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High throughput ANI analysis of 90K prokaryotic
genomes reveals clear species boundaries
Chirag Jain1,2, Luis M. Rodriguez-R 3,4, Adam M. Phillippy2, Konstantinos T. Konstantinidis3,4 &

Srinivas Aluru1,5

A fundamental question in microbiology is whether there is continuum of genetic diversity

among genomes, or clear species boundaries prevail instead. Whole-genome similarity

metrics such as Average Nucleotide Identity (ANI) help address this question by facilitating

high resolution taxonomic analysis of thousands of genomes from diverse phylogenetic

lineages. To scale to available genomes and beyond, we present FastANI, a new method to

estimate ANI using alignment-free approximate sequence mapping. FastANI is accurate for

both finished and draft genomes, and is up to three orders of magnitude faster compared to

alignment-based approaches. We leverage FastANI to compute pairwise ANI values among

all prokaryotic genomes available in the NCBI database. Our results reveal clear genetic

discontinuity, with 99.8% of the total 8 billion genome pairs analyzed conforming to >95%

intra-species and <83% inter-species ANI values. This discontinuity is manifested with or

without the most frequently sequenced species, and is robust to historic additions in the

genome databases.
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Large collections of prokaryotic genomes with varied ecologic
and evolutionary histories are now publicly available. This
deluge of genomic data provides the opportunity to more

robustly evaluate important questions in microbial ecology and
evolution, as well as underscores the need to advance existing
bioinformatics approaches for the analysis of such big genomic
data. One such question is whether bacteria (and other microbes)
form discrete clusters (species), or, due to high frequency of
horizontal gene transfer (HGT) and slow decay kinetics, a con-
tinuum of genetic diversity is observed instead. Studies based on a
small number of closely related genomes have shown that genetic
continuum may prevail1. On the other hand, other studies have
argued that HGT may not be frequent enough to distort species
boundaries, or that organisms within species exchange DNA
more frequently compared to organisms across species, thus
maintaining distinct clusters2. An important criticism of all these
studies is that they have typically been performed with isolated
genomes in the laboratory that may not adequately represent
natural diversity due to cultivation biases, or were based on a
small number of available genomes from a few phylogenetic
lineages, which does not allow for robust conclusions to emerge.
Therefore, it is still unclear if well-defined clusters of genomes are
evident among prokaryotes and how to recognize them. Defining
species is not only an important academic exercise but also has
major practical consequences. For instance, the diagnosis of dis-
ease agents, the regulation of which organisms can be transported
across countries and which organisms should be under quar-
antine, or the communication about which organisms or mixtures
of organisms are beneficial to human, animals, or plants, are all
deeply-rooted on how species are defined.

One fundamental task in assessing species boundaries is the
estimation of the genetic relatedness between two genomes. In
recent years, the whole-genome average nucleotide identity (ANI)
has emerged as a robust method for this task, with organisms
belonging to the same species typically showing ≥95% ANI
among themselves3,4. ANI represents the average nucleotide
identity of all orthologous genes shared between any two genomes
and offers robust resolution between strains of the same or closely
related species (i.e., showing 80–100% ANI). The ANI measure
does not strictly represent core genome evolutionary relatedness,
as orthologous genes can vary widely between pairs of genomes
compared. Nevertheless, it closely reflects the traditional micro-
biological concept of DNA–DNA hybridization relatedness for
defining species3, as it takes into account the fluid nature of the
bacterial gene pool and hence implicitly considers shared
function.

Sequencing of 16S rRNA genes is another highly popular,
alternative traditional method for defining species and assessing
their evolutionary uniqueness. However, methods based on sin-
gle5 or a set of universally conserved genes6, such as 16S rRNA
and ribosomal protein-encoding genes are often not applicable to
incomplete genomes (e.g., the genes are not assembled), and these
genes typically show higher sequence conservation than the
genome average. Consequently, analysis of universal genes does
not provide sufficient resolution at the species level7, and has
frequently resulted in lack of clear genetic discontinuities among
closely related taxa6. ANI offers several important advantages
such as higher resolution among closely related genomes. Finally,
ANI can be estimated among draft (incomplete) genome
sequences recovered from the environment using metagenomic
or singe-cell techniques that do not encode universally conserved
genes but encode at least a few hundred shared genes, greatly
expanding the number of sequences that can be studied and
classified compared to a universal gene-based approach.
Accordingly, ANI has been recognized internationally for its
potential for replacing DNA–DNA hybridization as the standard

measure of relatedness, as it is easier to estimate and represents
portable and reproducible data8,9. Despite these strengths, to date
ANI-based methods could not be applied for a large number of
genomes due to their reliance on alignment-based searches [e.g.,
BLAST10], which are computationally expensive due to the
quadratic time complexity of alignment algorithms11. As such,
faster alternatives to BLAST such as BLAT12, Usearch13 or
DIAMOND14 (after translation to protein level) for computing
nucleotide alignments also suffer from the same limitation.

Several variations of the original ANI calculation algorithm
have been proposed15–18, however these mainly modify the spe-
cific approach to identify shared genes and do not speedup the
calculation substantially since they are all alignment-based.
Accordingly, it is nearly impossible to calculate ANI values
among the available microbial genomes to date, in the order of a
hundred thousand, based on these approaches and commonly
available computational resources. Importantly, the available
genomic data is estimated to be a small fraction of the extant
prokaryotic diversity19,20, and the number of new genomes
determined continues to grow exponentially. Therefore, new
computational solutions are needed to scale-up and compre-
hensively analyze the available and forthcoming data.

A couple of such solutions have been proposed recently, bor-
rowing concepts from ‘big data’ analysis in other scientific
domains. MinHash is a technique for quick estimation of simi-
larity of two sets, initially developed for the detection of near-
duplicate web documents in search engines at the scale of the
World Wide Web21. Recently, this technique was successfully
adapted for designing new fast algorithms in bioinformatics such
as for genome assembly22,23 and long read mapping problems24.
Ondov et al.25 provided the first proof-of-concept implementa-
tion called Mash for fast estimation of ANI using this technique.
Even though Mash has been reported to be multiple orders of
magnitude faster than alignment-based ANI computation, a
straight-forward adoption of the MinHash technique to the
problem of computing ANI has been found to be inaccurate for
incomplete draft genomes26. Further, there is a limit on how well
Mash can approximate ANI especially for moderately divergent
genomes (e.g., showing 80–90% ANI), as Mash similarity mea-
surement is not restricted to the shared genomic regions, whereas
ANI considers only the shared genome.

In this study, we alleviate the computational bottleneck in ANI
computation by developing FastANI, a novel algorithm utilizing
Mashmap24 as its MinHash based alignment-free sequence
mapping engine. FastANI provides ANI values that are essentially
identical to the alignment-based ANI values for both complete
and draft quality genomes that are related in the 80 to 100%
nucleotide identity range. Therefore, FastANI enables accurate
estimation of pairwise ANI values for large cohorts of genomes or
evaluation of the novelty of a query draft genome by comparing it
against the full collection of available prokaryotic genomes.

Results
Datasets. To test accuracy and speed, we evaluated FastANI on
both high-quality closed genomes from NCBI RefSeq database as
well as publicly available draft genome assemblies. We first
removed poor quality genome assemblies with low N50 length
(<10Kbp). In total, five datasets were used, D1 through D5 (see
Table 1). Dataset D1 is the set of closed prokaryotic genomes
downloaded from RefSeq database. Datasets D2, D3, and D4
include draft genome assemblies of isolates of Bacillus cereus s.l.,
Escherichia coli, and Bacillus anthracis, respectively, downloaded
from the prokaryote section of the NCBI Genome database.
Dataset D5 includes a recently published large collection of
metagenome-assembled genomes (MAGs)27. These sizable
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datasets represent genomes showing different levels of identity
among themselves and varying values of completeness and
assembly quality (Supplementary Fig. 1). For each dataset, one
genome was selected as the query genome and its ANI was
computed with every genome in the complete dataset. In all cases
except in D1, query genome strains were selected randomly.

Accuracy. We evaluated FastANI against the BLASTn based
method16 of computing ANI, henceforth referred as ANIb, and
the ANI values predicted by the Mash25 (v1.1) tool. User doc-
umentation for Mash recommends using larger sketch size (i.e., k-
mer sample) than the default to obtain higher accuracy25.
Accordingly, we ran Mash with both the default sketch size of 1 K
as well as increase it up to 100 K.

FastANI achieves near perfect linear correlation with ANIb on
all datasets D1–D5 (Fig. 1 and Table 2). Mash results improve
with increasing sketch size, particularly for D1. However, even
when executed with the largest sketch size of 100 K, Mash results
diverge from ANIb values on datasets D1, D3, and D4. For D1,
this primarily appears to be caused by divergent genomes (e.g.,
showing <90% ANI). For D3, Mash diverges on closely related

genomes due to fragmented and incomplete genome assemblies
of the draft genomes. Dataset D4 is challenging because its
constituent genomes are closely related strains of Bacillus
anthracis, with ANIb > 99.9 for all the pairs. FastANI provides
much better precision than Mash in D4 dataset, and therefore,
can be used to discriminate between very closely related microbial
strains such as those of different epidemic outbreaks. However,
for two genomes out of the 464, FastANI estimates are diverging
from ANIb. To investigate further, we visualized gene synteny
pattern using Mauve28 and found that these two genome
sequences have many re-arrangements with respect to the query
genome (Supplementary Fig. 2). Given that B. anthracis strains
typically show high genome synteny29, these results indicate that
the two genomes were poorly assembled. Incorrect data will yield
unpredictable results not only with FastANI but using any
method that assesses genetic relatedness, including phylogeny-
based methods. If the two incorrect B. anthracis assemblies
are removed, FastANI’s correlation with ANIb improves to 0.944
in D4.

These correlation results demonstrate that FastANI provides
significant quality improvement over Mash (see Table 2), and can
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Fig. 1 Correlation of FastANI and Mash-based ANI output with ANIb values for datasets D1–D5. Because FastANI assumes a probabilistic identity cutoff
that is set to 80% by default, it reports 76, 570, 4271, 464, and 130 genome matches for the individual queries in datasets D1–D5 respectively. To enable a
direct quality comparison against FastANI, Mash is executed for only those pairs that are reported by FastANI. Notice that each dataset encompasses a
different nucleotide identity range (x-axes). Gray line represents a straight line y= x plot for reference. Pearson correlation coefficients corresponding to
these plots are listed separately in Table 2. Last plot shows error of these methods w.r.t. ANIb using all five datasets

Table 1 Datasets used for testing accuracy and speed of FastANI

Id Reference clade No. of genomes Median N50 (Mbp) Query genome

D1 NCBI RefSeq 1675 3.14 E. coli K-12 MG1655
D2 Bacillus cereus s.l. 570 1.16 B. anthracis 52-G
D3 Escherichia coli 4271 0.15 E. coli 0.1288
D4 Bacillus anthracis 464 0.59 B. anthracis 2000031001
D5 MAGs27 7897 0.04 Acinetobacter sp. UBA6007
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be a reasonable substitute for ANIb. Although this experiment
was conducted with single query genome per dataset, increasing
the count of query genomes did not affect our conclusions
(Supplementary Fig. 3). Further, FastANI estimates were accurate
for draft genomes, in the range of 20–100% completeness based
on real (Supplementary Fig. 4) or simulated datasets (Supple-
mentary Fig. 5), implying that FastANI can tolerate variable
assembly quality, completeness, and contamination. Most
importantly, it correlates well with ANIb in the desired identity
range of 80–100%.

Computational speedup. FastANI is designed to efficiently
process large assembly datasets with modest compute resources.
For FastANI’s sequential and parallel runtime evaluation, we used
a single compute node with two Intel Xeon E5-2698 v4 20-core
processors. First, we show runtime comparison of FastANI and
ANIb using serial execution (single thread, single process) using
all datasets in Table 3. FastANI operation consists of indexing
phase followed by compute phase, for which we measured the
runtime separately. For any database, indexing all the reference
genomes needs to be done only once, and thereafter, FastANI can
compute ANI estimates for any number of input query genomes
against the reference genomes. Therefore, speedup in Table 3 is
measured with respect to FastANI compute time. We observe that
the runtime improvement due to FastANI varied from 50x for D3
to 4608x for D5. FastANI speedup is much higher on D1 and D5
because these datasets contain a diverse set of prokaryotic gen-
omes. This is attributable to the fact that the algorithm underlying
FastANI is able to prune distant genomes ANI � 80%ð Þ effi-
ciently. On the contrary, ANI values for all genomes in datasets
D2-D4 were high (>80%). Note that replacing BLASTn with
faster alignment software in ANIb does not improve its perfor-
mance significantly. A recent survey of ANI methods18 reported
speedups of only up to 4.7x by using Usearch13 and MUMmer30,

which is also accompanied with lower accuracy among moder-
ately related genomes in the 75–90% ANI range.

To accelerate ANI computation even further, FastANI can be
trivially parallelized using multi-core parallel execution. One way
to achieve this is to split the reference genomes in several equal-
size parts. This way, each instance of FastANI process can search
query genome(s) against each part of the reference database
independently. We utilized this scheme and evaluated scalability
using up to 80 FastANI parallel processes. Compared to the
sequential execution time listed in Table 3, runtime of the
compute phase reduced to 2, 8, 46, 6, and 1 s for datasets D1–D5,
respectively (Fig. 2). These results confirm that FastANI can be
used to query against databases containing thousands of genomes
in a few seconds.

For the above experiments, FastANI required a maximum 62
GB memory for D5, our largest dataset for this experiment. For
databases much larger than D5, peak memory usage can be
reduced by either distributing the compute across multiple nodes
in a cluster or processing chunks of the reference database one by
one, as necessary.

Large-scale pairwise comparison indicates genetic dis-
continuity. We examined the distribution of pairwise ANI values
between all 91,761 prokaryotic assemblies that existed in the
NCBI Genome database as of 15 March 2017. Prior to analysis,
we removed 2262 genomes due to short N50 length (<10 Kbp). In
our evaluation, the ANI between each pair of genomes A and B is
computed twice, once with A as query genome and again with B
as query genome. This choice did not meaningfully alter the ANI
value reported by FastANI unless the draft genomes are incor-
rectly assembled or contaminated (Supplementary Fig. 6). Com-
puting pairwise ANI values for the entire database took 77 K CPU
hours for all 8.01 billion comparisons. To our knowledge, this is
the largest cohort of genomes for which ANI has been computed.
In comparison, the largest previously published ANI analysis
included 86 million comparisons and took 190 K CPU hours7.
Among the total of 8.01 billion pairwise comparisons,
679,765,100 yielded ANI values in the 76–100% range. The dis-
tribution of these ANI values reveals a discontinuity, i.e., the
resulting ANI values show a strong bimodal distribution, with a
wide gap or lack of values between the two peaks of the dis-
tribution. Specifically, FastANI reported only 17,132,536 ANI
values (i.e., 2.5% of the 679,765,100 pairs) within the range of 83
to 95%. When performing this analysis using Mash, the bimodal
distribution of ANI values was persistent (Supplementary Fig. 7).

The frequency of intra- vs. inter-species genomes sequenced in
the NCBI database has changed over time, with earlier sequencing
efforts targeting distantly related organisms in order to cover
phylogenetic diversity while efforts in more recent years targeted
more closely related organisms for micro-diversity or epidemio-
logical studies (Supplementary Fig. 8). We confirmed that
discontinuity pattern has been maintained with genome sets
from different time points in the last ten years (Fig. 3b). In
previous taxonomic studies, 95% ANI cutoff is the most
frequently used standard for species demarcation. Density curves
in Fig. 3b show that the two peaks consistently lie on either side of
the 95% ANI value.

To further test the validity of the hypothesis that the 95% ANI
value can demarcate species boundaries, we examined correlation
between standing nomenclature and the 95% ANI-based
demarcation. As per this standard, we should expect a pair of
genomes to have ANI value ≥95% if and only if both genomes are
classified at the same species in the existing taxonomy. From the
complete set of 89,499 genomes, we identified the subset for
which we could determine the named species for each genome.

Table 3 Comparison of execution time of FastANI vs. ANIb

Dataset FastANI ANIb (s) Speedup

Indexing (s) Compute (s)

D1 468.2 16.76 13,113 782x
D2 195.7 264.8 18,155 69x
D3 1538 1981 99,317 50x
D4 128.8 214.5 11,051 52x
D5 2784 14.88 68,571 4608x

Speedup in the last column is measured as the ratio of ANIb’s runtime and FastANI’s compute
time

Table 2 Accuracy evaluation of ANI values computed using
FastANI and Mash

Dataset FastANI Mash

−s 103 −s 104 −s 105

D1 0.995 0.594 0.932 0.935
D2 0.999 0.996 0.997 0.997
D3 0.995 0.944 0.944 0.944
D4 0.681 −0.040 0.003 0.010
D5 0.998 0.634 0.997 0.999

The evaluation is done by measuring their Pearson correlation coefficients with ANIb values.
Mash is executed with sketch sizes (−s): 1000 (default), 10,000, and 100,000. FastANI
achieves >0.99 correlation with ANIb in all cases but D4. Its correlation value on D4 improves
from 0.681 to 0.944 if the two poor assemblies present in D4 are not taken into account
The best results are highlighted in bold
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Whenever available (9% of the total genomes), we recovered the
assigned species using the links of NCBI taxonomy. For the
remainder of the genomes, we inferred the species from the
organism name given in the GenBank file, excluding all entries
with ambiguous terms (sp, cf, aff, bacterium, archeon, endosym-
biont), resulting in the species-wise classification of an additional
78% of the genomes. The remainder 13% of the genomes lacked
clear nomenclature and hence could not be reliably assigned to a
named species for the purpose of this test.

We evaluated the distribution of ANI values in comparison to
the named species that the corresponding genomes were assigned
to (Fig. 3c). The ≥95% ANI criterion reflects same named species
with a recall frequency of 98.5% and a precision of 93.1%. We
further explored the values affecting precision, i.e., 6.9% of ANI
values above 95% that were obtained for genomes assigned to
different named species. Among those, 5.6% are due to
comparisons between Escherichia coli and Shigella spp., a case
in which the inconsistency between taxonomy and genomic
relatedness is well documented1 (highlighted in green in Fig. 3c).
The remaining 1.3% of the cases mostly exist within the
Mycobacterium genus (0.5%), which includes a group of closely
related named species as part of the M. tuberculosis complex such
as M. tuberculosis (reference), M. canettii (ANI 97–99% against

reference), M. bovis (ANI 99.6%), M. microti (ANI 99.8–99.9%),
and M. africanum (ANI 99.9%), among others. An additional
0.2% of the cases correspond to comparisons between Neisseria
gonorrhoeae and N. meningitidis, two species with large
representation in the database and ANI values close to 95%
(Inter-quartile range: 94.9–95.2%). Excluding the cases of E. coli
vs. Shigella spp. alone, precision increases to 98.7%. With both
recall and precision values ≥98.5%, these results corroborate the
utility of ANI for species demarcation, which is consistent with
previous studies based on a much smaller datasets of
genomes4,7,15,31.

Discussion
Our results indicate that FastANI robustly estimates ANI values
between both complete and draft genomes while reducing the
computing time by two to three orders of magnitude. We lever-
aged the computational efficiency offered by FastANI to evaluate
the distribution of ANI values in a set of over 90,000 genomes,
and demonstrate that genetic relatedness discontinuity can be
consistently identified among these genomes around 95% ANI.
This discontinuity is recovered with or without the most fre-
quently represented species in the database (Supplementary
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Fig. 9), is robust to historic additions in the public databases
(Fig. 3b), and it represents an accurate threshold for demarcating
almost all currently named prokaryotic species (Fig. 3c). While
this genetic discontinuity has been observed previously4,7,15,31,
the FastANI-based results reported here show a sharper dis-
continuity while using a much larger set of genomes by at least an
order of magnitude.

The genetic discontinuity was apparent even when the species
with large count of sequenced representatives such as pathogenic
bacteria of human or animal hosts were iteratively removed from
the analysis (Supplementary Fig. 9), or when genomes were
randomly drawn with species-dependent probabilities that
ensured equal representation of highly sampled and sparsely
sampled species in the final set (Supplementary Fig. 10). To
account for the possible influence of cultivation bias on our
conclusions, we sampled five genomes from each of the 750
named species with ≥5 genomes present in the database. Even
though the percentage of the inter-species pairs remains small
within the 83–95% valley range (0.2%), discontinuity appears to
be less pronounced (Supplementary Fig. 10). The latter was
attributable to the fact that several highly sampled species have
closely related species (of “intermediate” identity) that include
relatively fewer sequenced representatives; thus, subsampling the
genomes of the former species affected more the frequency of
ANI values in the 95–100% relative to the 83–95% range. These
results might indicate that cultivation biases could have accoun-
ted, at least in part, for the discontinuity observed. Cultivation
biases could include, for instance, a historical tendency to pre-
serve the isolates that meet the known/expected phenotypic cri-
teria of the species and discard the remaining ones, which could
represent “outlier” or “intermediate” genomes in terms of phe-
notypic and genetic similarity, or biases of the cultivation media
and conditions against such “intermediate” genomes. However,
given that these highly sampled species represent several distinct
major prokaryotic lineages (Supplementary Fig. S8), it is likely
that the discontinuity represents a real biological signature and is
not driven by cultivation or other biases (or the latter should have
been uniformly applied to several different isolation procedures
and lineages of the highly sampled species and their close rela-
tives). It is also important to note that these results are consistent
with cultivation-independent metagenomics analysis of natural
microbial communities, which have showed that the communities
are composed of predominantly sequence-discrete populations32.
Moreover, the discontinuity pattern observed using the collection

of 8000 MAGs recovered from different habitats (Fig. 1, D5) is
remarkably similar to the discontinuity observed among isolate
genomes (Fig. 3).

The biological mechanisms underlying this genetic dis-
continuity are not clear but should be subject of future research
for a more complete understanding of prokaryotic species. The
mechanisms could involve a dramatic drop in recombination
frequency around 90–95% ANI, which could account for the
discontinuity if bacteria evolve sexually33, ecological sweeps that
remove diversity due to competition34,35, or stochastic neutral
processes36,37. A genomic nucleotide diversity of 5–10% translates
to tens of thousands of years of evolution time, which provides
ample opportunities for ecological or genetic sweeps to occur.
Nonetheless, the existence of genetic discontinuity among 90 K
genomes represents a major finding that can help define species
more accurately and has important practical consequences for
recognizing and communicating about prokaryotic species.

As a general-purpose research tool, we expect FastANI to be
useful for analysis of both clinical and environmental microbial
genomes. It can be used for studying the inter- and intra-species
diversity within large collections of genomes, including genomes
showing various levels of completenes (Supplementary Fig. S5).
FastANI and Mash gave comparable ANI estimates for complete
genomes, but the advantages of FastANI for draft (incomplete),
divergent (<90% ANI) or highly related (>99.5% ANI) genomes
are significant (Fig. 1), and thus, FastANI should be the preferable
method. FastANI should also accelerate the study of the novelty
of new species or phenotypic similarity of a query genome
sequence in comparison to all available genomes.

Methods
The Mashmap sequence mapping algorithm. Given a query sequence, Mash-
map24 finds all its mapping positions in the reference sequence(s) above a user
specified minimum alignment identity cutoff I0 with high probability. Mashmap
avoids direct alignments, but instead relates alignment identity (I) between
sequences A and B to Jaccard similarity of constituent k-mers (J) under the Poisson
distribution model:

IðA;BÞ=100 ¼ 1þ 1
k
´ log

2 � JðA;BÞ
1þ JðA;BÞ

� �
; ð1Þ

where k is the k-mer size25.
To estimate the Jaccard similarity itself, Mashmap uses a winnowed-MinHash

estimator. This estimator requires only a small sample of k-mers from the query
and reference sequences to be examined24.

90%82% 88% 92%91%
m1 m2 m3 m4 m5

Query genome fragments

Reference genome l

l

Mashmap

Qry

Ref

0 kb 500 kb 1000 kb 1500 kb

0 kb 500 kb 1000 kb 1500 kb

a b

Fig. 4 FastANI algorithm explained using synthetic and real examples. a Illustration of FastANI’s work-flow for computing ANI between a query genome
and a reference genome. Five mappings are obtained from three query fragments using Mashmap24. Mforward saves the maximum identity mapping for
each query fragment. In this example, Mforward= {m2, m4, m5}. From this set, Mreciprocal picks m4 and m5 as the maximum identity mapping for each
reference bin. Mapping identities of orthologous mappings, thus found in Mreciprocal, are finally averaged to compute ANI. b FastANI supports visualization
of the orthologous mappings Mreciprocal that are used to estimate the ANI value using genoPlotR39. In this figure, ANI is computed between Bartonella
quintana strain (NC_018533.1) as query and Bartonella henselae strain (NC_005956.1) as reference. Red line segments denote the orthologous mappings
computed by FastANI for ANI estimation
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FastANI extends Mashmap to compute ANI. Previously established and widely
used implementations of ANI begin by either identifying the protein coding
genomic fragments15 or extracting approximately 1 Kbp long overlapping frag-
ments3 from the query genome. These fragments are then mapped to the reference
genome using BLASTn10 or MUMmer30, and the best match for each fragment is
saved. This is followed by a reverse search, i.e., swapping the reference and query
genomes. Mean identity of the reciprocal best matches computed through forward
and reverse searches yields the ANI value. Rationale for this bi-directional
approach is to bound the ANI computation to orthologous genes and discard the
paralogs. In designing FastANI, we followed a similar approach while avoiding the
alignment step.

FastANI first fragments the given query genome (A) into non-overlapping
fragments of size l. These l-sized fragments are then mapped to the reference
genome (B) using Mashmap. Mashmap first indexes the reference genome and
subsequently computes mappings as well as alignment identity estimates for each
query fragment, one at a time. At the end of the Mashmap run, all the query
fragments f1; f2 ¼ f jAj=lb c are mapped to B. The results are saved in a set M
containing triplets of the form 〈f, i, p〉, where f is the fragment id, i is the identity
estimate, and p is the starting position where f is mapped to B. The subset ofM (say
Mforward) corresponding to the maximum identity mapping for each query
fragment is then extracted. To further identify the reciprocal matches, each triplet
〈f, i, p〉 in Mforward is ‘‘binned’’ based on its mapping position in the reference, with
its value updated to f ; i; binh i ¼ f ; i; p=lb ch i. Through this step, fragments which
are mapped to the same or nearby positions on the reference genome are likely to
get equal bin value. Next, Mreciprocal filters the maximum identity mapping for each
bin. Finally, FastANI reports the mean identity of all the triplets in Mreciprocal (See
Fig. 4 for an example and visualization).

We define τ as an input parameter to FastANI to indicate a minimum count of
reciprocal mappings for the resulting ANI value to be trusted. It is important to
appropriately choose the parameters (l, τ, and I0).

FastANI algorithm parameter settings. FastANI is targeted to estimate ANI in
the 80–100% identity range. Therefore, it calls Mashmap mapping routine with an
identity cutoff I0= 80%, which enables it to compute mappings with alignment
identity close to 80% or higher.

Choosing an appropriate value of query fragment l requires an evaluation of the
trade-off between FastANI’s computation efficiency and ANI’s estimation
accuracy. Higher value of l implies less number of non-overlapping query
fragments, thus reducing the overall runtime. However, if l is much longer than the
average gene length, a fragment could span more than one conserved segment,
especially if the genome is highly recombinant. We empirically evaluated different
values of l and set it to 3 Kbp (Supplementary Table 1). Last, we set τ to 50 to avoid
incorrect ANI estimation from just a few matching fragments between genomes
that are too divergent (e.g., showing <80% ANI). With l= 3 Kbp, τ= 50 implies
that we require at least 150Kbp homologous genome sequence between two
genomes to make a reliable ANI estimate, which is a reasonable assumption for
both complete and incomplete genome assemblies based on our previous study38.

Code availability. FastANI (v1.0) can be downloaded free at https://github.com/
ParBLiSS/FastANI/releases.

Data availability
All the datasets (genome sequences, accession numbers) used in this study are
available at http://enve-omics.ce.gatech.edu/data/fastani.
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