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Abstract—Aligning DNA sequences to an annotated reference is
a key step for genotyping in biology. Recent scientific studies have
demonstrated improved inference by aligning reads to a variation
graph, i.e., a reference sequence augmented with known genetic
variations. Given a variation graph in the form of a directed
acyclic string graph, the sequence to graph alignment problem
seeks to find the best matching path in the graph for an input
query sequence. Solving this problem exactly using a sequential
dynamic programming algorithm takes quadratic time in terms
of the graph size and query length, making it difficult to scale to
high throughput DNA sequencing data. In this work, we propose
the first parallel algorithm for computing sequence to graph
alignments that leverages multiple cores and single-instruction
multiple-data (SIMD) operations. We take advantage of the
available inter-task parallelism, and provide a novel blocked
approach to compute the score matrix while ensuring high
memory locality. Using a 48-core Intel Xeon Skylake processor,
the proposed algorithm achieves peak performance of 317 billion
cell updates per second (GCUPS), and demonstrates near linear
weak and strong scaling on up to 48 cores. It delivers significant
performance gains compared to existing algorithms, and results
in run-time reduction from multiple days to three hours for the
problem of optimally aligning high coverage long (PacBio/ONT)
or short (Illumina) DNA reads to an MHC human variation
graph containing 10 million vertices.

Index Terms—parallel algorithm, architecture-aware optimiza-
tion, variation graphs, sequence alignment, genomics

I. INTRODUCTION

Examining an individual’s genetic variations is typically

carried out by mapping DNA fragments sequenced from the

individual to an annotated reference. Accuracy of this process

is critical to draw correct conclusions in biological and medical

scenarios [1]. The traditional practice in genomics has been

to represent the reference as a sequence. Linear representation

of a genome can however, only capture a single individual (in

fact, a single haplotype copy within the individual), and there-

fore does not use the extensive genomics data now available

across multiple individuals and populations. Recent biological

studies have demonstrated superior genotyping accuracy in

variant-rich regions of the human genome by replacing the

reference sequence with a variation graph, i.e., a reference

sequence augmented with known genetic variations [2]–[5].

The graph-based representations of the reference sequences

are increasingly gaining traction due to their natural ability

to succinctly represent population-wide variations [6]–[8].

Continued improvements in sequence to sequence alignment

algorithms were pivotal to establish it as a fundamental routine

for measuring evolutionary distance in biology [9]. Similarly,

fast and accurate sequence to graph aligners are required to

fully realize the potential of graph-based reference represen-

tations.

Broadly, the variation graph is a directed graph with ver-

tices or edges labeled with DNA sequences. Following prior

works [10]–[13], we represent the variation graph as a directed

acyclic graph (DAG), with each vertex labelled with a DNA

base. Standard dynamic programming (DP) based sequence to

sequence alignment algorithms [14] can be extended to work

with DAGs [15]. For an input DAG G(V,E) and a query
sequence of length m, sequence to DAG alignment problem
can be solved sequentially in O(m(|V |+|E|)) time [15], [16].
The sequence to DAG alignment problem becomes highly

compute-intensive on real input data sets. The variation graphs

associated with some of the most diverse regions (e.g., MHC,

LRC segments) in the human genome contain vertices and

edges in the order of millions. Moreover, we are typically

required to solve several instances of this problem for each

query read in high-throughput sequencing data sets, further

adding to the computational complexity. As a consequence,

time to solution using a naive sequential algorithm would

require multiple days or months. To resolve this computational

bottleneck, the focus of this work is to develop the first parallel

algorithm that takes full advantage of the modern wide SIMD

multi-core architectures.

Different sequencing technologies produce reads of varying

characteristics. Normally, the fixed length (100 or 150 bp)
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reads from Illumina sequencers are referred to as short-reads,

whereas the much longer variable length reads produced

by PacBio and ONT sequencers are referred to as long

reads (mean length >10 Kbp). Several seed-and-extend based
heuristic algorithms have been recently proposed for solving

the alignment problem that can handle large data sets [8],

[13], [17]–[20]. These algorithms so far have mainly focused

on short read mapping. Typically, such algorithms employ

an index based approach to quickly narrow down the search

space during the alignment process. In particular, substrings

that span all possible alternatives in the graph are indexed

using classic string data structures. Due to the exponentially

growing potential number of paths as a function of number

of variants, existing heuristics do not translate into a practical

solution for dense variant-rich graph regions or aligning long

reads [21]. We seek to remedy this by accelerating the exact

DP algorithm which is suitable for both long and short read

data, and complex graphs.

In this work, we develop a three-stage parallel approach

to accelerate the dynamic-programming based sequential al-

gorithm, where the first two stages compute the two end

points of an optimal alignment, and the last stage executes

a traceback procedure to compute base-to-base alignments.

Each of these stages leverages inter-task parallelism such

that multiple reads are processed independently in parallel.

In addition, we propose a new blocked strategy to compute

the DP score matrix that ensures high memory locality, thus

allowing us to efficiently utilize wide SIMD width and multi-

ple cores without exceeding constraints imposed by memory

bandwidth. These optimizations enable near-linear weak and

strong scaling behavior of the algorithm using 48 cores. As a

result, we are able to align long and short MHC read sets with

10x coverage to MHC variation graphs in about three hours

or less, which would otherwise take multiple days to process.

Finally, we show superior performance in terms of runtime

and accuracy against existing exact and heuristic algorithms,

respectively. The C++ implementation of our algorithm is

available as open-source on GitHub1.
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Fig. 1: An example of an alignment of a sequence along a

path in a DAG, while accounting for sequence errors (denoted

in red).

1github.com/ParBLiSS/PaSGAL

II. BACKGROUND

A. The Sequence to Graph Alignment Problem

Although the primary motivation for this work lies in

the domain of biological data analysis, string algorithms for

approximate matching to graphs have been actively studied for

the past three decades for different application areas, e.g., text

retrieval, matching regular expressions, and pattern matching

on hypertext [16], [22]–[24].

The classic sequence to sequence alignment problems for

approximate matching are typically classified as either global,

semi-global or local alignment. These problems can be solved

exactly using dynamic programming (e.g., using Needleman-

Wunsh [25] or Smith-Waterman [14] algorithms). Given a

scoring scheme to reward matches and penalize mismatches,

insertions and deletions, the alignment problems are formu-

lated to compute alignments that achieve maximum score.

Similarly, when aligning a query sequence to a variation

graph, the problem is to identify the highest scoring alignment

between the query sequence and any path in the graph.

In this work, we focus on the sequence to DAG align-

ment problem in local mode, i.e., computing local regions

of similarity [14]. The proposed parallelization algorithm in

this paper generalizes to other alignment modes, but they are

not discussed for brevity. Following previous works [2], [10]–

[13], we consider variation graph as a DAG G(V,E, σ), where
function σ assigns each vertex a character from the alphabet

set Σ = {A,C,G, T} describing DNA bases. Naturally, any
path p in the graph spells a DNA sequence. Let q ∈ Σ∗ be a
query sequence of length m.

Definition. Sequence to DAG Local Alignment Problem:
Given a query sequence q and a DAG G(V,E, σ), identify a
path p in the DAG and a substring of q : q[i..j] s.t. the optimal
alignment score between q[i..j] and the sequence specified by
p is maximum over all possible choices for p, i, and j. In
addition, report the corresponding alignment.

In cases when the query has multiple optimal alignments,

we aim to output one of them. Although the problem definition

includes a single query sequence for convenience, we are

required to solve numerous instances of the problem, twice

for each input sequence (counting both the complementary

DNA strands) in the set of reads being mapped.

B. Sequential Algorithm

Sequence alignment to DAGs is computed using dy-

namic programming (DP), essentially by extending the Smith-

Waterman algorithm to DAGs [15], [16]. Assume the DAG G
is topologically sorted. Suppose Ci,j denotes the highest score

of an optimal alignment between any suffix of q[1..i] and any
path ending at vertex vj . Then, a sequential O(m(|V |+ |E|))
time algorithm follows from the recurrence below:
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Fig. 2: Example to illustrate difference between Smith-Waterman sequence to sequence alignment and sequence to DAG

alignment procedures.

C0,j = 0

Ci,j = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

Δi,j

Ci−1,k +Δi,j ∀k : (vk, vj) ∈ E

Ci,k −Δins ∀k : (vk, vj) ∈ E

Ci−1,j −Δdel

(1)

where Δi,j denotes the score of a match/mismatch, and Δins

and Δdel denote the insertion and deletion penalties, respec-

tively. The DP score matrix has a height of m+ 1 and width
of |V |. Note that score of each cell depends on cells in the
previous row as well as cells to the left in the same row. Once

the location of optimal alignment in the matrix is known, final

base-to-base alignment is reported using a traceback procedure

that follows the chain of decisions made in computing the

Ci,j’s. Similar to the Smith-Waterman algorithm, the traceback

begins at the highest scoring cell and proceeds until a cell with

zero score is encountered. The two cells with the zero and

the highest score denote the start and the end of an optimal

alignment, respectively.

C. Constraints on Design of Parallel Algorithm

The described sequential algorithm is similar to the Smith-

Waterman algorithm, the only difference being that each

vertex can now have multiple neighbor vertices instead of

just one (Figure 2). This one difference, however, makes

numerous parallelization strategies [26]–[29] developed for

accelerating the Smith-Waterman algorithm either inapplicable

or inefficient for the sequence to DAG alignment problem. We

list the challenges below:

1) Storing complete DP score matrix in memory is usually

impossible with real input data. In the Smith-Waterman

algorithm, score matrix can be computed either one

column, row, or diagonal at a time. This is possible

because storing one previous column (or row) is sufficient

as the DP progresses. However, vertices in the variation

graph can be connected to many (near and distant in

topological order) predecessor vertices, leaving row-wise

computation as the only choice.

2) Unlike the Smith-Waterman algorithm, count of arith-

metic operations required to compute score for each cell

Ci,j in a row is not uniform, and depends on in-degree

of vertex vj . This further makes SIMD-based intra-task
parallelization challenging.

We present a new inter-task based parallelization approach

that takes into account the above constraints.

III. PROPOSED PARALLEL ALGORITHM

A. Graph Representation

Solving Recurrence (1) requires frequent access to graph

vertices and edges. Therefore, it is important that we spend as

few CPU cycles as possible to access graph information while

computing scores. Variation graphs are highly sparse, in fact

the edge to vertex ratio is typically close to one [7]. There-

fore, we choose the standard ‘compressed sparse row’ (CSR)

format. It allows constant time access to adjacency list of any

vertex. In this format, we use three arrays: the first one of size

|E| for contiguous storage of adjacency list, another (|V |+1)-
sized pointer array to mark start and end offsets for each vertex

within the adjacency list, and the last array of size |V | to store
DNA character labels of each vertex.

B. A Three-Stage Algorithm

The proposed algorithm is designed to produce not only

the optimal alignment scores, but also the base-to-base align-

ments corresponding to them. The base-to-base alignments are

computed using a traceback procedure which requires access

to the entire score matrix, or an appropriate section of it. In

most practical cases, the sizes of the score matrices are too

large to be able to completely store in memory. Therefore, we

execute a three-stage algorithm to keep the memory-usage low.

The first two stages of the algorithm are executed to identify

starting and ending positions of the optimal alignments. In

particular, the first stage DP-fwd computes ending position

of an optimal alignment for each read by executing the DP to

solve Recurrence (1). The second stage DP-rev solves the same
DP in reverse direction, i.e., from bottom to top to locate the

starting positions of the optimal alignments. As score of a cell

depends only on its current and previous row (Section II), we

only need to keep two rows in memory. Hence, the two stages

use less memory. Finally, the third stage uses the starting and

ending locations to recompute the corresponding section of
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the score matrix, and executes a traceback to report the base-

to-base alignments (Section III-D). This approach is similar

to the one proposed by Huang et al. [30] to compute local
alignment between two sequences.

The first DP-fwd stage returns optimal score, ending posi-

tion of an optimal alignment, and optimally aligning strand of

each input read. DP-rev stage only uses sequences correspond-

ing to the optimally aligning read strands as its input. Figure 3

summarizes the role of all three stages in the algorithm. Note

that both DP-fwd and DP-rev stages compute the entire DP

matrix using the same recurrence relation, therefore designing

a single parallel strategy suffices to accelerate them. We

propose a parallel algorithm in the following section.

DP-fwd 
Output: score, ending position 
and read strand of an optimal 
alignment for each read

DP-rev 
Output: optimal alignments’ 
starting positions

Traceback 
Output: base-to-base 
alignments

1.

2.

3.

Fig. 3: Role of the three stages used in our algorithm.

C. Parallel Computation of the Score Matrix

Prior to describing full details, we give an overview of the

algorithm. Both DP-fwd and DP-rev stages compute the entire

score matrix containing (m+ 1)× |V | elements for each
input sequence. Computing score matrices is highly compute-

intensive, and consumes most of the time in sequential as well

as our parallel algorithm. The proposed algorithm is inspired

from previous optimization efforts targeted towards accelerat-

ing Smith-Waterman alignment using SIMD instructions [31],

[32]. Alignment of a single sequence is called a task. We

present an inter-task parallel algorithm to accelerate the matrix

computation. In other words, rather than parallelizing the

alignment of a single read, the algorithm processes multi-

ple reads simultaneously (Section III-C1). To compute each

task, we can choose to follow a naive sequential algorithm,

essentially computing the scores row by row. However, it turns

out that traversing O(|V |)-sized row buffers repeatedly makes
the algorithm memory-bound (Section III-C2). To address this

issue, we subsequently introduce a new blocking strategy that

leverages a domain-specific property of variation graphs, and

enhances memory access locality.

1) Inter-task parallelism: Our algorithm leverages inter-

task parallelism by aligning multiple reads simultaneously.

Below, we discuss how to make use of multiple threads and

SIMD instructions to realize this efficiently:

Multi-threading We divide the input read set into batches that
are individually scheduled to different threads. As the runtime

to align reads of different lengths varies, we leverage dynamic

scheduling policy in OpenMP.

Vectorization Within each thread, we vectorize our imple-

mentation to process all reads in a batch simultaneously (Fig-

ure 4a). Count of reads in a single batch is set to SIMD

width to keep all vector lanes busy. For instance, recent

Intel® Xeon® Skylake processors2 support AVX512 integer

instructions (512 bit vectors). Therefore, depending on the

requirement of precision to compute scores (e.g., int8, int16 or

int32), there is scope of 16-64x speedup using vectorization.

For each batch of reads, we convert read characters from AoS

to SoA format to ensure that we can load the read characters

for one cell update using just one vector load instruction.

Suppose in-degree of vertex vj is δj , then computing Ci,j

across all vector lanes uses 10 + 4δj vector operations (using
cmpeq, blend, set, max, and add; not counting load and store)

in our implementation. Finally, because read lengths within a

batch of reads can vary, we pad shorter reads with dummy

characters to obtain uniform lengths.

Load balancing Lengths of long reads tend to vary signifi-
cantly in a single sequencing run. Therefore, to avoid wasteful

work due to padding, we sort the complete input read set by

their length before dividing them into batches. In this way,

variation in the lengths of adjacent set of reads is reduced.

The sorting is done in decreasing order of read lengths to

make sure that processing of longer reads is initiated first.

Optimizing Precision Operating at lower precision (e.g., int16
vs. int32) yields higher scope for parallelism using vector

units. Note that the product of maximum input read length

and match parameter is an upper bound on the score value in

all DP matrices. Based on this value, the algorithm decides

the required precision at runtime. Besides maximum score,

we also keep track of its column and row position during

DP computation. The row positions use the same precision

as score values because they are bounded by maximum read

length. The column positions, however, can range from 1 to

|V |, therefore they are always operated using int32 precision.
In the above inter-task parallelization scheme, each individ-

ual task can still be executed using a naive sequential algo-

rithm, essentially computing the scores row by row. Working

independently on individual reads gives us an advantage that

there is no synchronization needed across threads or vector-

units, which favors both performance and programmability.

For each task, we need to maintain two score buffers for

the current and previous rows. The two buffers can be used

inter-changeably, i.e., one for reading previous row and one

for computing current row. However, each of them uses

O(|V |) memory, and does not fit in cache. As shown later
in results (Section IV), this issue limits scalability by making

the algorithm memory bandwidth bound due to frequent access

2Intel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation or its
subsidiaries in the U.S. and/or other countries. Other names and brands may
be claimed as the property of others. ©Intel Corporation
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(SIMD execution)

Reference graph

Reads

(a) Vectorization by using inter-task parallelism.

Reference graph

Reads

Reference graph

Reads

(b) Modifying sequential procedure of each task to enable blocking.

Fig. 4: Visualization of the proposed parallel algorithm.

to DRAM. We next describe a blocked computation strategy

which modifies the sequential procedure of each task to resolve

this issue.

2) Improving Memory Locality using Blocked Computation:
We propose a blocked algorithm to compute the score matrix

which significantly reduces the average count of reads and

writes to DRAM. The first step is to increase the granularity by

computing multiple rows rather than one row in a single hori-

zontal sweep (Figure 4b). For a subsequent horizontal sweep,

we just need to preserve scores associated with the last row

of the current block. Next, while processing multiple rows in

a single horizontal sweep, we modify memory access pattern

to ensure majority of accesses are cached. This modification

leverages a domain-specific topological property of the graphs.

In the variation graphs, we find that the fraction of vertices

connected to ‘distant’ vertices in the topological order is

significantly small. More formally, let Bwidth be an ap-

propriately chosen distance threshold, then the number of

vertices in set V ′ = {vi : (vi, vj) ∈ E, j − i ≥ Bwidth}
is much smaller compared to |V |, for even small values
of Bwidth. In our implementation for instance, we selected

Bwidth = 8 as this value was appropriate for various graphs
tested empirically. This particular graph property is attributed

to the fact that > 99.9% of genetic variations in a human

genome are either single nucleotide substitutions or small

insertions/deletions [33]. Such genetic variants mostly appear

as small bubbles in the variation graphs. Large structural

variants which would result in connecting farther vertices

occur at much less frequency. As a result, majority of vertices

in variation graphs are expected to have all their neighbors in

near vicinity in the topological order. We next show how to

leverage this property to improve the memory access pattern.

In the blocked-procedure, suppose the count of rows pro-

cessed in a single horizontal sweep is denoted as Bheight.

We use a small circular buffer of size Bheight · Bwidth for

temporary storage of scores while processing the Bheight

rows (see Figure 5). Using this buffer, score of a vertex vi
is available while computing score of vj whenever j − i <
Bwidth. This modification ensures that majority of DRAM

accesses are cached. To manage the scores of ‘long-hopped’

vertices ∈ V ′, we use a separate buffer to save their scores for
subsequent access. This buffer is also small and manageable

because |V ′| � |V |. In our implementation, we set Bheight

and Bwidth to 16 and 8 respectively as these values resulted

in the least memory latency and best performance during

execution (further discussed later in Results section).

(Last row buffer)

Reference graph
‘long-hop’

Block

Fig. 5: Visualizing a section of DP matrix to illustrate differ-

ent memory accesses occurring using the blocked approach.

Blocking improves memory locality because majority of ac-

cesses (red arrows) occur within the circular Bwidth×Bheight

block buffer.

D. Computing Base-to-Base Alignments

The first two stages output the starting and ending alignment

coordinates of each read. In the third stage, we recompute

the enclosed section of the score matrix to execute the final

traceback. Note that the coordinates of the optimal alignments

of each read vary. Therefore, different matrix columns need to

be computed for each read. This implies that we cannot re-use

the inter-task SIMD parallelism that is developed for the first

two stages. However, each of these tasks can still be executed

independently using multi-threading. In this stage, we preserve

the computed scores in memory. Because read alignments can

hop through long edges (w.r.t. the topological vertex order)

in the variation graph, even the score sub-matrices can be

large. To reduce memory usage by a factor of four, we save

the matrix using differences between adjacent rows instead.

This helps because maximum absolute value of the differences

(Ci,j − Ci−1,j) is bounded by the sum of match and gap

parameters [34], and can be saved as 8-bit integer values.

We note that it is possible to extend alternate approaches to

DAGs such as Hirschberg’s divide and conquer algorithm [35]

or external memory algorithms [36] which use less memory,

but they require more computation time in practice. Finally,

the algorithm finishes after computing base-to-base alignments
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by tracing the paths associated with the respective optimal

alignments of the input reads.

IV. RESULTS

We refer to the C++ implementation of our parallel
sequence to graph alignment algorithm as PaSGAL. This

section provides details of the experimental setup, performance

characteristics of PaSGAL, and advantages of the proposed

optimizations. Subsequently, we demonstrate significant per-

formance gains compared to existing read to graph aligners.

A. Experimental Setup

1) Data-sets: We used three input variation graphs and

multiple read sets for evaluating PaSGAL (Table I).

Variation Graphs Leukocyte Receptor Complex (LRC) and
Major Histocompatibility Complex (MHC) regions are among

the most diverse variant hot-spots, spanning about 1.06 Mbp

and 4.97 Mbp of the human genome [2], [7], respectively.

We leveraged existing tools to build variation graphs using

real public data. The first two graphs, labeled as LRC and

MHC1 were built using the vg toolkit [8]. We supplied human

genome (GRCh38) and variant files from 1000 Genomes Phase

3 [33] as input to vg. The variant files constitute small-scale

variations (≤ 50 bp) in genomes of 2504 individuals. To also
evaluate using more complex graphs, we used a second MHC

variation graph (MHC2) from a previous study [3], which also

includes large structural variations.

Read Sets Multiple sequencing read sets of different char-
acteristics were simulated from the LRC (L1-L3) and MHC

(M1-M3) regions in the human genome (GRCh38) (Table I).

These read sets are representative of outputs produced using

different technologies, lengths, and error characteristics. We

used mason2 [37] and pbsim [38] tools to simulate single-

end short Illumina and long noisy PacBio reads respectively.

Sampling was done at 30x and 10x coverage from the LRC

and MHC regions respectively. Because Illumina sequencers

produce fixed-length short reads, L1 and M1 data sets contain

uniform length reads of size 100 bp. On the contrary, long

read technologies produce noisy reads of variable lengths;

therefore L2-M2 and L3-M3 were sampled using mean read

length 10 Kbp and 25 Kbp respectively. The minimum length,

maximum length and mean error-rate parameters were set to

1 Kbp, 30 Kbp and 15% respectively during simulation. The

match score, and mismatch, insertion, and deletion penalties

were all set to 1. For each input read, the alignment program

Software and workloads used in performance tests may have been optimized
for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with
other products. For more information go to www.intel.com/benchmarks.
Benchmark results were obtained prior to implementation of recent software

patches and firmware updates intended to address exploits referred to as
”Spectre” and ”Meltdown”. Implementation of these updates may make these
results inapplicable to your device or system.

considers both complementary DNA strands, and outputs an

optimal alignment to the input graph.

2) Hardware/Software Description: Unless otherwise men-
tioned, all our experiments used a single node consisting of

Intel® Xeon® Platinum 8160 (Skylake) processor in Stam-

pede2 cluster located at Texas Advanced Computing Center.

Each node is equipped with 192 GB RAM and two sockets,

each containing 24 cores. Peak memory bandwidth of a

node is 220 GB/s spread over two NUMA domains, one on

each socket. These nodes operate at base frequency of 2.1

GHz, although frequency can vary due to turbo boost feature.

Skylake platforms support AVX512 (512 bit) vector processing

for 8-bit, 16-bit, and 32-bit integer operations.

PaSGAL was compiled using Intel® compiler (v18.0.2).

We used OpenMP for multi-threading and hand-written SIMD

intrinsics for vectorization.

3) Measurements: In all experiments, we measured runtime
of the main alignment routine, and ignored pre-processing

time, i.e., the time spent to load the input and converting graph

into CSR format (Section III-A). Loading and pre-processing

the input in PaSGAL took an insignificant fraction of time

(< 1%). For all multi-threaded executions, we mapped a single
thread to a single physical core.

B. Performance Results

1) Time to Solution: We first show the time to solution

using PaSGAL for all nine input combinations in Table II

using 48 threads. PaSGAL makes efficient use of multiple

cores as well as vector units within each core to achieve fast

time to solution. Using PaSGAL, we aligned 30x coverage

read sets (L1-L3) to the LRC graph in < 15 minutes. For the
larger MHC1 graph, 10x coverage read sets (M1-M3) were

aligned in < 1.5 hours. Finally, the largest graph MHC2 took
the longest time of 1.5 to 3.5 hours.

We also show the performance achieved for score matrix

computation as billion cell updates per second (GCUPS), the

standard metric to evaluate Smith-Waterman algorithms (Fig-

ure 6). The GCUPS metric indicates the count of score matrix

cells that are computed in a second, therefore higher is better.

PaSGAL achieved peak performance of 317 GCUPS using

the LRC/L1 input. To our knowledge, this is the highest

performance achieved till date when aligning sequences to

DAGs. Note that short read alignment (L1 and M1) was

consistently fastest for all the three graphs because PaSGAL

selects the required SIMD precision level based on the input

read length (Section III-C1). For L1 and M1, 8-bit precision
is sufficient as read length is only 100. On the other hand, the
other read sets require 16-bit precision.

Large count of reads in an input set ensures that all the

vector lanes do useful work, thus DP-fwd and DP-rev stages

of the algorithm achieve high efficiency. We also note that the

GCUPS performance numbers for forward DP are relatively

higher compared to reverse DP. Even though the recurrences

computed in DP-rev and DP-fwd stages are identical, DP-rev

requires additional logic to ensure that it reports the end point
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TABLE I: Summary of input variation graphs and read sets used for evaluation. First three columns show input graphs and

their sizes while the remaining columns show characteristics of simulated read sets.

Reference graph # vertices # edges Read data set Mean length (bp) Coverage # reads # bases

L1 100 30x 317 606 31 760 600
LRC 1 099 856 1 144 498 L2 9882 30x 3214 31 760 550

L3 24 871 30x 1277 31 760 550

MHC1
MHC2

5 138 362
10 618 991

5 318 019
10 698 615

M1 100 10x 497 046 49 704 600
M2 10 060 10x 4941 49 704 580
M3 24 877 10x 1998 49 704 580

TABLE II: Performance evaluation of PaSGAL using all the test data sets.

Reference graph LRC MHC1 MHC2
Read set L1 L2 L3 M1 M2 M3 M1 M2 M3

Total time (s) 357.8 649.7 823.8 2591.7 4324.5 4963.4 5481.1 9217.7 11 580.4

DP-fwd time (%) 61.7 56.0 48.9 62.6 61.6 56.8 62.1 59.6 51.0
DP-rev time (%) 36.3 34.0 31.2 36.7 36.2 38.4 36.8 35.8 35.1
Traceback time (%) 2.0 10.0 19.9 0.7 2.2 4.8 1.1 4.6 13.9

Memory usage (GB) 7.4 7.8 33.8 33.5 33.3 33.8 87.8 87.7 141.9

Fig. 6: Performance achieved during DP-fwd and DP-rev

stages of PaSGAL measured in billions of cell updates per

second (GCUPS).

of the same optimal alignment that was identified by the DP-

fwd stage for each read. This is important because multiple

alignments with maximum score can co-occur. Our algorithm

guarantees to report one of those.

Finally, we also include a break-down of the total execution

time into time spent in the three individual stages DP-fwd,

DP-rev, and traceback (Table II). Even though the traceback

phase is not vectorized, time to compute the two end points of

optimal alignments using the DP-fwd and DP-rev stages still

took majority of the time. This is because during the traceback

stage, we are only required to compute a small portion of the

score matrix.

2) Load balance: Unlike short reads, long read lengths tend
to vary significantly, therefore splitting the work equally can

be challenging in an inter-task parallel approach. In PaSGAL,

we address this issue by sorting the reads by their lengths

and adopting dynamic scheduling policy (Section III-C1). We

measured individual timings on 48 threads for all three stages

of the algorithm. In Figure 7, we report ‘load imbalance

ratio’ which is equal to maximum time divided by average

time on all threads. Ideally, this ratio should equal one. We

observe that this ratio is below 1.5 for all data sets. Better

load balance is achieved for short read sets (L1, M1) relative

to long reads, owing to their uniform lengths. Further, better

load balance is observed for DP-fwd stage relative to DP-rev

stage. DP-fwd stage processes both strands of DNA sequences,

where as DP-rev only processes one, reducing its input size by

half (Section III-B). The sorting approach is inherently more

effective with higher read counts (Section III-C1).

Fig. 7: Load imbalance observed in PaSGAL using all test

data sets while using 48 threads.

3) Benefits of Proposed Optimizations: We next verified
performance gains from the two optimizations – blocked strat-

egy (Section III-C2) and vectorization (Section III-C1) used to

accelerate the score matrix computation in DP-fwd and DP-rev

stages, which account for majority of the time spent. We also

collected critical performance counter numbers (e.g., memory

latency, bandwidth etc.) using Intel® VTune® Amplifier tool.

VTune profiling requires the experiments to be short to avoid

counter overflow. Therefore, we used a small simulated short-
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read set from the LRC region, adding to 12,288 reads of length

96 bp, and aligned them to the LRC graph.

Blocked approach Goal of the blocked approach is to

remove memory access bottlenecks due to frequent access

to DRAM (Section III-C2). PaSGAL uses default block

width (Bwidth) and height (Bheight) values of 8 and 16

respectively. Using 48 threads and vectorized execution, we

analyzed benefit of this approach by manipulating block

dimensions from 1 to 32 (see Table III). Note that using block

height of one is equivalent to computing the score matrix one

row at a time. The results support that the blocked approach

succeeds in improving runtime by reducing memory latency,

LLC (last-level cache) misses and DRAM bandwidth. This

is because majority of reads and writes occur in the small

Bwidth×Bheight-sized block. Each cell in the block is a SIMD

register of size 64 bytes, therefore total storage memory equals

8 KB, making it small enough to fit in L1 cache memory

(capacity=32 KB) of all cores.

TABLE III: Significance of using blocked approach.

Block height 1 4 8 16 32
Time (s) 40.9 11.1 8.4 7.8 8.0
Avg. memory
latency (cycle)

27 8 7 7 8

LLC miss count
(×106)

632.3 14.4 1.4 0 3.6

Avg. DRAM
bandwidth (GB/s)

189.3 176.3 125.1 71.7 35.5

(a) Performance analysis while increasing block height from 1 to 32,
while keeping width fixed to the default value of 8.

Block width 1 4 8 16 32
Time (s) 32.5 7.9 7.8 7.8 7.9
Avg. memory
latency (cycle)

13 7 7 7 7

LLC miss count
(×106)

44.6 0.5 0 0 0

Avg. DRAM
bandwidth (GB/s)

177.2 69.8 69.6 70.8 70.6

(b) Performance analysis while increasing block width from 1 to 32,
and keeping height fixed to the default value of 16.

Vectorization Using Figure 8, we show the benefit of vector-
ization in PaSGAL by comparing it to our sequential scalar

code, which computes score matrix sequentially in a row-

wise manner. To isolate the benefit of vectorization and the

enhanced memory locality, we executed this experiment using

single thread only. Here we also experimented with three

precision levels for integer instructions (8-bit, 16-bit and 32-

bit). The plot shows that vectorization coupled with improved

memory locality resulted in up to 58.7x speedup compared to

the scalar code.

4) Scalability: The combination of our efficient vec-

torization strategy and blocking algorithm drive the high-

performance in PaSGAL. These optimizations also helped us

achieve near-linear strong scaling and weak scaling results

going from 1 to 48 cores. The Skylake processors in Stam-

pede2 use turbo technology, thus making scaling studies less

reliable. Therefore, we conducted our scaling experiments on

Fig. 8: Performance improvement in PaSGAL obtained us-

ing improved memory locality and vectorization supporting

different precision levels. Log scale is used for y-axis. This

experiment was executed using a single thread.

a different Skylake CPU (Intel® Xeon® Platinum 8180) with

turbo technology disabled. In the two scaling experiments, we

aligned L1-L3 read sets to the LRC graph, and report scaling

behavior of the DP-fwd stage and overall runtime separately.

Strong scaling Using the strong scaling experiment, we study
the ability of our algorithm to compute the alignment problem

faster with increasing core counts. Using 48 cores, the total

runtime was reduced by 47x, 41x and 38x for the read sets

L1, L2 and L3 respectively (Figure 9). Speedup factors for

the DP-fwd stage were roughly similar- 47x, 43x and 40x

respectively. Short read set (L1), in particular delivered close

to ideal scaling behavior because of the following two reasons-

a) read count in L1 is very high, thus all SIMD lanes were

busy doing useful work throughout the execution, and b)

read lengths are uniform, therefore there was no overhead

from load imbalance (Section IV-B2). We also evaluated the

scaling behavior of the DP-fwd stage by manipulating the

block dimensions (Figure 10). Results reveal that the blocked

approach is critical for the near-linear speedups achieved.

Fig. 9: Strong scaling: Speedup achieved using PaSGAL with

increasing core count relative to its single-core execution time.

Left plot shows speedups achieved for the DP-fwd stage

whereas right plot shows the overall speedup.

458



Fig. 10: Illustration of how scaling behavior varies using

different block sizes. Default values for block width and height

were set to 8 and 16 respectively. We aligned the 96-bp short

read set to the LRC graph in this experiment.

Weak scaling In the weak scaling experiment, we maintained
size of input read set proportional to core count. This metric

measures the ability of an algorithm to handle larger input

sizes given more resources. Therefore, an ideal weak scaling

behavior translates to constant execution time regardless of

core count. To conduct this experiment using 1 to 48 cores,

we re-simulated read sets with coverage proportional to core

counts (i.e., 30x for 48 cores, 15x for 24 cores etc.). Results

show that nearly uniform runtime was achieved going from 1

to 48 cores (Figure 11).

Fig. 11: Weak scaling: PaSGAL’s execution time remains

nearly uniform with larger input data and proportionally

increased core counts.

C. Comparison with Previous Algorithms

We compared PaSGAL against two recently published

tools for sequence alignment to variation graphs –

Graphaligner (commit:241565c) [39] and vg (v1.9.0-196) [8].

The software vg supports both exact and heuristic alignment

modes. For convenience, we refer to its exact implementation

as vg-exact, and heuristic implementation as vg-heuristic.
We find that PaSGAL achieves up to 10x and 25x speedup

against Graphaligner and vg-exact respectively, while using

the lowest amount of memory. Compared to the vg-heuristic

algorithm, we observe significant benefit in output quality.

The comparisons against the exact and heuristic methods are

discussed below separately.

1) Comparison With Exact Algorithms: Graphaligner uses
bit-level parallelism to compute edit distance between input

reads and graph. The algorithm outputs edit distance scores,

therefore we compared its runtime against the equivalent DP-

fwd stage of our algorithm. We also utilized the sequential

implementation available in the Graphaligner repository as

our sequential baseline. vg-exact extends Farrar’s intra-task

SIMD algorithm [40] to DAGs. It uses SSE (128-bit) intrin-

sics to accelerate the computation, and reports both optimal

alignment scores and base-to-base alignment. As such, we

compared its runtime against the total execution time of

PaSGAL. Spoa [41], like vg-exact, also uses a intra-task

SIMD parallelization algorithm for sequence alignment to

DAGs, however, we could not compare against it because

its implementation is designed to compute multiple sequence

alignment for a different application. Both Graphaligner and

vg do not support multi-threading, therefore, we used a single

thread for a fair comparison. To allow all the experiments to

finish in reasonable time, we re-simulated six read sets: L1′-
L3′, M1′-M3′ with 0.5x coverage by following the exact same
procedure as before (Section IV-A1).

We show the speedups achieved using PaSGAL when

compared to the other algorithms in Table IV. The speedups

ranged from 40-98x, 3-11x and 13-25x when compared to the

sequential baseline, Graphaligner and vg-exact, respectively.

In three out of the six runs, vg-exact ran out of memory

because it processes the DP column-wise and allocates the

complete DP matrix in memory during the alignment. vg-exact

supports affine gap penalty, which we plan to support in future

versions of PaSGAL. Besides being fastest on a single-core,

we conclude that PaSGAL also uses the lowest memory among

all the algorithms.

TABLE IV: Comparison with other exact algorithms.

Reference graph LRC MHC1
Read set L1′ L2′ L3′ M1′ M2′ M3′

vs. sequential 94.9x 50.3x 41.1x 98.3x 56.3x 51.7x
vs. Graphaligner 10.7x 4.2x 3.0x 10.0x 3.7x 3.7x
vs. vg-exact 25.3x 13.3x - 23.3x - -

(a) Runtime improvement achieved using PaSGAL relative to a
sequential implementation, Graphaligner and vg-exact using single
thread execution.

Reference graph LRC MHC1
Read set L1′ L2′ L3′ M1′ M2′ M3′

PaSGAL (GB) 0.2 0.3 0.8 0.9 0.9 0.9
sequential (GB) 1.0 1.0 1.0 1.4 1.4 1.4
Graphaligner (GB) 1.1 1.1 1.1 2.0 2.0 2.0
vg-exact (GB) 0.7 108.8 - 2.9 - -

(b) Peak memory-usage of all exact algorithms.

Our previous results validate that PaSGAL supports efficient

scalability using multiple cores (Section IV-B4), whereas
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current exact methods use single-thread only. Based on the

observed numbers, it will take other algorithms multiple days

to process the 10x coverage MHC read sets (M1-M3), which

PaSGAL does in about three hours or less (Table II). Overall,

PaSGAL provides significant advantage over existing exact

algorithms in terms of its ability to process high throughput

read sets and larger graphs.
2) Comparison with Seed-and-Extend Based Heuristic Al-

gorithm: PaSGAL being an exact aligner, guarantees to pro-
duce an optimal alignment, irrespective of graph topology and

sequence characteristics. Heuristic algorithms accelerate the

mapping process by avoiding a full-scale DP when mapping a

read. The seed-and-extend based heuristics identify local graph

regions using either maximal or fixed length exact matches,

and validate the matches using an extension step. Although this

approach can be significantly faster, both seed-computation

and extension stages are still challenging to execute in dense

variant-rich graph regions, and when the read lengths are long.

We ran vg-heuristic with default parameter settings using the

L1′-L3′ read sets, and found it to be orders of magnitude (28-
56x) faster than our exact algorithm. Next, we looked at

the output accuracy. Since we executed both tools with the

same scoring parameters, we compare the optimal alignment

scores from PaSGAL against the scores computed by vg-

heuristic (Table V). We note that a large fraction of output

scores reported by vg-heuristic are sub-optimal for L2′ and
M2′ read sets. It failed to produce reasonable output for L3′

indicating that its algorithm may be suitable for short reads

only.

TABLE V: Accuracy evaluation of vg-heuristic algorithm for

short and long read data sets. We compare its alignment score

against the optimal score computed by PaSGAL.

Read set L1′ L2′ L3′

Fraction of alignments with
> 5% diff. from optimal score (%)

0.04 24.53 100

Fraction of alignments with
> 20% diff. from optimal score (%)

0.00 9.40 100

V. CONCLUSIONS

In this work, we presented an inter-task based parallel algo-

rithm PaSGAL to accelerate alignment of sequences to DAGs.

Although conceptually similar to the classic Smith-Waterman

problem which admits easy parallelization, significant vari-

ability in the number and structure of dependencies in the

dynamic programming table make parallelization of alignment

to DAGs quite challenging. Given an input set of reads and

a variation graph, PaSGAL outputs optimal alignment scores

and base-to-base alignments, a requirement for downstream

biological analysis. To the best of our knowledge, it is the first

parallel algorithm for solving this problem that fully utilizes

modern architectures by leveraging multiple cores and wide

SIMD width. To achieve these goals, we presented a three-

stage algorithm and several optimizations to maximize integer

operations per second. As a result, we are able to compute

alignments of high-coverage long or short read sets to large

variation graphs associated with clinically important human

genome segments in the order of few minutes or hours, which

was not feasible with prior algorithms.

Besides pan-genomics, PaSGAL can be useful for other ap-

plications that benefit from sequence to DAG alignment, e.g.,

sequence alignment to splicing graphs in transcriptomics [42]

and antibiotic resistance profiling [43]. Future work includes

development of intra-task algorithms for use-cases with small

count of query sequences (e.g., when aligning assembly con-

tigs to graphs), and extending this framework to accelerate

the alignment to general sequence graphs [44]. Our algorithm

combined with an appropriate graph localization heuristic

could scale to variation graphs of complete vertebrae genomes.

There is plenty of evidence in recent scientific literature that

justifies the utility of variation graphs as a reference for

studying genetic variants. The scalable and exact approach

presented in this paper constitutes a useful step towards fully

realizing the potential of graph-based references in genomics.
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