Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 25, Number 7, 2018

© Mary Ann Liebert, Inc.

Pp. 766-779

DOI: 10.1089/cmb.2018.0036

A Fast Approximate Algorithm for Mapping Long
Reads to Large Reference Databases

CHIRAG JAIN!?> ALEXANDER DILTHEY? SERGEY KOREN?
SRINIVAS ALURU! and ADAM M. PHILLIPPY?

ABSTRACT

Emerging single-molecule sequencing technologies from Pacific Biosciences and Oxford
Nanopore have revived interest in long-read mapping algorithms. Alignment-based seed-
and-extend methods demonstrate good accuracy, but face limited scalability, while faster
alignment-free methods typically trade decreased precision for efficiency. In this article, we
combine a fast approximate read mapping algorithm based on minimizers with a novel
MinHash identity estimation technique to achieve both scalability and precision. In con-
trast to prior methods, we develop a mathematical framework that defines the types of
mapping targets we uncover, establish probabilistic estimates of p-value and sensitivity,
and demonstrate tolerance for alignment error rates up to 20%. With this framework, our
algorithm automatically adapts to different minimum length and identity requirements
and provides both positional and identity estimates for each mapping reported. For
mapping human PacBio reads to the hg38 reference, our method is 290 x faster than
Burrows—Wheeler Aligner-MEM with a lower memory footprint and recall rate of 96 %.
We further demonstrate the scalability of our method by mapping noisy PacBio reads
(each >5kbp in length) to the complete NCBI RefSeq database containing 838 Gbp of
sequence and >60,000 genomes.

Keywords: Jaccard, long-read mapping, MinHash, minimizers, sketching, winnowing.

1. INTRODUCTION

APPING READS GENERATED by high-throughput DNA sequencers to reference genomes is a funda-

mental and widely studied problem (Li and Homer, 2010; Ruffalo et al., 2011). The problem is
particularly well studied for short read sequences, for which effective mapping algorithms and widely used
software such as Burrows—Wheeler Aligner (BWA; Li and Durbin, 2009) and Bowtie (Langmead and
Salzberg, 2012) have been developed. The increasing popularity of single-molecule sequencers from Pacific
Biosciences and Oxford Nanopore, and their continually improving read lengths (10 kbp and up), is gener-
ating renewed interest in long-read mapping algorithms. However, the benefit of long-read lengths is cur-
rently accompanied by much higher error rates (up to 15%—-20%). Despite their high error rates, long reads

'School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia.
>National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.

766

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

ALGORITHM FOR MAPPING LONG READS 767

have proved advantageous in many applications, including de novo genome assembly (Chin et al., 2013;
Koren et al., 2013) and real-time pathogen identification (Ashton et al., 2015; Quick et al., 2016).

Sequence data from nanopore devices are available just minutes after introducing the sample. This can
enable real-time genomic analysis when coupled with fast computational methods that can map the data
stream against large reference databases. However, mapping raw sequences continues to be a bottleneck for
many applications. The problem is only going to worsen as Oxford Nanopore’s PromethION is projected to
generate multiple terabases of sequence per day. In parallel, reference databases are continually growing in
size, with the nonredundant NCBI RefSeq database close to exceeding a terabase in size. The high error
rate of raw single-molecule sequences further adds to the computational complexity.

Read mapping problems can be solved exactly by designing appropriate variants of the Smith—Waterman
(SW) alignment algorithm (Smith and Waterman, 1981); however, it is computationally prohibitive when
mapping reads from a high-throughput sequencer to large reference genomes. Seed-and-extend mapping
heuristics address this limitation for both long and short reads by limiting the search to locations, where
exact short word or maximal common substring matches occur before executing an alignment algorithm at
these locations (Altschul et al., 1997; Delcher et al., 2002; Chaisson and Tesler, 2012). Accurate alignment-
based long-read mappers include basic local alignment with successive refinement (BLASR; Chaisson and
Tesler, 2012) and BWA-MEM (Li, 2013). However, repetitive seeds that do not translate to correct
mappings combined with high sequencing error rates limit their scalability. Additionally, alignment-based
mapping algorithms preserve the complete reference sequence in the index, and hence, cannot scale to
terabase scale reference databases. Many genomics applications do not require detailed base-to-base
alignment information, and instead use only the alignment boundary and identity summaries. Such ap-
plications include depth-of-coverage analysis, metagenomic read assignment, structural variant detection,
and selective sequencing (Loose et al., 2016). Efficient algorithms for these problems, combined with
nanopore sequencing, could enable the real-time genomic analysis of patients, pathogens, cancers, and
microbiomes.

One class of algorithms for fast, approximate mapping relies on ideas originally developed for finding
similarities between web documents. Broder (1997) proved that an unbiased estimate of the Jaccard
similarity coefficient between two sets can be computed efficiently using a subset of hashed elements called
a sketch. Schleimer et al. (2003) proposed the winnowing algorithm, which picks a minimum hashed item
(also known as a minimizer; Roberts et al., 2004) from each consecutive window of text as a means to more
quickly estimate local similarity between web documents. These ideas have been used to develop new
mapping and assembly algorithms for long reads, such as the MinHash Alignment Process (Berlin et al.,
2015), minimap (Li, 2016), and BALAUR (Popic and Batzoglou, 2016). To date, the effectiveness of these
approaches has only been demonstrated empirically.

In this article, we propose a fast approximate algorithm for mapping long reads that scales to large
reference databases with sufficient theoretical guarantees and practical validation on the quality of results
reported. We propose a problem formulation that mathematically characterizes desired mapping targets by
linking the Jaccard coefficient between the k-mer spectra of the read and its mapping region to a sequence
error rate assuming a Poisson error model. We then provide an efficient algorithm to estimate the Jaccard
coefficient through a combination of MinHash and winnowing techniques that characterizes and guarantees
the types of mapping regions we find. On the quality side, we provide probabilistic bounds on sensitivity.
We present techniques for choosing algorithmic parameters as a function of error rate and sequence lengths
that guarantees the desired statistical significance. The theory is validated using PacBio and MinION
datasets, and we demonstrate the scalability of our approach by mapping PacBio metagenomic reads to the
entire RefSeq database. The speed and space efficiency of our algorithm enables real-time mapping, and
compared with minimap, our method maintains high sensitivity with better precision for large, repetitive
genomes. The implementation is available at github.com/MarBL/MashMap (v1.0).

2. PRELIMINARIES
2.1. Read error model

We assume errors occur independently at the read positions, and use a Poisson error model as in previous
works (Fan et al., 2015; Ondov et al., 2016). A binomial model would also be appropriate, but is not
discussed in this study for brevity. Let € € [0, 1] be the per-base error rate. The expected number of errors

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

768 JAIN ET AL.

in a k-mer is k - €, and the probability of no errors within each k-mer, assumed independent, is e~%. We
assume the statement is valid irrespective of error type.

2.2. Jaccard similarity

Assuming &, Y are the sets of k-mers in sequences X and Y, respectively, their Jaccard similarity is
defined as J(X, Y)=|X N Y|/|X U Y|. The Poisson error model is used to compute the relationship between
Jaccard similarity and alignment error rate (Ondov et al., 2016). We approximate the length of a read
alignment to be the read length. Let A be a read derived from B;, where B; denotes the length |A| substring of
reference B starting at position i. If ¢ and n denote the number of error-free and total k-mers in A, respectively,
then the expected value of ¢/n, termed k-mer survival probability, is e~*. This equation assumes k is large
enough such that k-mers in A or B; are unique, because |A|=|B;|, J(A, B;), abbreviated as J, equals ¢/(2n—c).
Using the two equations, we derive the following functions G and F to estimate J and e:

1 -1 2J
k)= —— d F(J,k)=—x1 —, 1
Gle.k)=5 g and FU. b= x 0g<1+J> (1)

where G(e, k) serves as an estimate of the Jaccard similarity given an error rate and F(J, k) estimates the
converse. F(J, k) can be shown as the maximum likelihood estimator (MLE) for error rate (proof in
Section 10). Note E(J) > G(e, k) (using Jensen’s inequality).

2.3. MinHash approximation

The MinHash algorithm is a fast and space-efficient approximation technique to compute an unbiased
estimate of Jaccard similarity (Broder, 1997), without explicitly computing the underlying set inter-
section and union. Let s be a fixed parameter. Assuming universe U is the totally ordered set of all
possible items, and Q : U — U is a permutation chosen uniformly at random, Broder (1997) proved that
P(rrgll Qx)= rréiBn Qx))=J(A, B;), and that

X xeB;

ISCAU B) NS(A) NSBY)| / ISCAU By 2)

is an unbiased estimate of J(A, B;), where S(A) (called the sketch of A) is the set of the smallest s hashed
items in A, that is, S(A)= min{Q(x) : x € A}. Typically, the denominator [S(A U B;)]| is referred as the
MinHash sketch size and the numerator as the count of shared sketch elements. This estimate is unbiased
provided S(A) is a simple random sample of 4. Increasing the sketch size improves the accuracy of the
estimate.

Assuming s is fixed and the true Jaccard similarity j=J(A, B;) is known, the count of shared sketch
elements between S(A) and S(3;) follows a hypergeometric distribution. Since s is much smaller than |.4], it
can be approximated by the binomial distribution.

PUISCAU B) N1 S(A) N SB|=xls,j)= (i)f(l - 3)

As an example, Figure 1 illustrates this distribution for a read with known Jaccard similarity
j=G(e=0.15, k=16) (using Eq. 1) and sketch size s varying from 200 to 500.

Sketch size
200
0.10 =
o NN 2 300
FIG. 1. Probability distributions of count of =
shared sketch elements for a read with 15% & — 400
alignment error (e=0.15) and k-mer size of 16, 09_ 0.05 - 500
with varying sketch sizes. Estimated Jaccard
similarity computed using Equation (1) is 0.0475.
0.00 =
I I I I I I
0 10 20 30 40 50

Count of shared sketch elements

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

ALGORITHM FOR MAPPING LONG READS 769

2.4. Winnowing

Winnowing is a local fingerprinting algorithm, proposed to measure similarity between documents by
using a subset of hashed words (Schleimer et al., 2003). Unlike MinHash sketching, it bounds the maxi-
mum positional gap between any two consecutive selected hashes. It works by sampling the smallest
hashed item in every consecutive fixed size sliding window (Fig. 2). Formal description of this algorithm in
the context of genomic sequences follows.

Let A, denote the set of all k-mer tuples (k;, i) in sequence A, i denoting the k-mer position. Let w be the
window size used for winnowing, and K; be the set of w consecutive k-mer tuples starting at position j in A,
that is, Kj={(k;, i) : j <i <j+w}. Assume Q is a hash function defined as a random permutation. Then,
the set of minimizers sampled by the winnowing algorithm in sequence A is W(A)={ min (Q(k), i) :
0 <j < |Ag| —w}, where ek

J

<k1, i1> ki < ky or (ky =k, and iy > iy);
(ko, i) otherwise;

min (i, i1), <k, i2)) = {

Schleimer et al. (2003) prove that the expected set count of minimizers selected from a random sequence
A is 2|Ag|/w. Moreover, W(A) can be computed efficiently in O(JA|) time and O(w) space using a double-
ended queue, as sequence A is read in a streaming fashion (Smith, 2016).

3. PROBLEM FORMULATION

Given a read A and the maximum per-base error rate ¢,,,,, our goal is to identify target positions in reference
B, where A aligns with < €, per-base error rate. This problem can be exactly solved in O(|A| - |B|) time by
designing a suitable quadratic time alignment algorithm. When mapping to a large database of reference
sequences, solving this problem exactly is computationally prohibitive. Hence, we define an approximate version
of this problem using the Jaccard coefficient as a proxy for the alignment as follows: Let B; denote the substring of
size |A| in B starting at position i (0 < i < |B|—|A|). For a given k, we seck all mapping positions i in B such that

J(A, B)) > G(€pax, k) =0 “

Note that if A aligns with B; with per-base error rate < €,,,, then E(J(A, B;)) > G(€ax, k) (using Eq. 1).
As this equation applies only to the expected value of J(A, B;), we lower this threshold by ¢ to account for
variation in the estimate. The parameter ¢ is defined as the margin of error in Jaccard estimation using a
90% confidence interval.

4. THE PROPOSED ALGORITHM

Directly computing J(A, B;) for all positions i is as asymptotically expensive as the alignment algorithm.
The rationale for reformulating the problem in terms of Jaccard coefficients is that it enables the design of
fast heuristic algorithms. We present an algorithm to estimate J(A, B;) efficiently using a combination of
MinHash and winnowing techniques. In addition, we compute an estimate of the alignment error rate e for
each mapping reported. Our method relies on an indexing and search strategy we developed to prune the
incorrect mapping positions efficiently.

hashed k-mers in A

77 74 17 42 98 50 17 98 6 88

offset 0 1 2 3 4 5 6 7 8 9
17, FIG. 2. TIllustration of the winnowing method on
17 a sequence of hashed k-mers in A. W(A) represents
17 the minimizers sampled from the sequence with

_._0_ window size w=35.

64
6

W(A) — (17,2) (17,6) (6,8)

https://www.liebertpub.com/action/showImage?doi=10.1089/cmb.2018.0036&iName=master.img-000.jpg&w=238&h=127

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

770 JAIN ET AL.

4.1. Definitions

Let W(A) be the set of minimizers computed for read A using the winnowing method with window size w. We
sketch W(A) instead of sketching A itself. Assuming s is a fixed parameter, we define S(W(A)) as the set of the s
smallest hashed k-mers that were sampled using winnowing of A, that is, S(W(A)) = ming{A : (h, pos) € W(A)}.
To estimate J(A, B;), we define winnowed-minhash estimate 7 (A, B;) for J(A, B;) as

|S(W(A) U W(B)) N S(W(A)) N S(W(B))|

J(A, B)= IS(W(A) U W(By))|

®)

In contrast to the MinHash approximation (Eq. 2), our estimator 7 (A, B;) uses winnowing to reduce the
sampling frame before picking the minimum hash values. Even though S(W(A)) is no longer a simple
random sample of the k-mers in A, we empirically show in Section 8.1 that the quality of the Jaccard
estimation using 7 (A, B;) is as good as the MinHash estimation. We use Wj,(A) to denote the set of hashed
k-mers in W(A), that is, W,(A)={h : {(h, pos) € W(A)}.

4.2. Indexing the reference

Retaining the minimizers W(B;) is sufficient for Jaccard similarity estimation 7(A, B;) (Eq. 5). Since
W(B;) € W(B) (Section 2), we compute W(B) from the reference sequence B to be able to extract W(B;)
efficiently for any i. The set W(B) can be computed from B in a linear scan in O(|B|) time. We store W(B) as
an array M of tuples (h, pos). When created, the set is naturally in ascending sorted order of the positions.
Furthermore, to enable O(1) look-up of all the occurrences of a particular minimizer’s hashed value h, we
also replicate W(B) as a hash table H with & as the key and an array of its positions {pos : (h, pos) € W(B)}
as the mapped value. The expected space requirements for M and H are 2|B|/w (Section 2). We postpone
our discussion on how to compute an appropriate window size w to Section 5. Besides low memory
requirements, a key advantage of this indexing strategy is that a new reference sequence can be incre-
mentally added to the existing data structure in time linear to its length, which is not feasible for suffix array
or Burrows—Wheeler transform-based indices, typically used in most mapping software.

4.3. Searching the reference

The goal of the search phase is to identify for each read A, positions i such that J(A, B;) > G(€yax, k) — 0.
We instead compute the winnowed-minhash estimate J(A, B;). Let t=G(€pax, k) —0. To avoid directly
evaluating J (A, B;) for each B;, we state and prove the following Theorem 1:

Theorem 1. Assuming sketch size s < |W,(A)

’

JAB)>1 = [WyANWuB)|>s-t Vi0<i<|B-Al
Proof. s <|WyA)| = [S(WA)UW®B))|=s ©)

From Equation (5),
J@A.B) > 1 IS(W(A) U W(B:) N S(W(A)) N S(W(By))| .
IS(W(A) U W(B))|
[SW(A) U W(B) N S(W(A) N S(W(B))|
S
Note that S(W(A) U W(B))) € S(W(A)) U S(W(B;)). Therefore,
[(SOW(A) USWB) N SWA) N SWB)|

> 1 (using Eq. 6)

= [SOWA) N SWBY)| > s+ 1
But, S(W(A)) € Wi(A) and S(W(B))) € Wi(B;)
Therefore, |W,(A) N Wy(B))| > s 1 [|
We use the above condition as a filter and only consider positions in B which satisfy |W,(A) N Wj(B))|
> s - 7. To maximize effectiveness of the filter, we set the sketch size s=|W,(A)|. The search proceeds in
two successive stages. The first stage identifies candidate positions i using Theorem 1, and the second stage

computes J(A, B;) at each candidate position i. The position is retained as output if J(A, B;) > 1, and
discarded otherwise.

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

ALGORITHM FOR MAPPING LONG READS 771

Stage 1: Algorithm 1 outlines the first stage of our mapping procedure. It calculates all offset positions i
in B such that |W,(A) N W,(B;)| > [s-7]=m. The output list 7 is created in the form of one or more tuple
ranges {x, y), implying that the criterion holds true for all B;, x <i <y. We begin by computing the
minimizer hashed values W;,(A) by winnowing the read A, and compute the positions of their occurrence in
the reference (line 4). Accordingly, L={pos : h € W,(A) A {h, pos) € W(B)}. Next, we sort the array L to
process all the positions in ascending order. If B; satisfies the filtering criterion, there should be at least m
entries in L with values between [i, i+ |A[). It also implies that m consecutive entries should exist in L with
positional difference between the first and m"” entry being < |A|. This criterion is efficiently evaluated for
all B; using a linear scan on L (lines 6-9). If satisfied, we push the associated candidate range into 7. To
avoid reporting B; more than once, we merge two consecutive overlapping tuple ranges into one.

Algorithm 1: Stage 1 of mapping read

Input: read A, reference index map H (hash k-mer — pos[]), s, t
Output: list 7 of candidate regions in the reference

1 m=[s-7]

2 T=L=[]

3 for e € W,(A) do

4 LL.append(H(e))

5 sort (L)

6 fori <0 to |L|—m do

7 | jeitm-1)

8 | if (L[j|-L[i]) < |A| then

9 | L Tappend((Ljl-|A|+1,L[i1)

Algorithm 2: Stage 2 of mapping read

Input: index M, Stage 1 output 7, s, T
Output: P

1 [,02[,:{}, Ly .insert (W,(A))

2 for {(x,y) € T do

3 iex, jex+|Al, L—Ly

4 L .insert (getMinimizers(i,j))

5 if 7= solveJaccard (£L)>r~

then

6 L P. append (i, J)

7 while i <y do

8 L .delete (getMinimizers(i,i+1))
9 L .insert (getMinimizers(j,j+1))
10 if 7= solveJaccard (£) > 7 then
11 LP. append (i, J)
12 i—i+l,j—j+1

13 Function getMinimizers (p, q) return
{h : (h, pos) € W(B), p < pos < q}
14 Function solveJaccard (£)
shared _sketch = Z’,‘;B L[k]
15 return J =shared_sketch/s

Stage 2: Evaluation of each tuple (x, y) in the Stage 1 output array 7 requires computing J (A, B;) Vi, x
<i <y. Accordingly, we compute the minimum s unique sketch elements within Wj(A) U W;(B;), and
count the ones shared between A and B;. We show the step-by-step procedure in Algorithm 2. We use £ to
contain the minimizer hashed values {h € W;,(A) U W(B;)}. To implement £, we make use of the C++
ordered map data structure that supports logarithmic time insertion, deletion, and linear time iteration over
unique ordered keys. We keep the hashed value as the map’s key, and map it to 1 if it appears in both the
reference and the read, and 0 otherwise. For each tuple {x, y), we begin by saving the hashed values W (A)
in read A into map £ (lines 1 and 3). Two loops (lines 2 and 7) evaluate each tuple {x, y) in T, and consider

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

772 JAIN ET AL.

each B;, x < i <y for Jaccard estimation (A, B;). The function getMinimizers gathers the reference
minimizer hashes W,(B;) by sequentially iterating over M in the required position range and popu-
lating the minimizers associated with each B; into the map £ (lines 4, 8-9).

Note that a few incorrect corner minimizers {4 : {h, pos) € W(B), i < pos < i+|A|}\Wy(B;) can appear
in £ that were winnowed from windows overlapping with B;. However, these can be discarded by re-
computing the minimum of the first and last window of B,. Finally, function solveJaccard computes
|S(W(A)U W(B;)) N S(W(A)) N S(W(B,))| by iterating over s minimum unique sketch elements and counting
the ones shared between A and B;. If J(A, B;) > 1, then the position i and Jaccard estimate (A, B;) are
saved into the output P as pair (i, 7 (A, B;)). The corresponding estimate of the alignment error rate ¢ in this
case, computed using Equation (1), would be F(J(A, B), k).

5. SELECTING WINDOW AND SKETCH SIZES

The sketch size for Jaccard similarity estimation is inversely proportional to the window size w (Section
4.3). A larger window size improves the runtime and space requirement during the search, but also
negatively affects the statistical significance and accuracy of our estimate. To achieve the right balance, we
analyze the p-value of a mapping location being reported under the null hypothesis that both query and
reference sequences are random. For the subsequent analysis, we will assume the sketch size is s, the count
of shared sketch elements is a discrete random variable Z, the k-mer size is k, the alphabet set is X, and the
read and reference sequence sizes are g and r, respectively.

Location i is reported if J(A, B;) > t, that is, at least |_s . ‘c-| sketch elements are shared. Following Ondov
et al. (2016), consider two random sequences of length ¢ with k-mer sets X and Y, respectively. The
probability of a random k-mer o appearing in X or Y, assuming ¢>k, is P(a € X)=P(x € Y)=
1—(1—|Z|7%)?. Therefore, the expected Jaccard similarity J,,;=J(X, Y) is given by

PxeXNY) P eX)-Pa€Y)
P(aeXUY) PoecX)+PacY)—PaecX) PleY)

Joutt =

For sketch size s, the probability that x or more sketch elements are shared is P(Z > x|Jpu, 8)=

Zj-:x (Js > St Y (I =Tt ™. Using this equation, we compute the probability of a random sequence of length
¢ mapping to at least one substring in a random reference sequence of size r>q as 1 — (1 —=P(Z > x|J o1, 5))'.
For a minimum read length [, and x=[s- 1], we wish to ensure that this probability is kept below a user-
specified threshold p,,... As reported mapping locations i must satisfy J(A, B;) > t and g > Iy, a mapping
with J(A, B;)=1, g=Iy, in general, will have the highest probability of generating a random match.

Therefore, we compute the maximum value of w that satisfies the p,,,, constraint for this instance. Sketch
size s is set to |Wj,(A)|, which from Section 4.3 is expected to be ¢ - 2/w. Since x, s, and w have a circular
dependency, we iteratively solve for w, starting from the maximum value /y, until the probability of a
random mapping is < p,.. Influence of different parameters on window size is shown in Figure 3. The
window size w increases with increasing p,.. or [y, but has an inverse relationship with €,,,,. These plots
also highlight that as read length and error rate improve, our algorithm automatically adapts to a larger
window size, greatly improving efficiency.

90 - 500 - 800 -
N 80- X 400- X 600 -
(%] () w
570— %300' c3)400_
£ 60- £ 200 £ 200-
= 50- = 100- =
| | | 1 | | | 0-4 1 |
1e-18 1e-10 1e-02 0.20 0.15 0.10 0.05 1K 20K 40K
P-value threshold Per-base error rate Min. query length
Pmax Emax lo

FIG. 3. Illustration of how w varies with puy, €nax, and Iy, respectively. The default values are set as lop=5000,
€max =0.15, Ppax=0.001, k=16, and r=10°. Steps appear in the first two curves because Z is a discrete variable.

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

ALGORITHM FOR MAPPING LONG READS 773

6. PROOF OF SENSITIVITY

We analyze the sensitivity exhibited by our algorithm in identifying correct mapping locations as a
function of the read alignment error rate. Let i be a correct mapping location for read A. If ¢, is the true
error rate in aligning A with B;, then Jy,. = G(€ye, k). Our algorithm reports this mapping location if the
Jaccard estimate J(A, B;) > t, that is, the count of shared sketch elements Z > s- 7. The associated

probability is given by P(Z > s - t| Jipye,) = ijhﬂ (j) Ui Y (1 =T i) ™. We report the corresponding

values in Table 1 while varying €,,, and €, from 0.04 to 0.20 error rate, for two sketch sizes s =200 and
500, respectively. In an ideal scenario, a mapping should be reported only if €, < €44y, that is, a perfect

algorithm would have ““1” in each of the entries at or above the diagonal, and 0" in all other positions. From
the table, it is evident our algorithm achieves close to ideal sensitivity for alignment error rates up to 20%.

7. OTHER IMPLEMENTATION DETAILS
7.1. Optimizing for variable read lengths

In contrast to cyclic short-read sequencing, single-molecule technologies can generate highly variable
read lengths (e.g., 10?10’ bases). Previously, we discussed how the window size w is determined using the
minimum read length /, in Section 5. From Figure 3c, notice that we can further reduce the sampling rate
(i.e., use a larger window size) for reads longer than [, while still satisfying the p-value constraint.
However, to realize this, the sampling scheme for indexing the reference sequence B needs to be consistent
with that of query. We propose the idea of multilevel winnowing to further optimize the runtime of our
algorithm by choosing custom window size for each input read. Suppose W,,(B) denotes the set of win-
nowed fingerprints in the reference computed using window size w, then W, (B) C W,,(B) (Schleimer
et al., 2003). We exploit this property to construct a multilevel reference index with multiple window sizes
{w, 2w, 4w ...} recursively. This optimization yields us faster mapping time per base pair for reads longer
than [, as we independently compute the window size for a given read length / > [y, and round it to the
closest smaller reference window size {w, 2w, 4w...}. The expected time and space complexity to index
the reference using multiple levels is unaffected because the expected size of Wye1,,(B) is half of Wy, (B)
and Wy.+1,,(B) can be determined in linear time from W, (B).

TABLE 1. PROBABILITY OF A MAPPING LOCATION BEING REPORTED
BY OUR ALGORITHM FOR DIFFERENT VALUES OF €, AND €

€max

Etrue 0.04 0.08 0.12 0.16 0.20
0.04 0.951 1 1 1 1
0.08 0 0.937 1 1 1
0.12 0 0.016 0.925 1 1
0.16 0 0 0.184 0.907 0.997
0.20 0 0 0.003 0.403 0.922

0.04 0.08 0.12 0.16 0.20
0.04 0.939 1 1 1 1
0.08 0 0.949 1 1 1
0.12 0 0 0.937 1 1
0.16 0 0 0.013 0.904 1
0.20 0 0 0 0.104 0.896

True mapping locations correspond to €, < €mqy, that is, entries at or above

the diagonal in the tables. Sketch sizes are set to 200 and 500 for the top and
bottom tables, respectively. The k-mer size k is set to 16.

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

774 JAIN ET AL.

7.2. Strand prediction

To account for the reads sequenced from the reverse strand relative to the reference genome, we compute
and store only canonical k-mers, that is, the lexicographically smaller of the forward and reverse-
complemented k-mer. For each k-mer tuple {k, i) in W(A) and W(B), we append a strand bit 1 if the forward
k-mer is lexicographically smaller and —1 otherwise. While evaluating the read mappings in Stage 2, we
compute the mapping strand of the read through a consensus vote among the shared sketches using sum of
pairwise products of the strand bits.

8. EXPERIMENTAL RESULTS
8.1. Quality of Jaccard estimation

We first show that the accuracy of the winnowed-minhash estimator J to estimate the Jaccard similarity is
as good as the direct MinHash approximation, which is an unbiased statistical estimator. We construct a
random sequence of length 5 kbp with each character having equal probability of being either A, C, G or T.
We generate reads while introducing substitution errors at each position with probability 0.15. Note that both
substitutions and indels have a similar effect of altering the k-mers containing them, and a uniform distri-
bution of errors alters more k-mers than a clustering of errors. Figure 4 shows the estimation difference
against the true Jaccard similarity using MinHash and our estimator for two different sketch sizes s=100 and
s=200. Based on these results, we conclude that the bias in our estimation is practically negligible as the
mean error by our method in estimating Jaccard similarity is <0.003 for both sketch sizes. Similar to MinHash
approximation, we note that the magnitude of estimation error reduces with increasing sketch size.

8.2. Mapping MinlON and PacBio reads

We refer the C++ implementation of our algorithm as mashmap and compare its run-time performance
and memory usage against alignment-based long-read mappers BWA-MEM (v0.7.15-r114; Li, 2013),
BLASR (vSMRTportal 2.3.0; Chaisson and Tesler, 2012), and minimap (v0.2; Li, 2016). We also perform
a comparison of the approximate mapping targets generated by mashmap and minimap. Like mashmap,
minimap uses winnowing to index the reference, but does not use the MinHash approximation to estimate
Jaccard similarity or nucleotide identity. Instead, minimap seeks clusters of minimizer matches to identify
regions of local similarity. Importantly, minimap approximates a local alignment process, which is useful
for split-read mapping. However, because mashmap is currently designed to find complete read mappings,
we only consider this case for the following comparisons.

8.2.1. Datasets and methodology. We evaluated the algorithms by mapping long-read datasets
generated using single-molecule sequencers from Pacific Biosciences and Oxford Nanopore, and report
single-threaded execution timings on an AMD Opteron 2376 CPU with 64 GB RAM. We use two datasets,
labeled N1 and P1, respectively, both containing reads of length > 5 kbp. Dataset N1 is a random sample of
30,000 reads from the MinION (R9/1D) sequencing dataset of the Escherichia coli K12 genome (Loman,

FIG. 4.

0.10 - 0.10 -
o =l —
B A s = 200
0.05- 0.05-
g % & g % '-Ip .“- .:-
Q 2 Q2 &
0 AN — N (-
g g 0.00 % '8 0.00
B 2w b L s
L] . [
S £-005- S E-005-
T o
w) L)
-0.10 - ; | -0.10 - : =
MinHash winnowed MinHash winnowed
MinHash MinHash
Method Method

Jaccard similarity estimation using MinHash and winnowed-minhash estimator J (A, B;) over simulated reads,
with sketch sizes =100 and s=200. Red bar indicates the average estimation difference over all reads.

https://www.liebertpub.com/action/showImage?doi=10.1089/cmb.2018.0036&iName=master.img-001.jpg&w=312&h=123

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

ALGORITHM FOR MAPPING LONG READS 775

TABLE 2. RUN-TIME AND MEMORY USAGE COMPARISON OF MASHMAP AGAINST MINIMAP, BURROWS—WHEELER
ALIGNER-MEM AND Basic LOCAL ALIGNMENT WITH SUCCESSIVE REFINEMENT FOR N1, P1 DATASETS

NI (MinlON-K12) PI (Pacbio-CHM]I)
Memory Memory
Method Index Map (MB) Index Map (GB)
Mashmap 0.5 seconds 54 seconds 17 5 minutes 52 seconds 1 minutes 24 seconds 3.7
Minimap 0.7 seconds 37 seconds 232 3 minutes 7 seconds 1 minute 56 seconds 6.8
BWA-MEM 2.6 seconds 5 hours 39 minutes 72 1 hours 19 minutes 6 hours 46 minutes 5.5
BLASR 1.3 seconds 10 hours 17 minutes 697 40 minutes 36 seconds 20 hours 40 minutes 17.6

BWA-MEM was executed with long-read mapping parameters-x pacbio/ont2d.
BWA, Burrows—Wheeler Aligner.
The best results are highlighted in bold.

2016). Dataset P1 contains 18,000 reads generated through a single SMRT (single molecule real-time) cell
from PacBio’s (P6/C4) sequencing of the CHM1 human genome (Chaisson et al., 2015). We map N1 to E. coli
K12 (4.6 Mbp) and P1 to the human reference (3.2 Gbp). For mashmap, we use the following parameters:
lp=5000, €4,=0.15, and pyu, =0.001. When a read maps to multiple locations, mashmap only reports
locations where mapping error rate is no >1% above the minimum of error rate over all such locations.

8.2.2. Run-time performance. Run-times for the index building and mapping stages, and memory
used, for the four methods are compared in Table 2. As both BWA-MEM and BLASR are alignment-based
methods, we expect their run-times to be significantly higher. Indeed, they take several hours in comparison to
seconds (N1) or a few minutes (P1) taken by mashmap and minimap. The principal challenge is whether the
latter methods can retain the quality obtainable through alignment-based methods. We note that mashmap has
the lowest memory footprint for both datasets, and its run-time compares favorably with minimap. The ability
to compute the sampling rate at run-time gives mashmap its edge in terms of memory usage.

8.2.3. Quality of mapping. As there is no standard benchmark using real datasets, we assess sensi-
tivity/recall using BWA-MEM’s starting read mapping positions, and precision by computing SW alignments
of the reported mappings (Table 3). Since both minimap and BWA-MEM also report split-read alignments, we
post-filter their results to only keep alignments with >80% read coverage. Recall is measured against BWA-
MEM alignments which satisfy the ¢, =0.15 cutoff (=80% identity). Because both minimap and mashmap
estimate mapping positions, the reported mapping is assumed equivalent to BWA-MEM if the predicted
starting position of a read is within £50% of its length. Precision was directly validated using SW alignment
(with scoring matrix: match=1, mismatch= —1, gappen = —2, 8aPextend= —1). For minimap’s and our re-
sults, we allow SW-identity 275% and query coverage 280%. Results in Table 3 show that both mashmap and
minimap have close to ideal sensitivity/recall, demonstrating their ability to uncover the right target locations.

Mashmap also achieves high precision, avoiding false positives on the repetitive human genome.
Minimap’s low precision on human is largely driven by false-positive mappings to repetitive sequence,
which could potentially be resolved with alternative clustering parameters. Mashmap false positives are
dominated by reported mappings with a SW query coverage <80% of the read length. It may be possible to
avoid such mappings by considering the positional distribution of shared sketch elements during the
second-stage filter, or by adopting a local alignment reporting strategy like minimap.

We compare our identity estimates (1—€) x 100 against the SW alignment identities in Figure 5. For the
PacBio reads, we observe that most of the points are aligned close to y=x. However, for the nanopore

TABLE 3. PRECISION AND RECALL STATISTICS OF MASHMAP
AND MINIMAP USING DATASETS N1 AND P1

Recall statistics Precision statistics

1D Mashmap Minimap No. of BWA mappings Mashmap Minimap

N1 100% 99.87% 10,823 94.39 % 94.32%
P1 96.8% 98.7% 10,115 84.59% 30.34%

The best results are highlighted in bold.

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

776

JAIN ET AL.

Smith-Waterman identity

o
=]
I

90 -

P1

80 90
Estimated identity

100

Smith-Waterman identity

a0 -

80 -

N1

70 80 90

Estimated identity

I
100

FIG. 5. Correlation between Smith—-Waterman identity and the identity estimated by mashmap using datasets P1
(PacBio) and N1 (MinlON). Red dotted line corresponds to the error cutoff €, =0.15.

reads, our approach overestimates the identity. This is because PacBio sequencing produces mostly random
errors, whereas current nanopore errors are more clustered and systematic (Laehnemann et al., 2016).

8.2.4. Performance gain from future improvements in long-read sequencing technologies. We
discussed how mashmap adjusts its k-mer sampling rate for estimating the Jaccard similarity based on the
provided error rate (€,4) and minimum length (Iy) cutoffs in Section 5. In this study, we show that
improvement in read lengths and sequencing error rate can boost the performance of mashmap without
affecting its output accuracy. For dataset P1, memory usage by mashmap drops significantly with de-
creasing per-base error rate threshold e,,, from 0.20 to 0.10 (Fig. 6a), or increasing minimum length
threshold [, from 5 kbp to 30 kbp (Fig. 6b). Note that the reduced k-mer sampling rate from reference and
query sequences would also translate to faster mapping time. All this is achieved while maintaining high
recall scores (>90%) against the BWA-MEM mappings that satisfy the input thresholds (Fig. 6c, d).

8.3. Mapping to RefSeq

We perform mapping of a publicly available PacBio read set consisting of 127,565 reads (each =5 kbp)
sequenced from a mock microbial community containing 20 strains (Pacific Biosciences, 2014). To
demonstrate the scalability of our algorithm, we map these reads against the complete NCBI RefSeq
database (838 Gbp) containing sequences from 60,892 organisms. This experiment was executed using
default parameters (lp =5000, €4 =0.15, pyar =0.001) on an Intel Xeon CPU E7-8837 with 1 TB memory.
BWA-MEM and minimap could not index the entire RefSeq database at once with this memory limitation.
Mashmap took 29 CPU hours to index the reference and 16 CPU hours for mapping, with a peak memory
usage of 660 GB. Note that the same index can be repeatedly used for mapping sequences, conferring our
method the ability to process data in real-time. To check the accuracy of our results, we ran BWA-MEM
against the 20 known genomes of the mock community. The recall of mashmap against BWA-MEM
mappings ranged from 97.7% to 99.1% for all the 20 genomes in the mock community.

9. CONCLUSIONS

We have presented a fast approximate algorithm for mapping long reads to large reference genomes. Instead
of reporting base-level alignments, mashmap reports all reference intervals with sufficient Jaccard similarity
compared with the k-mer spectrum of the read. In contrast to earlier techniques based on MinHash and
winnowing, we provide a formal characterization of the mappings the algorithm is intended to uncover, and
provide a provably good algorithm for computing them. In addition, we report an estimate of the alignment error
rate tailored to each mapping under an assumed error model. Mashmap provides significant benefits in run-time,
memory usage, and scalability, while achieving precision and recall similar to alignment-based methods. Future
work aims to extend this method to split-read mapping, compressed reference databases, and additional error
models. For example, the winnowed-minhash operation could be applied to paths within a de Bruijn graph to
recover identity estimates and identify the database sequences most similar to a query sequence. Such ap-
proximate algorithms promise to help address the ever-increasing scale of genomic data.

https://www.liebertpub.com/action/showImage?doi=10.1089/cmb.2018.0036&iName=master.img-002.jpg&w=312&h=141

"IUSIY I[Py —smolng VML ‘%L6 2A0qe A[JU)SISUOD
are so100s asoy], "1ojowrered 07 Jurkrea yym sSurddewr NHN-VL IsureSe so100s [[809Y (P) "SOSBAIOUT SOSBD QUILIOPIOq JO UOTIORIJ ‘PIOYSAIY) P45 FuIseaIoop YIM "9%(07> Yonuw
S9JeI JOLIQ 9ARY [J 19SBIEP UI SPEal 0Igoed JO UONORI) JUedYIUSIS € 9snedaq ()g'(= """ 18 IoyS1y A[OATIR[QI ST QI0DS [[BOAT e} 9JON "9%(06 A0QE A[JUISISUOD I8 SAN[BA IS, "> Fuikiea
ym sjjoind ndut AJsmyes yorym ‘surddews NHIN-V A G ISureSe sa109s [[eoay (9) "G1°0 03 paxy St %5 axoy "dqy ot 01 dqy ¢ woy 07 3joInd YISu9[peal Jo sonjea Jurkiea yim dewyseuwr Jo
a8esn Krowow ur doi(q (q) "dgy ¢ 03 paxy s1 97 a19H "(1°() 03 07’0 WoJ "5 p[oysaIy) 2)el J0L1d dseq-1od wnwixew Jo sanfea Jurkrea ym dewysew jo oFesn Atowaw ur doiq (8) 9 "9HIg

0] yibus| peay XeW3 o1e) 10415 0 yibug| peay Xeu3 g1e) 10417
MOE MOZ MOL i AN 910 020 o€ 302 Mok Ml AN 910 020
-08 -0S -0 = -00 =
3 3
-09 -09 5 3 52 3
: Iy _ < <
“ g “g o vs &
-08 £ -08 8 -0l 8 2
(] . @
-06 -06 -Gl \n}u -G/ \@
o——o—0—0—0—0—ed 001 —e—90—0—90-00o -001 T o
o] 2 q e

"Ajuo ssn [euossed 104 6T//2/0T 18 WO GNALISER | MMM WOL} IOV MOVA AEVHEIT HLTVIH 40 SFLNLILSNI TYNOILVYN HIN Ad papeojumoq

777

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

778 JAIN ET AL.

10. APPENDIX

Below, we show that the estimator F(J, k) (defined in Section 2) for estimating the per-base error rate €
is a MLE.

Claim: Under the assumed read error model in Section 2, and given Jaccard similarity J, F(J, k)= ‘71 X
log (12+—Jj) is an MLE for error rate e.

Proof. We follow the same notation as in Section 2. If ¢, n are the counts of conserved k-mers and total
k-mers in a read, respectively, then J= 5.5, or c= IZJT’} Also, since € denotes the error rate, the probability
of a k-mer being conserved (denoted by 0) equals e~ . Note that the fraction of the conserved k-mers

follows a binomial distribution with parameters 0, n:
P(c:0,n)= (’2)00(1 —)=o)

Therefore, likelihood function L(J, n; 6) is given by:

L(J,n;e)=<’z>00(1—e)"f, where c= "

To compute 0,,, that maximizes likelihood L, we set % =0, therefore,

<n> (C : Q;Jel(l _emle)n_c_(n_c)egde(l _Hmle)”_c_l) =0
C
= ¢ (1=0mie) —(n—¢)0pe =0

Cc
= Bmle ==
n

= eiﬁml"k = —
n
2]
—€m[,>k —
= 1+7
= = _—1 x 1 Z—J
Cmle = 7~ X OB\ T
ACKNOWLEDGMENTS

This research was supported in part by the Intramural Research Program of the National Human Genome
Research Institute, National Institutes of Health, and the U.S. National Science Foundation under IIS-1416259.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Altschul, S.F., Madden, T.L., Schiffer, A.A., et al. 1997. Gapped blast and psi-blast: A new generation of protein
database search programs. Nucleic Acids Res. 250, 3389-3402.

Ashton, P.M., Nair, S., Dallman, T., et al. 2015. MinION nanopore sequencing identifies the position and structure of a
bacterial antibiotic resistance island. Ngt Biotechnol. 33, 296-300.

Berlin, K., Koren, S., Chin, C.-S., et al. 2015. Assembling large genomes with single-molecule sequencing and locality-
sensitive hashing. Nat Biotechnol. 33, 623-630.

Broder, A.Z. 1997. On the resemblance and containment of documents. Proceedings of the Compression and Com-
plexity of Sequences 1997, Salerno, Italy. pp. 21-29.

https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=25485618&crossref=10.1038%2Fnbt.3103&citationId=p_126
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&crossref=10.1093%2Fnar%2F25.17.3389&citationId=p_125
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=26006009&crossref=10.1038%2Fnbt.3238&citationId=p_127

Downloaded by NIH NATIONAL INSTITUTES OF HEALTH LIBRARY PACKAGE from www.liebertpub.com at 10/27/19. For persona use only.

ALGORITHM FOR MAPPING LONG READS 779

Chaisson, M.J., and Tesler, G. 2012. Mapping single molecule sequencing reads using basic local alignment with
successive refinement (BLASR): Application and theory. BMC Rigintormatics. 13, 238.

Chaisson, M.J.P., Huddleston, J., Dennis, M.Y., et al. 2015. Resolving the complexity of the human genome using
single-molecule sequencing. Nature. 517, 608-611.

Chin, C.-S., Alexander, D.H., Marks, P., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read
SMRT sequencing data. Nat Methods. 10, 563-569.

Delcher, A.L., Phillippy, A., Carlton, J., and Salzberg, S.L. 2002. Fast algorithms for large-scale genome alignment and
comparison. Nucleic Acids Res. 30, 2478-2483.

Fan, H., Ives, A.R., Surget-Groba, Y., and Cannon, C.H. 2015. An assembly and alignment-free method of phylogeny
reconstruction from next-generation sequencing data. BMC Genomics. 16, 1.

Koren, S., Harhay, G.P., Smith, T.P.L., et al. 2013. Reducing assembly complexity of microbial genomes with single-
molecule sequencing. Genome Biol. 14, 1.

Laehnemann, D., Borkhardt, A., and McHardy, A.C. 2016. Denoising DNA deep sequencing data—high-throughput
sequencing errors and their correction. Brief Bioinform. 17, 154-179.

Langmead, B., and Salzberg, S.L. 2012. Fast gapped-read alignment with bowtie 2. Nat Methods. 9, 357-359.

Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint ar-
Xiv:1303.3997.

Li, H. 2016. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Biginformatics 32,
2103-2110.

Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with Burrows—Wheeler transform. Biginformatics.
25, 1754-1760.

Li, H., and Homer, N. 2010. A survey of sequence alignment algorithms for next-generation sequencing. Brief
Bioinform. 11, 473-483.

Loman, N.J. Nanopore r9 rapid run data release. 2016. Available at: https://goo.gl/UIHVtL. Accessed September 8, 2016.

Loose, M., Malla, S., and Stout, M. 2016. Real time selective sequencing using nanopore technology. Nat Methods. 13,
751-754.

Ondov, B.D., Treangen, T.J., Melsted, P., et al. 2016. Mash: Fast genome and metagenome distance estimation using
minhash. Gepome Biol 17, 132.

Pacific Biosciences. Human microbiome mock community shotgun sequencing data. 2014. Available at: https://goo.gl/
kjRcLb. Accessed September 8, 2016.

Popic, V., and Batzoglou, S. 2017. A hybrid cloud read aligner based on MinHash and kmer voting that preserves
privacy. Nature Conynuy. 8, 15311. DOI: 10.1038/ncomms15311.

Quick, J., Loman, N.J., Duraffour, S., et al. 2016. Real-time, portable genome sequencing for ebola surveillance.
Nature. 530, 228-232.

Roberts, M., Hayes, W., Hunt, B.R., et al. 2004. Reducing storage requirements for biological sequence comparison.
Biginformatics. 20, 3363-3369.

Ruffalo, M., LaFramboise, T., and Koyutiirk, M. 2011. Comparative analysis of algorithms for next-generation se-
quencing read alignment. Bjginformatics. 27, 2790-2796.

Schleimer, S., Wilkerson, D.S., and Aiken, A. 2003. Winnowing: Local algorithms for document fingerprinting. Pro-
ceedings of the 2003 ACM SIGMOD international conference on Management of data, San Diego, CA, pp. 76-85.
Smith, K.C. Sliding window minimum implementations. 2016. Available at: https://goo.gl/8RC54b. Accessed Sep-

tember 8, 2016.
Smith, T.F., and Waterman, M.S. 1981. Identification of common molecular subsequences. J Mol Biol. 147, 195-197.

Address correspondence to:

Dr. Srinivas Aluru

School of Computational Science and Engineering
Georgia Institute of Technology

Atlanta, GA 30332

E-mail: aluru@cc.gatech.edu

Dr. Adam M. Phillippy

National Human Genome Research Institute
National Institutes of Health

Bethesda, MD 20894

E-mail: adam.phillippy @nih.gov

https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=26840485&crossref=10.1038%2Fnature16996&citationId=p_146
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=22388286&crossref=10.1038%2Fnmeth.1923&citationId=p_136
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=7265238&crossref=10.1016%2F0022-2836%2881%2990087-5&citationId=p_151
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=23644548&crossref=10.1038%2Fnmeth.2474&citationId=p_131
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=21856737&crossref=10.1093%2Fbioinformatics%2Fbtr477&citationId=p_148
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=27153593&crossref=10.1093%2Fbioinformatics%2Fbtw152&citationId=p_138
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=27323842&crossref=10.1186%2Fs13059-016-0997-x&citationId=p_143
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=25553907&crossref=10.1186%2Fs12864-015-1647-5&citationId=p_133
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=28508884&crossref=10.1038%2Fncomms15311&citationId=p_145
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=26026159&crossref=10.1093%2Fbib%2Fbbv029&citationId=p_135
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=20460430&crossref=10.1093%2Fbib%2Fbbq015&citationId=p_140
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=20460430&crossref=10.1093%2Fbib%2Fbbq015&citationId=p_140
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=25383537&crossref=10.1038%2Fnature13907&citationId=p_130
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=15256412&crossref=10.1093%2Fbioinformatics%2Fbth408&citationId=p_147
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=27454285&crossref=10.1038%2Fnmeth.3930&citationId=p_142
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=12034836&crossref=10.1093%2Fnar%2F30.11.2478&citationId=p_132
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=19451168&crossref=10.1093%2Fbioinformatics%2Fbtp324&citationId=p_139
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&pmid=22988817&crossref=10.1186%2F1471-2105-13-238&citationId=p_129
https://www.liebertpub.com/action/showLinks?doi=10.1089%2Fcmb.2018.0036&crossref=10.1186%2Fgb-2013-14-9-r101&citationId=p_134

