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Abstract

Motivation: Whole-genome alignment is an important problem in genomics for comparing differ-
ent species, mapping draft assemblies to reference genomes and identifying repeats. However, for
large plant and animal genomes, this task remains compute and memory intensive. In addition,
current practical methods lack any guarantee on the characteristics of output alignments, thus
making them hard to tune for different application requirements.

Results: We introduce an approximate algorithm for computing local alignment boundaries be-
tween long DNA sequences. Given a minimum alignment length and an identity threshold, our
algorithm computes the desired alignment boundaries and identity estimates using kmer-based
statistics, and maintains sufficient probabilistic guarantees on the output sensitivity. Further, to pri-
oritize higher scoring alignment intervals, we develop a plane-sweep based filtering technique
which is theoretically optimal and practically efficient. Implementation of these ideas resulted in a
fast and accurate assembly-to-genome and genome-to-genome mapper. As a result, we were able
to map an error-corrected whole-genome NA12878 human assembly to the hg38 human reference
genome in about 1 min total execution time and <4 GB memory using eight CPU threads, achieving
significant improvement in memory-usage over competing methods. Recall accuracy of computed
alignment boundaries was consistently found to be > 97% on multiple datasets. Finally, we per-
formed a sensitive self-alignment of the human genome to compute all duplications of length >1
Kbp and >90% identity. The reported output achieves good recall and covers twice the number of
bases than the current UCSC browser’s segmental duplication annotation.

Availability and implementation: https:/github.com/marbl/MashMap

Contact: adam.phillippy@nih.gov or aluru@cc.gatech.edu

1 Introduction

Algorithms for inferring homology between DNA sequences have
undergone continuous advances for >3 decades, mainly in the direction
of achieving better accuracy to compare distant genomes, as well as bet-
ter compute efficiency to scale with growing data. Up until the last dec-
ade, reconstruction of a complete reference genome through sequencing
and assembly was deemed a major landmark in genomics (Lander
et al., 2001; Venter et al., 2001). However, it did not take long for high-
throughput sequencing technologies to fuel population-wide genomics
projects through low-cost genome assemblies (e.g. the Genome 10K
project, Haussler et al., 2009). Analysis of these new genome assem-
blies, for both population-scale biological studies and timely diagnosis
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in clinical settings, requires faster and memory-efficient algorithms for
facilitating whole-genome comparisons.

It is well-known that computing local alignments using an exact
dynamic programming algorithm at the whole-genome scale is com-
putationally prohibitive. This bottleneck motivated the development
of seed-and-extend based genome aligners. Within the seed-and-
extend paradigm, the two common approaches adopted to compute
exact matches are either implemented using a hash table for k-mers
(e.g. Altschul er al., 1997; Ma et al., 2002; Schwartz et al., 2003;
Yorukoglu et al., 2016) or suffix trees and its variants (Brudno ez al.,
2003; Bray et al., 2003; Delcher ez al., 1999; Marqais et al., 2018;
Vyverman et al., 2013). A third category includes cross-correlation
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based algorithms (e.g. Satsuma by Grabherr ez al., 2010). However,
these approaches still remain computationally intensive. For instance,
Nucmer (Kurtz et al., 2004) and LAST (Kietbasa et al., 2011),
two widely used genome-to-genome aligners, require 10 or more
CPU hours to align a human genome assembly to a human reference
genome.

The primary motivation behind this work is to develop a new
genome-to-genome mapping algorithm that is fast and memory-
efficient while maintaining accuracy on par with sensitive aligners.
We seck a new problem formulation that also provides a convenient
handle for users to specify how diverged the input genomes are,
based on their knowledge of which organisms are being compared,
expected quality of genome assembly, and sensitivity requirements
of any further downstream biological analysis.

The inspiration behind our algorithmic strategy stems from re-
cent developments in techniques for long-read analyses. MinHash-
based estimation of Jaccard similarity of k-mer sets between DNA
sequences has been adopted for state-of-the-art long read genome
assembly (Koren et al., 2017) and long read mapping (Jain et al.,
2017). Through our previous work Mashmap (Jain ez al., 2017), we
demonstrated that a MinHash-based approximate mapping algo-
rithm can compute long-read mapping boundaries with accuracy on
par with alignment-based methods, while exhibiting two orders of
magnitude speedup. Mashmap operates by assuming an error-
distribution model, links alignment identity to Jaccard similarity,
and provides probabilistic guarantees on output sensitivity.
However, this algorithm is limited to end-to-end mapping of input
sequences, which makes it impractical for contig mapping or split-
read mapping. Here, we introduce new algorithmic strategies to
compute local alignment boundaries for both whole-genome and
split-read mapping applications.

Given minimum identity and length requirements for local align-
ments, we formulate the characteristics of homologies we intend to
compute. Our new algorithm internally makes use of our previous
end-to-end approximate read mapping framework (Jain ez al., 2017)
by applying it to non-overlapping substrings of the query sequence.
We mathematically show that all valid local alignment boundaries,
which satisfy the user-specified alignment identity and length thresh-
olds, are reported with high probability. Further, we formulate a
heuristic to prioritize mappings with higher scores. We leverage the
classic plane-sweep technique from computational geometry to de-
velop an O(nlog 7) algorithm to solve the filtering problem, with 7
being the count of total mappings.

We demonstrate the practical utility of our algorithm Mashmap2
by evaluating accuracy and computational performance using real
data instances, which include mapping mammalian genome assem-
blies and ultra-long nanopore reads to the reference genomes, and
sensitive self-alignment analysis of the human genome. We compared
the performance of Mashmap2 against a recent fast alignment-free
method Minimap2 (Li, 2018) and the widely used alignment-based
method Nucmer (Kurtz et al., 2004; Marcais et al., 2018).
Mashmap2 operates in about a minute and 4 GB memory, including
both indexing and mapping stages, to map human genome assembly
to a reference when given minimum alignment identity and length
requirements of 95% and 10 Kbp, respectively. This makes it one of
the most resource-efficient software for genome-to-genome mapping,
especially with respect to the memory-usage. This performance is
achieved while maintaining output sensitivity percentage in the high
90s. We also demonstrate its direct applicability in computing all >1
Kbp long duplications in the human genome with high accuracy. We
expect that the performance and sensitivity guarantees provided by
our algorithm will allow fast evaluation of draft assemblies versus a

reference genome, scalable construction of whole-genome homology
maps, and rapid split-read mapping of long reads to large reference
databases.

2 The Mashmap2 algorithm

We designed Mashmap2 to enable fast computation of homology
maps between two sequences or a sequence and itself. It consists of
two algorithmic components. The first computes approximate boun-
daries and alignment scores for all pairs of substrings that exceed a
user specified length and identity threshold. The second applies a
novel filtering algorithm to optionally weed out redundant, paralo-
gous mappings.

2.1 Computing local alignment boundaries

Consider all local mappings of the form Q[i..j] between sequences Q
(query) and R (reference) of length /, or more, such that QOli..j]
aligns with a substring of R with per-base error-rate < ¢, and
|j —i+ 1] >1l. Alignment algorithms have quadratic time complex-
ity, therefore an exact evaluation of the local mappings between all
possible substring combinations will require at least Q(|Q||R|) time.
As such, solving this problem exactly is computationally prohibitive
for typical sizes of real datasets. Instead of explicitly computing all
such structures, we seek at least one inexact seed mapping of length
lo/2 along the path of each optimal alignment. Doing so, while
maintaining high sensitivity and sufficient specificity will allow com-
putation of the local alignments efficiently using an appropriate
alignment algorithm.

In our approach, we leverage our previous alignment-free end-
to-end read mapping algorithm, designed for mapping noisy long
reads (Jain et al., 2017). This allows us to benefit from its attractive
properties including probabilistic guarantees on quality, and algo-
rithmic and space efficiency. We continue to assume the same error
model that was used in this work, also restated here. We assume
that alignment errors, i.e, substitutions and indels in a valid align-
ment, occur independently and follow a Poisson distribution. We
also simplify by assuming that k-mers are independent entities in
sequences. For a given per-base error rate threshold €4y, the read-
mapping algorithm reports all target mapping coordinates and iden-
tity estimates of a read in the reference, where it aligns end-to-end
with <e¢,, per-base error rate, with high probability. This is
achieved by linking Jaccard coefficient between the k-mer spectra of
the read and its mapping region to the alignment-error rate, under
the assumed error distribution model.

2.1.1 Proposed algorithm

We first split the query sequence Q into /y/2 sized non-overlapping
fragments. If a substring of O, say Q.,, of length > aligns against
a substring of R with € <, per-base error rate, then following
statements hold true:

® There is at least one /y/2 sized query fragment that maps end-to-
end along the optimal alignment path. This is because at least
[(|1Qsup| —1o/2 4+ 1)/(lp/2)] > 1 fragments completely span O,
(see Fig. 1).

* Under the assumed error distribution, the expected count of
errors in a sub-interval is proportional to its length. Therefore,

the above lp/2 sized fragment should map along the optimal
alignment path with € - [y /2 expected errors.

Accordingly, the read mapping routine in Mashmap can be used
to map each fragment with ¢, error-rate threshold. Let p be the
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Fig. 1. A local alignment depicting the inclusion of a length /2 fragment of
the query sequence

probability that a fragment is mapped to the desired target position
on the reference, computed as described by Jain ez al. (2017).
Probability of reporting at least one seed mapping along the optimal
alignment is given by 1 — (1 — p)L(‘Q‘””‘_I”/Z'H)/(l“/m. We show that
these probability scores are sufficiently high, between 0.92 and 1.00
for alignment error rate thresholds €, of 10% and 20%, respect-
ively (Fig. 2).

The above seed matches and their alignment identity estimates
are further processed to compute approximate local boundaries
and their scores. After computing all seed matches, matches
which involve consecutive query sequence fragments are merged to-
gether if they are mapped closely in the same order on the reference
sequence. Suppose mappings from the consecutive query fragments
qi,qi+1,---,q; are mapped to reference positions with begin
positions po,p1,...,pj-i, respectively, then they are grouped to-
gether as a local alignment segment if po<p;<...<pj;, and
pri1 —pk<lp, [0<k < j—i]. The alignment boundaries are esti-
mated as the first and last mapping offsets of the group. The corre-
sponding alignment scores are estimated as their average identity
estimate multiplied by the sum of the fragment lengths. We use these
alignment boundaries and the scores as input to a subsequent filter-
ing algorithm.

2.2 A geometric algorithm for filtering alignments

Large mammalian genomes and plant genomes have abundant re-
petitive sequences. As a consequence, a large fraction of inferior
mappings are reported due to paralogous genomic segments or
false positive mappings resulting from simple sequence repeats.
Furthermore, from a biological perspective, closely examining all al-
ternative mappings may not be feasible. Therefore, different strat-
egies are adopted to identify biologically relevant outputs. We
formulate a filtering heuristic for our mapping application, and de-
velop an O(nlog n) algorithm to solve it. We also prove that
Q(nlog 1) runtime is necessary to solve this problem. The effective-
ness of this algorithm on real genomic data is demonstrated later, in
the Results section.

2.2.1 Problem formulation
Suppose all output mappings of a query sequence are laid out as
weighted segment intervals, with the alignment scores used as
weights (Fig. 3). We propose the following filtering heuristic: a seg-
ment is termed redundant if and only if it is subsumed by higher
scoring segments at all of its positions. Therefore, the objective is to
identify all good (non-redundant) segments. In practice, there can be
multiple alignments with equal scores. Therefore, segment scores are
allowed to be non-unique.

A sub-optimal O(#?) algorithm for solving the above problem
can be readily developed by doing an all to all comparison among

Mapping sensitivity with €may = 10% Mapping sensitivity with emax = 20%

1.00 - 1.00 -

Error rate &
2 Error rate ¢ 20.98- — 16%
5098~ " =
5 — 8% 5 — 17%
8 — 9% ] 0.96 - — 18%
& 006 - — 10% £ — 19%

- 20%

i i i i i 0.92- i i i i
1 2 3 4 5 1 2 3 4 5
Count of fragments Count of fragments

Fig. 2. Probability of mapping at least one seed fragment for two different
error-rate thresholds €mn.x = 10%,20%. As true error rate ¢ decreases, the
probability values accordingly improve as expected. Similarly, longer align-
ments spanning more fragments are more likely to be reported. Most import-
antly, all the sensitivity scores are consistently above 90%. To compute the
probability values, sketch size for Minhash based Jaccard estimation was
assumed as 200, and the k-mer size was set to 16. These parameter values
are internally computed by Mashmap (Jain et al., 2017)

the segments. However, it would lead to practically slow implemen-
tation for typical input sizes. The formulated filtering problem bears
resemblance to the line segment intersection test problem for which
Shamos and Hoey (1976) gave a classic O(nlog n) algorithm using
plane-sweep technique. Accordingly, we summarize their algorithm
next, and subsequently describe the modifications made to solve the
filtering problem.

2.2.2 The Shamos-Hoey algorithm

Similar to the filtering problem, the problem of detecting
whether # segments have an intersecting pair has a trivial O(n?)
solution. Shamos and Hoey solved this problem using a plane-
sweep based O(nlog ) time algorithm. The algorithm defines an
ordering between segments in the 2D plane. The main loop of the
algorithm conceptually sweeps a vertical line from left to right,
and while doing so, the sweep-line status data-structure . dy-
namically holds segments which intersect the sweep-line.
The sweep-line halts at 27 endpoints of the input segments, and
the order of segments in % is evaluated to detect any intersec-
tion. For efficiency, this algorithm chooses a balanced tree to
implement the sweep-line status %. As such, it spends O(log )
time at each halting point, and therefore, the total runtime is
bounded by O(nlog n). This algorithm is popular not only for
its theoretical and practical efficiency, but also for ease of
implementation.

In our problem as well, evaluating segments which intersect the
vertical sweep-line at 27 endpoints is sufficient to identify all good
segments. However, evaluating all intersecting segments at each end-
point is inefficient, and again leads to a quadratic algorithm.
Therefore, we devise a new ordering scheme among segments which
will enable us to evaluate only a subset of intersecting segments at
each endpoint.

2.2.3 Proposed algorithm for alignment filtering

We define an order between segments as follows: Between two seg-
ments, the segment with higher score is considered as greater, but if
the scores are equal, then the segment with the latter starting pos-
ition is considered as greater. This particular ordering helps avoid
redundant computations, and will be crucial for bounding the run-
time later.

Similar to the Shamos-Hoey algorithm, we also use a height-
balanced Binary Search Tree (BST) as the data-structure for the
sweep-line status ., which tracks the segments that intersect the
vertical sweep line. Z is required to support the following opera-
tions in our algorithm:
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Fig. 3. Left figure is a toy example to illustrate line segments corresponding to multiple local alignments obtained between a query and reference sequence. Each
alignment segment is labeled with an alignment score. Suppose we want to filter best mappings for the query sequence. These segments are laid out as
weighted intervals over the query sequence (right figure). In the above case, two intervals marked with a cross are completely subsumed by higher scoring inter-

vals, and therefore, will be labeled as redundant by our filtering heuristic

1. insert(s). Insert segment s into .%.
delete(s). Delete segment s from Z.

3. mark_good(). Mark all segments with highest score as good
in %.

Note that the insert and delete operations are naturally sup-
ported in O(log 7) time in BSTs, whereas the mark_good function
can be realized as a sequence of maximum and predecessor opera-
tions. If there are k segments with equal and highest scores in %, the
function mark_good uses O(klog n) time. With the data-structures
and the operations defined above, we give an outline of the complete
filtering procedure in Algorithm 1. The main loop of the algorithm
iterates over the 21 segment endpoints, which is analogous to the
sweep line moving from left to right, halting at the 2# points. In
each iteration, we update the sweep-line status . so that it holds the
segments which intersect the sweep line, and mark the highest-
scoring segments as good using the mark_good function.

Lemma 1. Algorithm 1 solves the filtering problem correctly.

Proof. Consider a function S : N — {0,1}" from positions in the query
sequence to subsets of segments {1,2,...,n}. A segment s; € {S(pos)} if
and only if it is among the highest scoring segments which overlap with
the query sequence at position pos. Clearly, a union of all subsets in the
domain of function S equals the set of good segments. If we perform a
linear scan on the domain, from begin to end position of the query se-
quence, then value of S can change only at the 21 endpoints of the seg-
ments. Therefore, the highest scoring segments overlapping at the 27
endpoints constitute the set of good segments, which is precisely what
Algorithm 1 computes. O

We make an additional modification to the above algorithm for
efficiency, specifically in the mark_good function. In this function,
we mark the highest scoring segments in the tree ¥ as good. We
execute this by traversing the segments in decreasing order in %,
starting from the maximum. However, we terminate the traversal if
a segment is observed as marked good already. This helps to avoid
redundant computations, and the algorithm still remains correct due
to the following property:

Lemma 2. Consider all the segments with equal and highest scores in %:
$1,82,--+,Sj, ..., Sk, ordered in non-increasing manner. Suppose segment
s; has been marked good in one of the previous iterations of the algo-
rithm, then the segments sj. 1,512, ...s, must have already been marked
good as well.

Proof. The aforementioned property is satisfied by default during the
first iteration of the algorithm because there cannot be any previously

Algorithm 1. Plane-sweep based alignment filtering algorithm

Input: segments {1...n}
Sort the 2n segment endpoints and place them in the array &
Initialize the sweep-line status structure %
Initially mark all the segments as redundant
for ¢ <— 110 2n do
p=¢i]
set_beg = set of segments of which p is a left endpoint
for s € set_beg do
| Z.insert(s)
end
set_end = set of segments of which p is a right endpoint

for s € set_end do
| Z.delete(s)

end

L .mark_good()

i =i+ |set_beg| + |set_end)|
end

marked segments. Suppose this property remains true till iteration 7, and
we are currently executing iteration i+ 1. Segments s1,s2,...s5; € &, so
we know that the sweep line intersects these segments. Also, the ordering
of the segments is maintained based on their scores and begin
positions, and since the scores of these segments are equal, therefore
begin,0s(s1) > begin,os(sy) > ... > begin,os(s,). Now consider the it-
eration when segment s; was marked good. Then, the sweep line must
have intersected the segments s;,1,sj;2,...5, as well. Therefore, if the
segment s; was marked, then the segments s 1,s;:2,...5, must have
been marked within or before the same iteration. O

The total cost of sorting, insert and delete operations in Algorithm 1
is clearly O(nlogn). Because the revised mark_good function
marks at most 7 segments throughout the algorithm, its runtime is
also bounded by O(nlog n). Thus, we conclude that the runtime
complexity of our alignment filtering algorithm is bounded by
O(nlog n).

Theorem 1. Given n alignment segments, Algorithm 1 solves the align-
ment filtering problem in O(nlog #) time.

Theorem 2. The above proposed filtering algorithm is optimal given the
objective function.

Proof. The INTEGER ELEMENT UNIQUENESS problem (given 7 inte-
gers, decide whether they are all unique) is known to have a lower bound
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Table 1. List of datasets used for evaluation

Id Query sequences (> 10 Kbp) Reference genome
Source # Sequences NS50 (bp)

D1 E. coli O157 genome 2 5.5M E. coli K12 MG1655

D2 Human genome assembly (ONT+Illumina) 2269 7.7M Human (hg38)

D3 Human genome assembly (ONT) 2263 7.4M Human (hg38)

D4 Human (hg38) genome 365 145 M Gorilla (gorGor$5)

D5 Chimp (panTro5) genome 3086 137M Gorilla (gorGorS5)

D6 Ultra-long human ONT reads 7656 129K Human (hg38)

Note: Datasets D1-D35 are included to evaluate Mashmap2 for genome-to-genome mapping application, and D6 for long read mapping application. We dis-

carded a small fraction of contigs and reads with length <10 Kbp.

of Q(nlog n) assuming the algebraic decision-tree model (Lubiw and
Racz, 1991). A simple transformation can be designed to show that

INTEGER ELEMENT UNIQUENESS «, ALIGNMENT FILTERING

Let {x1,x2,...,x,} be a set of n integer elements. For each element x;,
construct a segment with begin position, end position and score as x;, x;
and 7, respectively. Because each segment is assigned a unique score, all
the 7 elements are unique if and only if the filtering algorithm reports all
the segments as good.

2.3 Related work for filtering alignments

There can be many alternative formulations of the filtering criteria.
For instance, BLAST (Altschul er al., 1997) filters out alignments if
they are fully contained in > K alignments of higher scores (Berman
et al., 1999). Berman et al. also discussed a weaker alternative filter-
ing condition where a match is filtered out if each position in a seg-
ment is covered by >K segments of higher score. Note that our
filtering formulation is its special case with K= 1. They discussed a
different O(nlog #) time algorithm to solve the problem based on
interval-tree of all input segments. Although a direct performance
comparison is not possible due to unavailability of their implemen-
tation, the tree size in our plane-sweep based algorithm is limited by
the number of overlapping segments which intersect the vertical
sweep-line, which can be (and typically is) orders of magnitude
smaller than the total count for large datasets. As such, even with
the same theoretical complexity, we expect our algorithm to per-
form faster with less memory usage in practice.

2.4 Execution for mapping applications

The above filtering criteria is useful to identify the promising align-
ments between query and reference genomes. For the genome-to-
genome mapping application, we execute the filtering algorithm
twice, once to filter best alignments for query sequence, followed by
filtering best alignments for reference sequence. Mappings which
pass both filters constitute the orthologous matches, required for
building a one-to-one homology map. For read mapping however,
filtering on just the query sequence is appropriate. Accordingly,
Mashmap2 provides two filtering modes: one - to-one and map for
the two applications, respectively.

3 Results

We assess the performance of Mashmap2 for genome-to-
genome and split-read mapping in comparison to recent versions of
state-of-the-art software Minimap2 (Li, 2018) and Nucmer
(Margais et al., 2018). Results indicate that Mashmap2 provides

output of comparable quality, and yields significant gains in
memory-usage. Subsequently, we demonstrate the utility of
Mashmap2 in accurately computing all 1 Kbp long duplications in
the human genome.

3.1 Genome-to-genome mapping

3.1.1 Datasets

To evaluate and compare Mashmap2 for mapping genomes, we
used six datasets D1-D6 listed in Table 1. Dataset D1 includes com-
parison between microbial genomes E. coli O157: H7 and E. coli
K12. The two instances D2 and D3 require mapping of NA12878
human reference genome assemblies to the hg38 human reference
genome. Query genome assemblies in both instances D2 and D3 are
the recently published assemblies computed using Canu (Koren
et al., 2017), using ultra-long Oxford Nanopore Technology (ONT)
reads (Jain et al., 2018). Dataset D3 includes a long-read only Canu
assembly whereas assembly in dataset D2 is also error-corrected
using Illumina reads. The next two datasets D4, D5 involve inter-
species genome comparisons- human vs. gorilla and chimp vs. gor-
illa, respectively. Finally, to evaluate Mashmap2 for the split-read
mapping task, D6 includes raw ultra-long human ONT reads, gener-
ated using a single flowcell (Jain ez al., 2018). We restrict our bench-
marking to real data instances because simulations typically fail to
capture the full complexity of mutational processes.

3.1.2 Defining baseline and methodology

We used MUMmer package (v4.0.0.beta2), which includes the
Nucmer4 alignment program for comparing DNA sequences
(Margais et al., 2018). Nucmer4 is sensitive enough to report align-
ments for both assembly and read mapping tasks, therefore we con-
sidered its output as truth while evaluating accuracy. In addition,
UCSC genome browser (Kent et al., 2002) hosts high-quality pair-
wise syntenic alignment sets between popular mammalian genomes.
Therefore, for evaluating the inter-species genome comparisons (D4,
DS3), we could use these as our truth sets. These alignments were ori-
ginally computed using BLASTZ (Schwartz et al., 2003) with careful
parameter tuning and are more reliable for this purpose. We also
used Minimap2 (v2.7-r659) (Li, 2018) as a baseline for various per-
formance metrics. Minimap2 executes chaining algorithm on fixed-
length exact matches to compute alignment boundaries. To our
knowledge, it is among the fastest tools available to map DNA
sequences in an alignment-free fashion.

Each software, including ours, exposes many parameters (e.g.
k-mer or seed length). Default k-mer size in Mashmap2 is 16.
We mostly conform to default parameters with all software tested,
except as noted below. Mashmap2 mainly requires a minimum
length and identity for the desired local alignments. In this test, we
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Table 2. Total execution time and memory usage comparison of 6000 - 1000 -
Mashmap2 against Minimap2 and alignment-based tool Nucmer4 750
. @ 4000- @

Id  Mashmap2 Minimap2 Nucmer4 2 2 500-

Time Memory Time Memory Time Memory F 2000- = 250 -
D1 0.5s 16 M 0.4s 85M 52s 138 M 0-, - - 0- . :
D2 1m26s 3.5G 3m3s 173G Shlm 53G 1K 4K 16K 88 92 9

D3 6m33s 3.6G 3mlls 159G 2h10m  53G
D4 27m33s 9.0G 1Smés 26.7G 33h4m 57G
DS 25m40s 7.7G SmS4s 257G 24h58m 356G
D6 13més 10.0G 3m10s 104G 25m2s 53G

Note: All software were run in parallel using eight CPU threads.

targeted long alignments, and accordingly fixed the minimum align-
ment length requirement as 10 Kbp. We set the minimum alignment
identity requirement for all the datasets based on their input charac-
teristics as {D1-D2: 95%, D3-DS5: 90%, D6: 80%). Accordingly,
we tested Mashmap?2 for reporting the alignment boundaries as per
the provided requirements. Filtering modes were set to one-to-one
and map for datasets D1-D5 and D6, respectively. Nucmer4 was
run with default parameters, followed by running delta-filter, both
components of the MUMmer package. Following its user documen-
tation, delta-filter was executed with —1 parameter to construct
one-to-one alignment map in datasets D1-D5 and —q parameter for
read mapping in D6. Finally, Minimap2 supports genome-to-
genome mapping mode using -x asm5 flag, and nanopore read
mapping mode using -x map-ont. We executed all three software
in multi-threaded mode using eight CPU threads. All comparisons
were done on an Intel Xeon E5-2680 platform with 28 physical
cores and 256 GB RAM.

3.1.3 Runtime and memory usage

The wall-clock runtime and memory-usage of Mashmap2,
Minimap2 and Nucmer4 using datasets D1-D6 are shown in
Table 2. The runtimes represent end-to-end time, from reading in-
put sequences to generating the final output. Minimap2 can report
base-to-base alignments but does not do so by default. Thus,
the final output of Mashmap2 and Minimap2 are alignment
boundaries and scores, whereas Nucmer4 outputs base-to-base
alignments. Both alignment-free methods Mashmap2 and
Minimap2 are able to map most of the query bases to unique posi-
tions in all datasets (shown later), therefore base-to-base align-
ments can be computed quickly for the final output using chaining
heuristics and vectorization techniques (Suzuki and Kasahara,
2018; Li, 2018).

From Table 2, we observe that Mashmap2 uses significantly less
memory when compared to Minimap2, while Minimap2 generally
achieves better runtime. Mashmap2 improves memory-usage by
5.3x, 4.9x, 4.4x, 3.0x, 3.3x and 1.04x for the six datasets, respect-
ively. The performance gap against Nucmer4 is much wider with
speedups of 10.4x, 210x, 19.8x, 72.0x, 58.4x and 1.9x, and
memory-usage improvements by 8.6x, 15.1x, 14.7x, 6.3x, 7.3x
and 5.3x on the datasets D1-D6, respectively. Low memory
requirements in Mashmap2 can allow for larger comparisons (e.g. a
genome against a big, in-memory reference database).

Mashmap2 and Minimap2 follow the same initial step of sam-
pling k-mers using minimizers (Roberts et al., 2004; Schleimer et al.,
2003), followed by computing their exact matches in the reference
genome. Mashmap?2 is designed to identify all matches that meet the
criteria, while Minimap2 is designed to find the best. This partly

Length threshold Identity threshold

Fig. 4. Wall time of Mashmap2 decreases with increasing length or identity
thresholds using dataset D3 and eight CPU threads. In this experiment, iden-
tity and length thresholds were fixed to 90% and 10 Kbp while varying the
other parameter. Memory-usage also follows a similar trend (data not
shown)

explains the differences observed in their running times. The option-
al filter in Mashmap2, if disabled, enables it to return all hits, e.g.
for the use-case of finding all repeats (presented later in Section 3.2).
Mashmap2 includes an efficient MinHash-based mechanism to esti-
mate Jaccard similarity and auto-tunes its internal parameters (e.g.
k-mer sampling rate, Jaccard similarity threshold), conforming to
the local alignment identity and length requirements provided by the
user. Auto-tuning can help achieve faster runtime and reduce
memory-usage with increasing identity and length thresholds (Fig.
4). It is important to maintain high accuracy while being fast, there-
fore we next evaluate the quality of output.

3.1.4 Accuracy

Accuracy evaluation of Mashmap2 and Minimap2 in comparison to
the assumed truth sets is shown in Table 3. As stated before in
Section 3.1.2, recall was measured against the assumed true
alignments, i.e. Nucmer4 alignments for intra-species comparisons
(D1-D3, D6) and UCSC browser pairwise alignments for inter-
species comparisons (D4, D5) which satisfy the alignment
requirements in terms of minimum length and identity provided to
Mashmap2. We also expected Minimap2 to report these alignments
because it is designed to compute matches in these identity ranges.

A reported local alignment boundary estimate by Mashmap2
or Minimap2 was assumed to recall a true alignment if it over-
lapped with the alignment on both query and reference sequences,
and if the mapping strand matched. From Table 3, we observe
that both Mashmap2 and Minimap2 consistently achieved high
recall scores >97%, with Minimap2 performing slightly better.
Obtaining high recall scores by itself is not sufficient, because it
can be achieved by mapping a query sequence to all possible posi-
tions. In parallel to achieving high recall scores, both Mashmap2
and Minimap2 mapped a large fraction of query genome assem-
blies to unique mapping positions in the reference genomes. To
show this, we computed the fraction of base-pairs of the query se-
quence that are mapped to a single position on the reference gen-
ome (Table 3).

Next, we evaluated the precision, i.e. what fraction of
Mashmap2 mappings yield one or more alignments above the speci-
fied length and identity thresholds. We used LAST (Kielbasa et al.,
2011) to compute the alignments. The precision score of Mashmap2
averages to 57.5% across all the datasets, varying from 34.8% (in
D6) to 75.9% (in D4). The corresponding scores for Minimap2
using the same threshold values are much lower (average=15%),
but Minimap2 follows different design principles and lacks similar
guarantees on the characteristics of its output. In the current context
of tasks that require such guarantees, Mashmap2 provides better
precision on all datasets.
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Table 3. Accuracy evaluation of Mashmap2 and Minimap2 to do an alignment-free computation of mapping boundaries

1d Recall scores

Mashmap2 (%) Minimap2 (%) #True alignments Mashmap2 (%) Minimap2 (%)

Fraction of query bases mapped uniquely Precision®

Mashmap2 (%)

D1
D2
D3
D4
DS
D6

100
97.5
97.1
97.0
97.5
99.3

100%
98.3
98.1
97.7
98.0
99.5

144
35186
37807
63908
65289

4349

74.0 78.9 72.0
96.8 96.3 50.0
96.9 96.0 55.2
87.5 91.3 75.9
89.8 93.2 57.3
89.9 84.6 34.8

Note: Recall was measured against the truth sets assumed (Section 3.1.2).
“Fraction of mappings which satisfied alignment thresholds in Mashmap2.

Table 4. Effectiveness of the filtering algorithm in Mashmap2

Id Count of output mappings Recall scores
Without filter With filter Ratio (without/with) Without filter (%) With filter (%)

D1 145 82 1.77 100.0 100.0
D2 6,541,930 3985 1642 99.9 97.5
D3 53,331,538 3137 17001 99.7 97.1
D4 152,536,106 4756 32072 100.0 97.0
DS 152,266,777 13 834 11007 100.0 97.5
D6 18, 604, 261 12930 1439 99.9 99.3

Note: A large fraction of mappings were filtered out by the algorithm, while the recall scores remained largely unaffected. Last column in this table is copied

from Table 3 for convenience.

3.1.5 Efficacy of the filtering algorithm

Eukaryotic genomes contain many repetitive sequences, therefore,
the motivation behind our plane-sweep based filtering heuristic is to
discard noisy mappings, and compute promising matches between
the query and reference genomes. We show the importance and ef-
fectiveness of our filtering strategy in Table 4. Note that a large frac-
tion of the initial mappings was pruned out by the filter. While
doing so, high recall scores against the assumed true sets were main-
tained (see Table 4). Although we do not present the contribution of
this phase to the total runtime, the plane-sweep algorithm is fast in
practice; it used an insignificant fraction of the total runtime.

3.2 Computing duplications in the human genome

Soon after the publication of the human genome, it was realized
that the genome is replete with repetitive sequences (International
Human Genome Sequencing Consortium, 2004). Intra- and inter-
chromosomal duplications have been found to play a vital role in gen-
ome evolution, its stability and diseases (Emanuel and Shaikh, 2001;
Pu et al., 2018), and knowing the location of such repeats can be im-
portant for many genomic analyses. Yet, fully annotating all repeats
in a genome can be computationally challenging. To demonstrate the
scalability of Mashmap2, we computed all >1 Kbp duplications in
the human genome (GRCh38, Schneider et al., 2017) with >90%
alignment identity. The importance of these duplications has been
known for a long time (Bailey et al., 2002; Emanuel and Shaikh,
2001); accordingly the UCSC genome browser also maintains them as
a public database (named as segmental duplications) for the human
genome. The goal of our experiment is to recover as many duplica-
tions as possible. Due to the probabilistic guarantees provided by our
algorithm (Section 2.1), we expect it to compute such duplications
with a high recall value. Typical genome-to-genome aligners including
Minimap2, Nucmer4 and BLASTZ do not provide such guarantees,
and typically require extensive parameter tuning as well as

preprocessing of input to perform this task (e.g. Bailey er al., 2001,
2002). We show that Mashmap2 serves as a straight-forward and ac-
curate solution to address such applications.

3.2.1 Methodology

We used 24 chromosome sequences (1-22, X, Y) and mitochondrial
DNA from the hg38 version of the human genome as our input se-
quence set. To compute all >1 Kbp, >90% identity duplications,
we directly used Mashmap2 with the same length and identity
requirements, with filtering disabled. From its output, we discarded
short (< 500bp) mappings with < 90% estimated identity, plus the
trivial duplications (i.e. regions matching with themselves), and
were left with 2.1 billion candidate mappings. The count of reported
mappings is high due to several high-copy repeat families in the gen-
ome, not all of which exceed our minimum thresholds. To remove
the shorter or lower identity mappings, each of the approximate
alignments was processed using LAST to compute a base-level align-
ment. This resulted in 210 million validated alignments with >1
Kbp length and >90% identity. We note that a large fraction of the
candidate mappings failed to satisfy the specified cutoffs here. This
is because Mashmap2 looks at the Jaccard similarity of k-mer sets to
evaluate the mappings, but does not consider the distribution of k-
mer match positions. As a result, frequently occurring exact repeats of
length <1 Kbp in the human genome can also qualify as a match in the
output. For example, an exact 300 bp Alu repeat induces many shared
k-mers in a 1 Kbp window, resulting in an artificially high identity esti-
mate for the larger window. It may be possible to improve the specifi-
city by further considering the distribution of k-mer matches. This
experiment took 120 CPU hours for executing Mashmap2 and 24 000
CPU hours for validating all reported mappings using LAST. We show
a dot-plot visualization of the reported alignments in Figure 5, which
appears dense due to extensive duplications in the human genome.
Finally, we converted the alignments into BED format to compare
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chromosome 7

chromosome 7

Fig. 5. Visualization of >1 Kbp duplications in the human genome computed using Mashmap2. Alignments are colored based on their lengths: blue 1-5 Kbp, red
5-10 Kbp, black >10 Kbp. Majority of blue and red mappings occur due to SINEs and LINEs repeats, respectively. Right plot is a magnification of >1 Kbp duplica-
tions within chromosome 7. Chromosome 7 is known to be one of the most duplicated human chromosomes. Large clustered duplications in red circle are asso-

ciated with Williams-Beuren syndrome (Hillier et al., 2003)

against the UCSC database using Bedtools (Quinlan and Hall, 2010);
the accuracy results are discussed next.

3.2.2 Accuracy evaluation and insights

The UCSC Segmental Duplications database for the hg38 human gen-
ome was computed using a standard pipeline proposed by Bailey ez al.
(2001), and was last updated in 2014. It is important to note that prior
to computing genomic duplications, their method removed high-copy
repeat elements (e.g. LINEs, Alus) from the genome. Therefore, this
database is not an exhaustive set of all >1 Kbp, > 90% identity dupli-
cations in the genome, but a significant fraction of them. Nonetheless,
low-copy repeat annotations have a higher likelihood of being missed
by a mapper. Therefore, checking the recall against this database serves
as an appropriate test to evaluate Mashmap2 in computing all hom-
ologous mappings of the specified characteristics.

To measure recall on each chromosome, we computed coverage of
those UCSC duplication annotations that have overlap with Mashmap2
duplications, and divided it by the coverage of all UCSC duplication
annotations. Therefore, a 100% recall score would imply that all base-
pairs which are annotated as segmental duplication in the UCSC data-
base are part of one or more Mashmap2 alignments. We show these re-
call scores for each chromosome as well for the complete genome in
Figure 6. Recall is consistently observed to be above 90% for each
chromosome, and the aggregate recall for the complete genome is
97.15%. Among the 2.85% missed alignments, a large fraction of align-
ments were not recalled because difference in the alignment parameters
can affect alignment identity and length. As a result, same regions can
yield slightly different alignments using LAST and BLAST. If we relax
the alignment identity and length cutoff in LAST to 88% and 950 bp,
respectively, the recall score improves to 98.28%. High recall scores
achieved here, as well as in our prior experiments, demonstrate high
sensitivity of our algorithm for any specified alignment characteristics
by the user, which is consistent with the theory in Section 2.1.

Finally, we compared the coverage of our alignments versus the
UCSC database. Since our method did an exhaustive search of all dupli-
cations with > 1 Kbp length and > 90% identity without masking any
genomic repeats, we observe that our algorithm attains either equal or
higher coverage on each chromosome (Fig. 7). For the complete genome,
coverage of our alignments is 10.3%; 5% higher than the coverage of
UCSC annotations. We further examined the subset of our duplications
which do not overlap with UCSC segmental duplications. Indeed a large
coverage fraction (82%) comprises of high-copy repeats (i.e. coverage

100% -

95%-
90%-
85%-
YRILLOL LI V2T 000205

Chromosomes

Recall

Fig. 6. Recall scores of duplications computed using Mashmap2 against the
UCSC segmental duplication database. Above 90% recall scores are achieved
on each chromosome consistently. The red dotted line shows the aggregate
recall score of 97.15% for the complete genome

30% -
W ucsc
M Mashmap?2

20% -

10% -

Coverage
Q
R
]
[ .

Chromosomes

Fig. 7. Comparison of genomic coverage between the UCSC Segmental
Duplication database and Mashmap2 output alignments. Both methods
reported equal coverage 83% on mitochondrial chromosome (not shown
above to keep the plot legible). Coverage of duplications computed using our
method is significantly higher, owing to its exhaustive search of all repeats
with > 1 Kbp length and >90% identity without repeat masking
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depth >50), potentially due to common repeat elements, which explains
the wide gap in the coverage observed. The remaining 18% coverage
fraction, however, is composed of low-copy repeats, with coverage
depth < 50 indicating the potential to uncover novel segmental duplica-
tions. Validating this possibility requires a more careful inspection of the
output, and will be our future work. Mashmap2 alignments are avail-
able online at https://gembox.cbcb.umd.edu/mashmap/index.html.

4 Discussion

In this work, we presented a fast algorithm for computing homology
maps between whole genomes. We have given both theoretical and
experimental evidence of the sensitivity provided, in terms of comput-
ing local alignment boundaries based on the minimum alignment
length and identity parameters. To the best of our knowledge, this is
the first practical and scalable algorithm to provide such guarantees.
This formulation grants a convenient mechanism for users to execute
this algorithm based on the underlying applications, including
(but not limited to) mapping genome assemblies of variable quality,
aligning long reads to reference genomes, or computing segmental
duplications in large genomes. Additionally, we formulated a filtering
heuristic, and proposed an optimal plane-sweep based filtering algo-
rithm for prioritizing alignments based on their scores and locations.
The filtering algorithm is practically fast, accurate and easy to imple-
ment in few lines of code using standard libraries. When mapping a
human genome assembly to the human reference genome, Mashmap2
takes only about a minute from reading input sequences to generating
the final alignment boundaries, identity estimates, and a dot-plot for
visualization. Because of the underlying auto-tuning mechanism in
Mashmap2, performance depends on the sensitivity requirements pro-
vided to the algorithm. As the pace of whole-genome sequencing con-
tinues to increase, faster practical algorithms and theoretical advances
will help analyze available and forthcoming data.

Although our algorithm optimizes mapping of a single genome
assembly to a single reference genome, its runtime would scale lin-
early when mapping to multiple reference genomes. Planned future
work includes development of sub-linear algorithms using existing
ideas of non-linear reference genome representations. We also plan
to evaluate biological novelty of the human segmental duplications
computed in this work.
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