNij. We further assume p is much
smaller than jNij, jMij, and jRij.
3.3 Distributed Hashed Index
For each operation in a distributed hashed index, the input
data is first assigned (map_to_processor) then communi-
cated to the target processor (distribute). The communi-
cated data is then processed locally on each processor, with
results optionally communicated back to the source proces-
sor. Fig. 2 illustrates this process for insertion.

3.3.1 Data Movement

Input data movement for an operation of a distributed hashed
index begins with the map_to_processor operation out-
lined in A2, where mapper is the upper level hash function.
The k-mers are first assigned to target processors using the
upper level hash function (A2:4-7). Both the assignments and
the number of k-mers in each bucket are saved simultaneously.
The k-mers in the input array are then stably permuted (A2:14-
17) so that k-mers for the same processor occupy contiguous
memory as required by the communication primitives. The
bucket assignment array is converted into a source-to-target
positionmapping array (A2:8-13). The positionmapping array
is used during permutation, and for inverse permutation if
input data in the original order is needed.

Algorithm 2.map_to_processor

1: function MAP_TO_PROCESSOR(Mi, mapper, p)
2: map array of size jMij
3: counts array of size p
4: for i 0; ðjMij � 1Þ do
5: map[i] mapperðMi½i�Þmod p
6: counts[map[i]] counts[map[i]] + 1
7: end for
8: offsets exclusive_prefix_sum(counts)
9: for i 0; ðjmapj � 1Þ do
10: rank map½i�
11: map½i�  offsets[rank]
12: offsets[rank] offsets[rank] þ1
13: end for
14: M 0

i  array of size jMij
15: for i 0; ðjMij � 1Þ do
16: M 0

i½map½i��  Mi½i�
17: end for
18: return hM 0

i; counts;mapi
19: end function

Once the k-mers have been assigned and arranged by tar-
get processors, the distribute function sends k-mers and
associated data to target processors using the collective per-
sonalized communication primitive, MPI_Alltoallv. A
corresponding inverse_distribute function is defined
to move k-mers and associated data back to their source
processors, for example to return query operation results.
This is accomplished by first permuting the counts array
using MPI_Alltoall to get the element counts in the
received buckets, then using the permuted counts and the
k-mer array as argument for distribute.

COMPLEXITY ANALYSIS: The overall time complexity for
map_to_processor is linear in the size of the input
OðjMijÞ, as each of the 3 for loops requires constant time
per iteration over jMij iterations. The local exclusive prefix
sum requires OðpÞ time. The total time and space complexi-
ties are OðjMijÞ, assuming p� jMij. No communication is
incurred during this operation.

The complexity of the distribute function depends
directly on the space and time complexities of MPI opera-
tions, Oðtlog ðpÞ þ mjMijlog ðpÞÞ time and OðjMij þ jrMijÞ
space, linear in the size of the input and output.

3.3.2 Distributed Hashed Uni-Index

Kmerind’s distributed hashed uni-index allows a single
value to be associated with each k-mer, and supports update
operations insert and erase, as well as query operations
count and find. For each query k-mer, at most one result
value is returned. Therefore, jMij ¼ jRij and jrMij ¼ jrRij

The algorithms for insert and count index operations
are shown in A3 and A4, respectively, where Mi is an array
of query k-mers on processor i, C is the local container, and
Ri contains the query results for processor i. In each algo-
rithm, the input is assigned and distributed to the target
processors using map_to_processor and distribute

operations as described in Section 3.3.1. The target process-
ors then process the received k-mers and data locally (A3:5,
A4:5). The count algorithm returns the count results to the
source processors via collective communication using the
inverse_distribute operation.

Algorithm 3. Distributed Hashed Index Insert

1: procedure INSERT(Mi, C, mapper, p)
2: hM 0

i; countsi  map_to_processor(Mi, mapper, p)
3: rMi distribute(M 0

i , counts)
4: for x 2 rMi do
5: v C.insert(x)
6: end for
7: end procedure

Algorithm 4. Distributed Hashed Index Count

1: procedure COUNT(Mi, C, mapper, p, Ri)
2: hM 0

i; countsi  map_to_processor(Mi, mapper, p)
3: rMi distribute(M 0

i , counts)
4: for x 2 rMi do
5: v C.count(x)
6: rRi.append(hx, vi)
7: end for
8: Ri  inverse_distribute(rRi, counts)
9: end procedure

The algorithms for erase and find are essentially identi-
cal, except the local hash map operations at A3:3 and A4:4

Fig. 2. Inserting k-mers into the Kmerind’s distributed index.
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are replaced with C.erase and C.find, respectively. Dupli-
cates in input may be removed before invoking the hashed
index operations to reduce subsequent communication vol-
ume and computational load.

COMPLEXITY ANALYSIS: We assume appropriate hash func-
tions were chosen so that data is distributed as uniformly as
possible, jMij 	 jrMij, and that the local hash map has
expected Oð1Þ access time per k-mer.

Update operations insert and erase requires OðjMijÞ
space and time complexity for map_to_processor (A3:2,
A4:2), OðjMij þ jrMijÞ space and Oðt log ðpÞ þ mjMijOðt log ðpÞ þ
mjMij log ðpÞÞlog ðpÞÞ time for distribute (A3:3, A4:3), and
OðjrMijÞ time and space for local hash map insertion and era-
sure (A3:5, A4:5). Update operations have overall complexity
ofOðjMij þ jrMijÞ in space, andOðt log ðpÞ þ mjMij log ðpÞÞ in
communication time and OðjMij þ jrMijÞ in computation
time.

The query operations count and find differ from the
update operations by their results handling, which requires
OðjrRij þ jRijÞ space, and Oðt log ðpÞ þ mjrRij log ðpÞÞ com-
munication time, and OðjrRij þ jRijÞ computation time.
Since jrRij ¼ jrMij and jRij ¼ jMij for uni-indices, the over-
all space and computation time complexity of the query
operations remains the same as those for the update opera-
tions, while the communication time complexity becomes
Oðt log ðpÞ þ mðjMij þ jrMijÞ log ðpÞÞ.

Assuming equal input and distributed data partitioning,
jMij ¼ jrMij ¼ jMj=p, the update and query operations then
have space and computation time complexity linear in the
size of the input, OðjMj=pÞ, and communication time com-
plexity of Oðt log ðpÞ þ mjMj=p log ðpÞÞ.
3.3.3 Distributed Hashed Multi-Index

Kmerind’s hashed multi-index uses a local hashed multi-
map to associate multiple values to each k-mer. The local
hashed multi-map implementation can affect the per-
element access time complexities, however. Kmerind’s
choice of local hash multi-map is described in Section 4.2.
Here we assume that time complexity is expectedly Oð1Þ for
each local multi-map access.

Kmerind’s hashed multi-index and uni-index share the
same algorithm for update operations, which processes each
input k-mer regardless of multiplicity in the associated data
for each k-mer. For count operation, since exactly one
count response is generated for each query k-mer, the algo-
rithm for uni-index’s count operation is adopted for the
multi-index count operation.

Unlike the uni-index find operation, however, jRij 6¼ jMij
and jrRij 6¼ jrMij for the multi-index find operation. Fur-
thermore, rMi may contain replicated query k-mers from
different processors.

We assume equal partition for the distinct k-mers U in
the indexed k-mers, jUij ¼ jU j=p. We further assume that
the query k-mers M are sampled from the same distribution
as N and equal partitioning of M. Then Mj on processor j
has expected size jMjj ¼ rjU j=p, and the distributed input
k-mer set on processor i has expected size jrMij ¼ rijU j=p,
which implies that the intermediate results have size jrRij ¼
r2i jU j=p. Assuming each input subset sent from processor j

to i contains rijU j=ðp2Þ k-mers, then the final results have

size Sp�1
i¼0 r

2
i jUj=ðp2Þ ¼ ðjU j=pÞðSp�1

i¼0 r
2
i Þ=p.

The second order dependence of jrRij on ri implies that
non-uniformity in frequency distribution can quickly cause

load imbalance in computation, memory usage, and com-
munication for the uni-index query algorithm A4.

Algorithm 5. Distributed Hashed Multi-Index find

1: procedure FIND(Mi, C, mapper, p, ri, Ri)
2: hM 0

i; countsi  map_to_processor(Mi, mapper, p)
3: rMi distribute(M 0

i , counts)
4: Bi  empty array of size p
5: for j 0; ðp� 1Þ do
6: rMij  subset of rMi from processor j
7: for x 2r Mij do
8: Bi[j] Bi[j] + C.count(x)
9: end for
10: end for
11: Bi  inverse_distribute(Bi, counts)
12: c sumðBiÞ
13: Ri  empty array of size c
14: for j 0; ðp� 1Þ do
15: k ðiþ jÞmod p
16: rMik  subset of rMi from processor k
17: T empty array
18: for x 2r Mik do
19: T.append( C.find(x) )
20: end for
21: T Send(T, k)
22: Ri.append(T)
23: end for
24: end procedure

Instead, Kmerind’s position index’s find operation uses
Algorithm 5 that amortizes the space and time requirements
over p iterations. During each iteration, the query k-mers from
one source processor are processed. The query k-mers are first
assigned and distributed (A5:2-3). The total number of result
tuples are counted and returned to the source processor
(A5:4-11) so that the result array Ri can be allocated (A5:12-
13). We then iterate over each query k-mer subsets rMik by
processor rank k (A5:14-23), finding all results for a subset
(A5:19) and sending the subset result immediately (A5:21)
before processing the next subset. Non-blocking point-to-
point communication (MPI_Isend and MPI_Irecv) is used,
which allows communication to overlap query processing
computations.

COMPLEXITY ANALYSIS: Distributed hashed multi-indices
have identical complexities for the insert, erase, and
count operations as those for the uni-indices (Section 3.3.2).

The find algorithm for the multi-index aims to minimize
the intermediate memory requirement jrRij ¼ r2i jUj=p. Proc-
essing the query k-mer subsets of rMi iteratively requires at
most Oðri maxkðjrMikjÞÞ space due to buffer reuse. Across
all iterations, the computation and communication time
complexities are OðrijrMijÞ and Oðtpþ mrijrMijÞ respec-
tively. The additional counting step has the same computa-
tion time as query processing, therefore does not affect the
overall complexity.

The overall complexity of the hashed multi-index find

operation is dominated by the subset query processing itera-
tions, Oðtpþ mjMij log ðpÞ þ mrijrMijÞ for communication,
OðjMij þ rijrMijÞ for computation, and OðjMij þ jrMij þ
jRij þ ri maxkðjrMikjÞÞ for space. The algorithm avoids the
quadratic intermediate result space requirement for highly
repeated k-mers from OðrijrMijÞ toOðri maxkðjrMikjÞÞ. Com-
munication message sizes are likely more balanced, and the
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bandwidth term is reduced from OðmðjMij þ rijrMijÞ log ðpÞÞ
for collective communication to OðmðjMij log ðpÞ þ rijrMijÞÞ
at the expense of increased latency term, tp.

3.4 Distributed Sorted Index
Kmerind’s distributed sorted indices store <k-mer, value>
tuples in a sorted array using k-mer as key. A sorted array
has a strict ordering by k-mer values, and tuples with identi-
cal keys, such as those in multi-index, are arranged contigu-
ously in the array. The sorted array is partitioned as equally
as possible across all processors. We further require that
tuples with identical keys reside on the same processor.

3.4.1 Data Movement

Leveraging these properties and requirements, and after an
array has been sorted, we can establish a surjective mapping
from query k-mers to partitions of the sorted array, each
residing on a processor. A simple approach adopted by
Kmerind is to use the last k-mer from each partition as a
splitter. Through binary search in the array of splitters of size
p� 1, a query k-mer can be uniquely and deterministically
assigned to a processor.

We adopt hashed index’s map_to_processor algo-
rithm (A2), with the exception that line 5 is replaced with a
binary search for the query k-mer’s insertion position in the
splitter array. The insertion position corresponds to the pro-
cessor rank to which the k-mer should be sent.

Subsequent to mapping, the query k-mers can be sent to
the target processors via the distribute and inverse_

distribute operations from Section 3.3.1.
COMPLEXITY ANALYSIS: The map_to_processor opera-

tion uses a binary search in the splitter array for each k-mer.
The splitter array is replicated on each processor and
requires p space. Overall time complexity is OðjMij log ðpÞÞ,
with log ðpÞ from the binary search. The distribute algo-
rithm has identical time and space complexity as those for
the hashed index’s distribute operation.

Algorithm 6. Local Erase for Sorted Index

1: procedure ERASE(rMi, C)
2: out_pos 0
3: start 0
4: end 0
5: rMi sort(rMi)
6: for x 2 rMi do
7: end lower_bound_pos(C½start . . . jCj�, x)
8: for i start, (end - 1) do
9: C[out_pos] C[i]
10: out_pos out_pos + 1
11: end for
12: start upper_bound_pos(C½end . . . jCj�, x)
13: end for
14: for i start, ðjCj � 1Þ do
15: C[out_pos] C[i]
16: out_pos out_pos + 1
17: end for
18: end procedure

3.4.2 Distributed Sorted Uni- and Multi-Indices

Data movement in Section 3.4.1 depends on the presence of
the splitter array, which is constructed during or after paral-
lel sorting. The insert operation for distributed sorted
uni-index and multi-index employs parallel sample sort

[44] with regular sampling to sort the input k-mer array and
produce the splitter array concurrently.

The erase, count and find operations for both the
sorted uni- and multi-indices employ the same algorithms
as those for the hashed indices: A3, A4, and A5. The hashing
map_to_processor operations (A3:2, A4:2, A5:2) are
replaced with the binary search version described in Section
3.4.1. The local hash map erase (A3:4-6), count (A4:4-7),
and find (A5:18-20) operations are likewise replaced with
their sorted array counterparts.

During the local erase operation (A6), the query k-mers

rMi are first sorted so that binary search ranges in the
indexed array can be reduced successively. For each query
k-mer, the matching range in the sorted array is identified
(A6:7,12) then overwritten in the next iteration with the
array elements between successive matching ranges (A6:8-
11, A6:14-17). After all query k-mers are processed, the
remaining non-matching array elements are moved for-
ward. The sorted array size is thus reduced.

The local count algorithm (A7) similarly sorts the query
k-mers first. For each k-mer in the query set, the matching
range is computed via 2 binary searches (A7:7-8), then the
count is computed from the range (A7:9). The local find

algorithm differs only in that elements in the round range
are copied to Ri instead of computing the count (A7:9).

COMPLEXITY ANALYSIS: For distributed sorted indices,
k-mer frequency in the sorted array affects the algorithm
trivially and the complexity is increased by a factor of ri for
the terms related to the output data.

The insert operation for Kmerind’s distributed sorted
indices has time complexity equal to that of parallel sample
sort [44]. The computation time is dominated by local sorting
OðjMij log ðjMijÞÞ assuming total sample size is negligible
compared to input data size, p2 � jMij, while communica-
tion complexity is Oðt log ðpÞ þ mðpþ jMijÞ log ðpÞÞ. Space
required is primarily for communication buffers thus linear
in input size,OðjMijÞ.

Algorithm 7. Local Count for Sorted Multi-Index

1: procedure COUNT(rMi, C, Ri)
2: start 0
3: end 0
4: Ri empty array
5: rMi sort(rMi)
6: for x 2 rMi do
7: start lower_bound_pos(C[end, jrMij], x)
8: end upper_bound_pos(C[start, jrMij], x)
9: Ri.append(hx, end - start i)
10: end for
11: end procedure

The erase, count, and find operations have identical
space and communication complexities as those for the
hashed uni- and multi-indices, bound by the total input and
output sizes. As the local query processing algorithms are
specific to sorted arrays, the computation complexities
involves a scaling factor from searching the index data.
Here we assume that binary search is used with per-query
complexity of Oðlog ðNiÞÞ.

For the erase operation, the computation complexity is
OðjMij log ðpÞ þ jrMij log ðjNijÞ þ jNijÞ. The first term is for
assigning query k-mer to processors, the second for search-
ing for matching k-mers, while the third is for moving

1122 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 16, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 17,2020 at 08:05:04 UTC from IEEE Xplore.  Restrictions apply. 



non-matching k-mers. The count operation has similar
computation complexity, with the last term being jrMij for
computing the size of the matching range for each query
k-mer. For for both uni- and multi-indices, the last term for
the find operation is rijrMij, due to copying of all elements
in the matching range.

4 IMPLEMENTATION

We designed and implemented Kmerind as a distributed
memory parallel library based on the objectives listed in Sec-
tion 1. Kmerind is a header only C++ library with a tiered
architecture (Fig. 3). It leverages C++ 11 language features,
Standard Template Library (STL) containers and algorithms,
and MPI and the mxx [45] MPI wrapper library. Each tier
defines templated functions and class interfaces as well as
default implementations to allow functionality by composi-
tion and extension by specialization and inheritance, thus
providing Kmerind’s flexibility and extensibility.

The Data Types layer defines alphabet and k-mer types
and associated operations such as k-mer reverse comple-
ment. The Operators layer defines transformations that facili-
tate sequence segmentation and k-mer parsing. The parallel
file reader and k-mer generator in the Functions layers use
these operators to parse files of different formats and gener-
ating hk-mer, valuei pairs of various types.

The Distributed k-mer Indices layer contains k-mer indices,
which are implemented as light-weight wrappers for Dis-
tributed Containers. The distributed containers implement
algorithms described in Sections 3.3 and 3.4, and use local
hash maps or sorted arrays for local storage. Additionally,
Kmerind provides maps that perform reduction on inser-
tion, an example being a counting map.

Where possible, the API presents sequential semantics
for simplicity, and encapsulates distributed memory imple-
mentation details.

4.1 K-mer Representation
In Kmerind, k-mers are specified via length k and alphabet
S. Kmerind allows arbitrary k values, including even val-
ues. Three primary alphabets, DNA, DNA5, IUPAC DNA,
and their RNA equivalents, have been provided. The DNA
alphabet consists of fA;C;G; Tg, while DNA5 adds N to
denote an unknown nucleotide. IUPAC DNA uses 16 char-
acters to represent the power set of the four DNA nucleoti-
des, e.g., K represents either G or T . Each alphabet also
defines the complement mapping for its nucleotides and
minimal bit encoding for each character.

As DNA is double stranded, each k-mer x has a reverse
complement �x on the opposite strand, and a canonical rep-
resentative, ~x, defined as the smaller of x and �x.

Kmerind k-mers are compressed using character encod-
ings with the minimal number of bits b ¼ dlog ðjSjÞe. For
DNA, DNA5, and IUPAC DNA, the bit lengths are 2, 3, and

4 respectively. A k-mer is represented by kb bits in an array
of machine words, with unused bits in the most significant
positions. Operations on k-mers have complexities that
depend linearly on k and the machine word size.

Rather than explicitly model double stranded k-mers,
Kmerind accounts for the double stranded nature in the
indexing operations. Kmerind indices can manage and
query each k-mer as-is (single strand mode), convert each
k-mer to canonical (canonical mode), or store k-mer as is but
accept x and �x as equivalent for queries (bimolecule mode).
In bimolecule mode, an index’s hash and comparison func-
tions compute ~x on demand. The performance of k-mer
reverse complement operation revcomp is critical and has
been vectorized using Single Instruction Multiple Data
(SIMD) hardware instructions and SIMD Within A Register
(SWAR) [46] patterns where only x86 instructions are used.

The revcomp operation proceeds in two conceptual
phases: character order reversal and character complement.
To reverse the order of characters, each word in a k-mer is
byte-reversed, and each byte is then character-reversed.
Machine words in a k-mer are processed in linear order.

SIMD byte reversal uses the SSSE 3 or AVX 2 pshufb

instruction with a look up table of reversed positions, while
SWAR byte reversal uses the x86 bswap instruction. SIMD
character reversal within a byte again uses pshufb but with
a look up table of reversed characters. SWAR character rever-
sal employs bitwise mask-shift-or pattern to swap blocks of
characters within each bytes over log ð8=bÞ iterations.

To accelerate character complement, the bit encoding of
characters as defined byS are chosen so that the complement
of a character can be computed via simple vectorizable func-
tions. For the DNA5 and IUPAC DNA, the complement
function is bit reversal, while for the DNA alphabet, bitwise
negation is used. Examples are given in Table 1.

For encodings where complements are computable via
bit-reversal, the character reversal mechanism is extended
to compute reverse complement in one step. This approach
allows DNA5 revcomp to be implemented in the same way
and with similar running time as that for IUPAC DNA,
despite the lack of byte-alignment.

4.2 Local Hash Table
Kmerind’s distributed hash map implementation allows
different local hash map implementations to be used.

Fig. 3. Kmerind library’s tiered architecture.

TABLE 1
SIMD-Friendly Bit Encoding for DNA, DNA5, and IUPAC DNA
Characters and Corresponding Character Complement Method

Character Complement Complement
MethodChar Bits Char Bits

D
N
A A 00 T 11 negate

C 01 G 10

D
N
A
5

gap 000 gap 000

bit reverse
A 001 T 100
C 011 G 110
N 111 N 111

IU
P
A
C

gap 0000 gap 0000

bit reverse

A 0001 T 1000
C 0010 G 0100
R (A,G) 0101 Y (C,T) 1010
� � � � � �
N 1111 N 1111

For IUPAC DNA alphabet, not all characters are shown.
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Kmerind incorporates Google SparseHash’s Dense Hash
Map (referred to asDHM) [47] as the default local hash table
due to its performance. DHM uses open addressing with
quadratic reprobing, thus requiring 2 dedicated keys to
identify empty and deleted hash table slots. The choice of
these keys depends on k-mer parameters and the strand
mode of the index as defined in Section 4.1. Table 2 summa-
rizes the decision tree for selecting the strategy to generate
the empty key for DHM. Deleted key selection is similar.

The general approach for choosing the empty and deleted
keys is to identify invalid bit patterns, such as unused char-
acter bit encoding in DNA5 or available padding bits in the
most significant word of a k-mer. For canonical-mode indi-
ces, un-canonical k-mers can serve as keys. Failing both, the
k-mer space can be partitioned between two DHMs with
k-mers from the opposite partition as keys. This last
approach is extensible to the distributed memory environ-
ment, where a processor’s k-mer space partition can provide
keys for the next processor’s DHM instance.

We extended DHM into a multimap in order to support
distributed multi-maps. Dense Hash MultiMap, or DHMM,
allows multiple values per k-mer key through indirection to
secondary arrays. DHMM stores singleton k-mers in one
array, referred to as SA, and replicated k-mers in an array of
arrays, referred to as MA, where each inner array contains
all values associated to a particular k-mer. An internal
DHM stores k-mer and array position pairs, with the posi-
tion value sign bit selecting SA or MA. Using positions
instead of pointers or iterators allows SA andMA to dynam-
ically resize without costly internal DHM rebuilds and
improves cache utilization. Separate arrays for unique and

replicated k-mers minimizes the number of memory alloca-
tions for inner arrays ofMA.

COMPLEXITY ANALYSIS: DHM has amortized Oð1Þ insert
and expectedOð1Þ find, count and erase time complexities
as designed and implemented. Kmerind pre-allocates the
local hash table if possible to reducememory allocation cost.

Insertion in DHMM requires amortized Oð1Þ time as the
SA andMA array as well as the internal DHM may resize as
needed. Counting requires constant time as the counts for
singleton k-mers are always 1, while the counts for repeated
k-mers are the sizes of the corresponding inner arrays. Dele-
tion requires constant time since only the internal DHM
needs to be modified to mark an entry as deleted. To
retrieve all values mapped to a k-mer, DHMM requires time
linear in the size of the output, on average OðrÞ.
4.3 K-mer Count and Position Indices
Kmerind provides default count and position index imple-
mentations. The count index specifies hk-mer, counti as
index elements, k-mer 2 U . The count index is implemented
using either the distributed hashed or sorted reduction map
with þ operator over the count field. The default position
index specifies hk-mer, positioni as index elements, and is
implemented using the distributed hashed or sorted multi-
map. In both cases, the user can specify k, S, and indexmode
(canonical, single, bimolecule). In the case where hashed
map is used, the upper and lower hash functions can be spec-
ified. Experiments use the default implementations and the
discussions refer to count and position indices directly.

We note that while de-duplicating the query k-mers theo-
retically helps to reduce communication, computation, and
memory costs, its practical utility is limited for insert,
erase, and count operations. The expected number of rep-
licated query k-mers on a processor, ð1=jU jÞðjNj=pÞ ¼ r=p,
decreases with increasing p. For a typical whole genome
sequencing dataset with 30� coverage and p ¼ 32, we expect
that most k-mers are locally distinct. De-duplication is there-
fore only implemented for the find operation, where frugal
memory usage is more critical.

5 EXPERIMENTAL RESULTS

We examined the performance of Kmerind and compare it
to those of a select subset of existing k-mer indexing tools.
Datasets used for the experiments are summarized in
Table 3, and referenced by “Ids” in subsequent discussions.

Sequential and multi-threaded tests were conducted on
the CompBio system at Georgia Institute of Technology.

TABLE 2
Strategies for Choosing k-Mers as the Empty Key for DHM

Condition Strategy example

. DNA5 via unused encoding: 010 000 000 010

..Has set highest unused bits 10 11 10 01
unused bits

. . . Is use un-canonical k-mer TTT
canonical index

. . .. all others split k-mer space
lower k-mer space map TTT
higher k-mer space map AAA

Conditions listed are checked successively row by row. If a condition is met, the
strategy listed on that row is used. Examples shown are 3-mers in ASCII or
binary encoding.

TABLE 3
Experimental Datasets Used for All Evaluations

Id Organism Genome Size
(Mbases)

File
Format

File
Count

File Size
(Gbytes)

Sequence
Count

Average
Read Length

Source Accession

R1 H. sapiens 2,991 FASTQ 1 6.3 23,861,612 101 1,000 Genome HG00096, NCBI SRR077487 forward only
R2 F. vesca [48] 214 FASTQ 11 14.1 12,803,137 352 NCBI SRA020125
R3 G. gallus 1,230 FASTQ 12 115.9 347,395,606 100 NCBI SRA030220
R4 H. sapiens 2,991 FASTQ 48 424.5 1,339,740,542 101 NCBI ERA015743

G1 H. sapiens 2,991 FASTA 1 2.9 84 – 1,000 Genome reference GRCh37 –
G2 P. abies [49] 20,000 FASTA 1 12.4 10,253,694 – Congenie.org –

M1 1 7.6 33,195,888
M2 1 15.2 66,391,776 IOWA Continuous
M3 metagenome – FASTQ 1 30.4 132,783,552 101 Corn Soil ( Project 402461 ), –
M4 1 60.8 265,567,104 Joint Genome Institute
M5 1 121.6 531,134,208

Where applicable, accession numbers for NCBI are provided.
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CompBio contains four 2.1 GHz Intel Xeon E7-8870v3 pro-
cessors with 45 MB L3 cache, 1TB of DDR4 RAM, and RAID
1 file systems with rotating disks. All tested software were
compiled with GCC v5.3 and OpenMPI v1.10.2 if required.

Distributed-memory experiments were conducted on
Iowa State University’s CyEnce cluster. Each node contains
two 2.0 GHz 8-core Intel Xeon E5-2650 CPUs and 128 GB of
RAM. The cluster has quad data rate (QDR) Infiniband
interconnect and is supported by a 288TB Lustre file system
with 1 MDS and 8 OSTs. All data files are stored on Lustre
with 1 MB block size and stripe count of 8. All test binaries
were compiled with GCC v4.9.3 and MVAPICH v2.1.7.

For multithreaded programs, we assigned one thread per
processor core using numactl. For MPI programs (Kmerind
and Kmernator), we similarly assigned one MPI process per
core via mpirun. Assignments are evenly distributed
amongst sockets and cluster nodes if applicable. Henceforth,
experimental results are discussed using the term “cores”.

Unless otherwise specified, the experiments were con-
ducted in canonical mode with DNA 31-mers. For hashed
indices, the high and low bits of Google FarmHash outputs
are used as upper and lower hash functions, while DHM
and DHMM are used as the local hash tables for count and
position indices respectively. Each experiment was repeated
at least three times, and the fastest time was reported as it
most closely reflects system capabilities.

5.1 K-mer Operations
We benchmarked the SIMD accelerated k-mer reverse com-
plement operation using the CompBio system. Fig. 4a sum-
marizes the times to compute reverse complement of one
million DNA, DNA5, and IUPAC DNA k-mers for varying
k using the x86 SWAR, SSSE 3, and AVX 2 revcomp imple-
mentations. Fig. 4b summarizes the times for 31-mers.

Overall the SIMD based revcomp implementation has a
throughput of approximately two microseconds per 31-mer,
and scales linearly with the number of machine words in

the k-mer data structure. The computation time increases in
fixed steps with word count instead of with k directly.
SWAR and SSSE 3 implementations were approximately
16� and 21� faster than sequential (SEQ in Fig. 4b). AVX 2
performed comparably to the SSSE 3 for k up to 256 (data
not shown) due to the additional overhead incurred when
moving bits between 128-bit data lanes.

Based on these observations, we defined an “AUTO”
implementation that adaptively chooses the optimal instruc-
tion sets at compile time based on k-mer parameters. For
small k, the SWAR algorithm is used, while for large k the
SSSE 3 implementation is used.

5.2 Distributed k-mer Parsing
Distributed file reading and k-mer parsing benchmarks
were performed on the CyEnce cluster. Three different file
access mechanisms were evaluated: MPI-IO, memory map-
ping (MMAP), and POSIX file access functions. Copies of
the same files were used to isolate the effects of file system
caching. Parallel k-mer parsing of the R1 dataset scaled
nearly linearly for up to p ¼ 64, beyond which the network
was likely saturated (Fig. 5). MPI-IO and MMAP mecha-
nisms performed similarly given CyEnce’s configuration.
For 32 and 64 cores, the POSIX mechanism showed an
approximately 40 percent advantage.

The time to read and parse theM4 dataset using 128 cores
was dramatically improved when the file was previously
cached (Table 4). Different I/O mechanisms benefited from
caching differently, with POSIX receiving a 22:8� speed up.
The long uncached file reading time and the short index con-
struction time (Sections 5.4 and 5.5) suggest that rebuilding a
k-mer index from cached sequence data is likely preferable
to loading a previously built index.

In subsequent tests, we used POSIX and pre-populated
file cache with a “warm up” iteration. File reading times
were excluded from the index construction and query times
for scalability experiments in Section 5.4, and included for
comparisons to existing tools in Section 5.5.

5.3 Effects of Index Parameters
Kmerind provides significant flexibility for users to config-
ure the data structures and algorithms through parameters
and compositions. In this section, we briefly examine some
of the parameters and their impacts on performance. Fig. 6
summarizes the index operation performance for 4 common
parameters. Alphabet, k, and strand-mode can be considered
as application-driven parameters, while the local map
choice is performance-driven.

Among the 3 provided alphabets, DNA provides the best
performance as it is compact and allows simple bitwise
operations (Fig. 6a) where DNA 5 requires a more complex
character shifting algorithm during k-mer parsing from file.
The bit length of encoded character is inversely related to
the performance of the index, as is the value k. Each short

Fig. 4. Time in milliseconds to reverse-complement one million k-mers of
varied alphabets using SWAR, SSSE 3, or AVX 2 instructions for differ-
ent k (a) and 31-mers (b).

Fig. 5. Time in seconds to read and parse the R1 dataset from disk into
memory via MPI-IO, POSIX, and memory mapping, using varying num-
ber of cores. The x-axis is in logarithmic scale.

TABLE 4
Time in Seconds to Read a File from the Lustre
File System Using 128 Cores, with and without

Operating System File Caching

I/OMechanism uncached cached speed up

MMAP 50.87 29.59 1.72
MPI-IO 57.65 13.26 4.35
POSIX 55.41 2.43 22.80
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read is parsed into L� kþ 1 k-mers and large k results in
fewer k-mers, thus reducing running time (Fig. 6b).

Fig. 6c shows the overhead for the bimolecule and canoni-
cal modes of operation. Bimolecule mode requires canonic-
alization for the input k-mers as well as the indexed k-mers,
thus revcomp is applied at least twice for each k-mer dur-
ing any operation. Canonical mode requires canonicaliza-
tion once for each input k-mer, while single-stranded mode
does not require any canonicalization, thus both perform
better than the bimoleculemode.

For indices that use distributed hash map or multimap,
different types of local hash map can be chosen. As
shown in Fig. 6d, DHMM consistently outperforms STL’s
unordered_multimap for all except for the erase operation.
This is because unordered multimap requires the use of
linked lists within each bucket.

The choice of hash functions for Kmerind’s two-level
distributed hash maps can have a strong impact on the per-
formance. We evaluated three hash functions, Google Farm-
Hash (farmhash), Murmur Hash 3 (murmur3), and k-mer
as hash value (self), on index insertion at the upper and
lower hash levels. In each case, the hash function of one
level is varied while the other level is set to use farmhash,
The experiments were conducted using 1,024 cores and the
M3 dataset in single-stranded mode for DNA 31-mers.

Fig. 7a shows that using self as upper hash function
caused significant performance degradation when compared

to the results from farmhash and murmur3. This degrada-
tion is attributable to severe load imbalance: while the stan-
dard deviations of the number of k-mers assigned to each core
were 2,751 and 2,806 for murmur3 and farmhash respec-
tively, for self the standard deviation reached 6,662,250. The
standard deviations were 41,786, 41,160, and 7,710,595 for
murmur3, farmhash, and self based position indices,
respectively. As points of reference, the average numbers of
k-mers per core were 7,678,665 for counting and 9,007,001 for
position indexing.

For the lower level hash function, hash collision and
computational overhead are the primary concerns. Fig. 7b
shows that self and murmur3 performed similarly for
count and position indices, while farmhash outper-
formed both, likely due to more uniform hash value dis-
tribution than self and better computational efficiency
than murmur3.

Based on the parameter evaluations, we recommend that,
where application allows, a hash map based Kmerind index
be used with canonical DNA k-mers. The hash map should
be configured with farmhash or murmur3 as the upper
level hash function, and DHM or DHMM as appropriate for
local storage using farmhash. Subsequent scalability and
comparison experiments were configured as per these
recommendations.

5.4 Scalability
In this section the scalability of each position and count
index operation is examined (Figs. 8, and 9). In strong scal-
ing experiments, the total input dataset size jMj is fixed
while p is increased to demonstrate an algorithm or
software’s capability of using additional resources to solve

Fig. 7. Hash function impact on performance of DNA 31-mer count and
position indices. “SELF” indicates that the k-mer is used as hash value
directly. “MURMUR” and “FARM” indicate Murmur3 hash and Google’s
farm hash, respectively. datasetM3 was processed using 1,024 cores.

Fig. 6. Parameters affecting the performance of Kmerind’s indices.
Experiments were conducted using 1,024 cores on CyEnce and a Kmer-
ind canonical hashing position index, configured with Google farmhash

and DHMM, for DNA 31-mers in theR1 dataset.

Fig. 8. Strong scaling results for the insert, count, and find opera-
tions for the hashing and sorting variants of Kmerind’s count and posi-
tion indices, using canonical DNA 31-mers from datasetM1.

Fig. 9. Weak scaling results for the insert, count, and find operations
for the hashing and sorting variants of Kmerind’s count and position indi-
ces, using canonical DNA 31-mers from datasetsM1–M5.

1126 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 16, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 17,2020 at 08:05:04 UTC from IEEE Xplore.  Restrictions apply. 



a problem faster. In weak scaling experiments, jMj=p is kept
constant, to show the ability of the algorithm and software
to solve larger problems by using more resources. Ideal
strong scaling means that parallel execution time is 1=p
times that of sequential execution, while ideal weak scaling
translates to constant execution time regardless of p. The
count, find and erase operations used 1 percent of the
indexed k-mers, sampled randomly, as input. All experi-
ments were performed using datasetsM1–M5 on CyEnce.

Kmerind’s hashed count and position indices ingested
the M1 dataset in approximately 1 second, and the M5
dataset in 12.9 and 16.6 seconds respectively using 1,024
cores. Retrieving the counts in the count index required 0.05
and 0.23 seconds for M1 and M5. Retrieving the positions
took 0.42 and 28.0 seconds forM1 andM5, respectively.

The sorted array version of the count and position indi-
ces ingested the M1 dataset in 1.66 and 1.5 seconds using
1024 cores, and the M5 dataset in 23.8 and 20.57 seconds
respectively. The position index performed better as count
index required an extra integer operation per insertion.
Retrieving the counts for the M1 and M5 datasets required
0.15 and 1.43 seconds, while retrieving the positions took
0.89 and 54.61 seconds forM1 andM5, respectively.

Overall, the insert, count, and erase operations for
both the hashed count and position indices showed similar
scaling behavior. Similarly, sorted count and position indi-
ces exhibited same scaling trends for these 3 operations. The
find operations for the corresponding count and position
indices showed significantly different scaling behaviors as
predicted in Sections 3.3.3 and 3.4.2. The erase operation
times are not shown in Figs. 8 and 9 as they closely mirror
the scaling behavior of the count operation.

Figs. 8 and 9 further illustrate the performance charac-
teristics of Kmerind’s sorted and hashed indices. Hashed
indices consistently and significantly outperformed the
sorted indices in time for the index operations, over 6�
faster for find operations on count indices. At the same
time, sorted indices required significantly less memory
during execution by nearly a factor of 4 during count and
position indices insert. This is particularly apparent in
the weak scaling experiment results (Fig. 9). The memory
advantage of sorted indices decreased with core count for
strong scaling as the overheads of local hash maps became
less evident (Fig. 8). Note that sorted indices are designed
towards a balance between lower memory requirement
and acceptable performance and scaling, rather than mini-
mal space requirement.

5.4.1 Analysis of Scaling Behaviors

We examine the find operations of the hashed position and
count indices in more detail to better understand the scaling
behaviors that reflect the algorithmic and complexity differ-
ences described in Sections 3.3.2 and 3.3.3.

In strong scaling experiments, find for count index
reached minima at 512 cores. Fig. 10a shows that the pres-
ence of the minima is largely due to communication in the
“query” and to a lesser degree to the “resp” steps with com-
plexity t log ðpÞ þ mðjMj=pÞ log ðpÞ. For strong scaling, as p
increases, the bandwidth term decreases at the rate of
log ðpÞ=p, while the latency term increases at a rate of log ðpÞ.
For large p > mjMj=t, latency dominates.

Scaling of the find operation for k-mer position index is
dominated by the “resp” step with complexity ðrjMj=pÞ þ

tpþ mðrjMj=pÞ (Section 3.3.3). In contrast to a count index,
the “resp” step for the position index has significantly
higher latency and computation complexities. In addition,
the average k-mer frequency r can increase the bandwidth
term contribution for r > log ðpÞ, and highly repeated
k-mers can introduce load imbalance amongst cores that
further causes the run time to scale sub-optimally.

Weak scaling experiments showed a slight increase of run
time as p increased for the find operation (Fig. 10b) for the
hashed count index. This is due primarily to the “query”
step. As the per-processor data size jMj=p is kept constant in
weak scaling experiments, both the latency and bandwidth
terms in the communication complexity increasewith log ðpÞ.

The find operation in a position index scales linearly with
p and r according to tpþ ðmþ 1ÞðrjMijÞ (Section 3.3.3).
Assuming uniform sampling of a true k-mer distribution, r
is expected to increase with dataset size, which scales with p
for weak scaling experiments. For datasets M1–M5, r val-
ues are 1.11, 1.17, 1.26, 1.37, and 1.54 respectively. Fig. 10b
illustrates this linear scaling behavior in the “query” and
“resp” steps of the position index find operation.

5.5 Comparisons with Existing Tools
We compared the performance of Kmerind hashed and
sorted count indices to existing best-in-class k-mer counting
tools on shared- and distributed-memory systems. Jelly-
Fish 2 [28] is the de facto standard k-mer counter. We also
compared to several more recent, state-of-the-art tools
including KMC 2 [33], its successor KMC 3 [35], and Gerbil
[34]. Kmernator [36] is chosen as it is the only existing,
stand-alone, distributed k-mer counter.

5.5.1 Shared-Memory Environment

The CompBio system was used for single-node, multi-
threaded testing. Strong scaling experiments were con-
ducted with the 6.3 GB R1 dataset using 4, 8, 16, 32, and 64
cores for canonical DNA 15-, 21-, 31-, and 63-mers without
filtering low frequency k-mers. For Kmerind, we treated
CompBio as a distributed-memory system. KMC 2, KMC 3,
and Gerbil were allocated 512 GB of main memory and set
to memory-only mode where possible to minimize disk
usage for intermediate results.

As disk subsystem configurations can vary drastically,
we minimized the impact of file I/O by leveraging the oper-
ating system cache (Section 5.2), and erasing output imme-
diately after each run due to an observed high overhead to
overwrite files on ext4 file systems. For all software pack-
ages, we report the total running time including file input
and output. For Kmerind and JellyFish 2, we also report the

Fig. 10. Strong and weak scaling of internal steps in the find operation
for hashed count and position indices. The “map”, and “query” steps cor-
respond to the map_to_processor and distribute functions in
Algorithms 3 and 5, while “resp” corresponds to all remaining algorithmic
steps after the distribute step.
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counting-only times which excludes result writing. We
expect Kmerind’s primary application usage pattern to
involve constructing and querying in-memory indices, thus
the scalability and absolute performance of the counting-
only times is of practical importance. Fig. 11 shows the scal-
ability of each software for each k value, while the embed-
ded table shows the running times for fixed p ¼ 64 and
varying k, and fixed k ¼ 31 and varying p.

Overall, Kmerind’s hashed and sorted count indices out-
performed the existing tools at high core counts, scaled
nearly linearly with p, and behaved well with increasing k.
Using 64 cores, Kmerind’s hashed count index completed
counting 31-mers in R1 in 6.9 seconds and 15-mers in 4.7
seconds, respectively 1:2� and 1:5� faster than the fastest
existing k-mer counter for these parameters (KMC 2) and
6:7� and 5:3� faster than JellyFish 2. Kmerind’s sorted
count index performed competitively against KMC 3, out-
performed Gerbil and JellyFish 2, and was bested only by
KMC 2. The relative performances at 32 cores was more var-
iable, with Kmerind outperforming Gerbil and JellyFish 2
by 43 and 238 percent respectively, equaling KMC 2, and
outperformed by KMC 3 by 8 percent for 31-mers.
Kmerind’s higher performance at high core count is attrib-
utable to our algorithmic design that avoids fine-grained
thread synchronizations. On the other hand, the overhead
associated with Kmerind’s communication and memory
operations increases (as jMj=p for strong scaling) with
decreasing p, contributing to its lower performance relative
to KMC 2, KMC 3, and Gerbil at low core counts.

The counting-only times of Kmerind’s hashed and sorted
count indices showed near linear scalability for up to 32
cores, beyond which the scalability decreased likely due to
MPI communication complexity. The file writing time, as
the difference between total and counting-only times, scaled
sublinearly with p and remained approximately constant at
2 seconds for 32 and 64 cores. These observations suggest
that Kmerind’s count index can continue to scale beyond 64
cores, but may be limited by file system performance when
result writing is required. In contrast, Gerbil failed to scale
beyond 16 cores for all k, while KMC 2, and KMC 3 had

very limited scalability for k � 31 and p � 16, indicating
that their performance bottlenecks may not be caused by
file system limitations. JellyFish 2’s counting-only times
similarly suggest this hypothesis.

The dependence of KMC 2 on k value was particularly
pronounced for k ¼ 63, where the counting time increased
dramatically for all core counts tested. Kmerind, on the other
hand, showed relatively constant running time for k values
of 21, 31, and 63, and a lower running time for k ¼ 15. This
behavior is attributable to a balance between the widening of
k-mer representation from 32 bit to 128 bit, and the reduction
in total k-mers in short-read datasets (Section 5.3) with
increasing k. For theR1 dataset, the numbers of valid k-mers
were 2052-, 1909-, 1670-, and 906-million for k values of 15,
21, 31, and 63, respectively. Gerbil’s reduction in running
time is likely due to a similar cause, whereas KMC 2 and
JellyFish 2’s performance degradations suggest inefficiencies
in k-mer parsing and comparison operations. We also note
that while KMC 3 demonstrated significant improvement
over KMC 2 for k ¼ 63, for low k KMC 2 actually performed
better for most p values.

We further evaluated the effects of varying k up to 255
using the R2 dataset on 64 cores, shown in Fig. 12. The val-
ues were chosen with consideration of C++ primitive type
sizes. As KMC 3 was reported to significantly improve
upon KMC 2’s performance for high k values [35], we
included KMC 3 only.

Fig. 12 further illustrates Kmerind’s low sensitivity to
increased in k. Kmerind counted 255-mers in a total of 94.4
second, 30.0 of which was for the counting-only time, and
was approximately 1:4� faster than KMC 3. At low k,
Kmerind’s running times increased in a step-wise manner
corresponding to the widening of k-mer data structure. For
large k, the running time remained relatively constant as the
data structure size growth was countered by reductions in
k-mer counts. JellyFish 2 was significantly slower than all
evaluated software, and failed to count 255-mers. Gerbil
performed similarly to KMC 3, but failed for k > 191.

Table 5 shows the performance of JellyFish 2, KMC 2,
KMC 3, Gerbil, and Kmerind’s hashed and sorted count
indices for datasets of different sizes. All experiments used
64 cores to count canonical DNA 31-mers. The experiments
with the metagenomic datasets demonstrated that all tools
except for JellyFish 2 scaled nearly linearly with data size.
KMC 2 was marginally faster than KMC 3 for all datasets
except for R3, while Gerbil’s performance lagged behind

Fig. 11. Strong scaling behavior for counting DNA k-mers in dataset R1.
Each plot shows the times in seconds to count a fixed size k-mer (15,
21, 31, 63) on increasing number of cores p (4, 8, 16, 32, 64) in a
shared-memory system. The table shows the total and counting-only
(underlined) times for either fixed p or fixed k. For readability, Kmerind’s
sorted count index results are shown only in the table.

Fig. 12. The time in seconds to count canonical DNA k-mers for increas-
ing k (15, 21, 23, 27, 31, 39, 47, 55, 63, 65, 95, 127, 159, 191, 223, 255).
JellyFish 2, KMC 3, Gerbil, and Kmerind’s hashed count index were eval-
uated using datasetR2 on 64 cores. Gerbil failed for k > 191. JellyFish 2
times for k larger than 31 exceeded 150 seconds and are excluded for
readability.

1128 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 16, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 17,2020 at 08:05:04 UTC from IEEE Xplore.  Restrictions apply. 



KMC 2 and KMC 3. Gerbil’s performance for dataset G1
was unexpectedly but repeatably poor. Kmerind’s sorted
index performed comparably to KMC 3 for the metage-
nomic datasets and the assembled genomes, while the
hashed count index outperformed all existing tools for all
tested datasets. Kmerind’s hashed index counted the M3
dataset in approximately 63.0 seconds, the R4 dataset in
270.5 seconds, the assembled human genome (G1) in 21.0
seconds, and the pine genome (G2) in 70.6 seconds. The
hashed count index was therefore between 1:3� and 1:6�
faster than KMC 2 and KMC 3.

Of the five existing tools tested, only JellyFish 2 includes
a command line interface to query the index. KMC 2 and
KMC 3 provide an option to find intersection between two
indices, but they output the minimum counts for the entries
in the intersection. We queried JellyFish 2 and Kmerind
hashed count indices using 1 percent of indexed k-mers on
a single core, as JellyFish 2 supports single-threaded queries
only. JellyFish 2 completed the query in 0.82 seconds while
Kmerind was able to do so in 0.11 seconds. The results are
not directly comparable as JellyFish 2 requires loading the
database file from disk, but they are illustrative of the bene-
fit of Kmerind’s in-memory index for on-line queries. This
point is further illustrated by Table 5, where the counting-
only times of Kmerind’s hashed count index is over 3�
faster than KMC 2 and KMC 3 for the metagenomic and
assembled genome datasets, and approximately 2� for the
read setsR2,R3, andR4.

5.5.2 Distributed-Memory Environment

While Kmerind performs well in shared memory environ-
ments with high core counts, its performance advantages
are further extended in a distributed memory environment.
We benchmarked index construction for Kmerind’s hashed
and sorted indices and Kmernator using datasets M1–M5
and 64 to 1,024 cores on CyEnce.

Fig. 13 shows both of Kmerind’s indices were consis-
tently faster than Kmernator by at least a factor of 6� for
strong scaling and 8� for weak scaling. Kmerind’s hashed
count index completed 31-mer counting for the M1 dataset
in 1.0 seconds using 1,024 cores, and Kmerind’s hashed
index showed approximately linear strong scaling for up to
512 cores, beyond which the parallel efficiency decreased
slightly. For weak scaling, Kmerind’s hashed index showed
a gradual increase of running time as core count increased.
In both cases, the behavior is attributable to the log ðpÞ factor
in the collective all-to-all communication complexity.

Kmerind’s sorted index was also consistently faster than
Kmernator, but its scaling behavior was slightly worse
when compared to the hashed index, as expected. Kmerna-
tor showed a reproducible non-linear scaling behavior for
256 and 512 cores due to unknown cause.

6 CONCLUSIONS

K-mer counting and indexing are central to many bioinfor-
matics applications including de novo assembly, genome
mapping, and error correction. The widespread availability
of next generation sequencers and their high throughput
and low cost have fundamentally changed the way genomic
data are used in biology and medicine. As a consequence, it
has become increasingly critical to develop k-mer counting
and indexing tools and particularly libraries that can effi-
ciently and scalably operate on very large sequence data.

We present Kmerind, a generic distributed-memory
k-mer counting and indexing library that is high perfor-
mance, flexible, and extensible. To our knowledge, it is the
first k-mer indexing library for distributed-memory envi-
ronments, and the first generic k-mer counting and indexing
library. By using distributed memory, entire index can
reside in memory for fast access, and additional memory
and computational resources can be recruited for larger
data sets. Kmerind has also been optimized with efficient
SIMD implementation and data structures. We showed that
Kmerind indices are capable of index construction and
query with linear scaling on distributed systems. On shared
memory systems, Kmerind outperforms current best-in-
class k-mer counting tools at high core counts and is com-
petitive at moderate core counts.

While the library was implemented using distributed
memory parallel algorithms, Kmerind’s API has been
designed with sequential semantics to facilitate a wider
range of application development. The API is C++ tem-
plated to allow a user to create custom indices for different
applications through composition of predefined logic and
user-specified data types. The generic API also allows a
developer to extend Kmerind’s functionality with novel
algorithms and application-specific functional modules and
data types in order to improve communication efficiency,

TABLE 5
Time in Seconds to Count Canonical DNA

31-Mers Using 64 CPU Cores

Metagenomic Eukaryotic Assembled

M1 M2 M3 R2 R3 R4 G1 G2

JellyFish 2 133.4 207.5 321.8 127.8 347.3 1465.9 132.6 329.5
KMC 2 22.8 41.9 82.6 29.2 122.1 432.9 30.0 100.3
KMC 3 24.2 45.2 86.5 31.8 99.4 456.0 31.0 102.2
Gerbil 26.3 50.7 97.1 34.8 184.3 696.6 1235.8 153.1
Kmerind SORT 22.3 44.2 86.7 36.3 130.7 515.6 27.7 99.3

11.0 22.4 45.2 25.6 115.0 477.4 13.9 55.9
Kmerind HASH 16.8 32.4 63.0 24.0 77.9 270.5 21.0 70.6

6.6 13.2 26.0 14.5 63.1 236.1 9.3 31.4

Underlined values represent the “counting-only” times.

Fig. 13. Running times in seconds of Kmerind’s hashed and sorted indi-
ces and Kmernator for counting canonical DNA 31-mer in strong and
weak scaling distributed memory settings. Dataset M1 was used for
strong scaling while setsM1–M5 were used for weak scaling.
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minimize local computation and memory utilization, or to
integrate novel indexing strategies. For example, a Bloom
filter can be used in a pre-processing step to minimize num-
ber of k-mers indexed, provided that singleton k-mer exclu-
sion is compatible with the application requirements.
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