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Abstract

Motivation: In this era of exponential data growth, minimizer sampling has become a standard algorithmic tech-
nique for rapid genome sequence comparison. This technique yields a sub-linear representation of sequences, ena-
bling their comparison in reduced space and time. A key property of the minimizer technique is that if two sequences
share a substring of a specified length, then they can be guaranteed to have a matching minimizer. However, be-
cause the k-mer distribution in eukaryotic genomes is highly uneven, minimizer-based tools (e.g. Minimap2,
Mashmap) opt to discard the most frequently occurring minimizers from the genome to avoid excessive false posi-
tives. By doing so, the underlying guarantee is lost and accuracy is reduced in repetitive genomic regions.

Results: We introduce a novel weighted-minimizer sampling algorithm. A unique feature of the proposed algorithm
is that it performs minimizer sampling while considering a weight for each k-mer; i.e. the higher the weight of a k-
mer, the more likely it is to be selected. By down-weighting frequently occurring k-mers, we are able to meet both
objectives: (i) avoid excessive false-positive matches and (ii) maintain the minimizer match guarantee. We tested
our algorithm, Winnowmap, using both simulated and real long-read data and compared it to a state-of-the-art long
read mapper, Minimap2. Our results demonstrate a reduction in the mapping error-rate from 0.14% to 0.06% in the
recently finished human X chromosome (154.3 Mbp), and from 3.6% to 0% within the highly repetitive X centromere
(3.1 Mbp). Winnowmap improves mapping accuracy within repeats and achieves these results with sparser sam-
pling, leading to better index compression and competitive runtimes.

Availability and implementation: Winnowmap is built on top of the Minimap2 codebase and is available at https://
github.com/marbl/winnowmap.

Contact: chirag.jain@nih.gov

1 Introduction

Continued development of time and space-efficient algorithmic tech-
niques has been pivotal for dealing with the exponential growth of
DNA sequencing throughput. In the context of mapping and align-
ment applications, tools have evolved from purely alignment-based
(Smith and Waterman, 1981), to seed-and-extend (Altschul et al.,
1997; Kurtz et al., 2004), to succinct text indexing (Langmead and
Salzberg, 2012; Yu et al., 2015) and now to ‘sketch’-based (Ondov
et al., 2016; Li, 2018b) techniques. Sketch-based algorithms use
dimensionality reduction to transform a sequence into a more com-
pact representation, e.g. a subset of k-mers present in the sequence
(Marçais et al., 2019; Rowe, 2019). While these algorithms continue
to be widely leveraged in bioinformatics, they are even more preva-
lent for long-read (PacBio/Oxford Nanopore) analyses because lon-
ger strings are more amenable to compaction. As such, several long-
read-based mappers (Jain et al., 2018; Li, 2016, 2018b; Popic and
Batzoglou, 2017), genome assemblers (Berlin et al., 2015; Chin and
Khalak, 2019; Koren et al., 2017; Kundu et al., 2019; Shafin et al.,
2020, Baharav et al., 2020), metagenomic read classifiers (Dilthey

et al., 2019) and transcriptomic tools (Sahlin and Medvedev, 2020;
Sahlin et al., 2020) use either minimizer- or MinHash-based se-
quence comparison.

Minimizer sampling was introduced to the field by Roberts et al.
(2004) for scaling the genome assembly problem, after being inde-
pendently described a year earlier by Schleimer et al. (2003) in the
text mining literature. Given a fixed window length w and a pre-
defined ordering of all k-mers, minimizer sampling selects the min-
imum k-mer from every consecutive window (Fig. 1). Minimizers can
be collected in linear time with regard to the sequence length, and
matching substrings can be quickly identified as the algorithm is guar-
anteed to select a common minimizer for two sequences if they share
an exact match of at least wþ k� 1 bases long. Further, if the order-
ing of k-mers is determined using a random permutation, then the
expected minimizer sampling density is known to be 2=ðwþ 1Þ
(Roberts et al., 2004). Due to these properties, there exists a trade-off
between sensitivity and speed when deciding the window length w.

As one would expect, minimizers originating from repetitive gen-
omic segments are sampled at a higher frequency than minimizers
from unique regions. When used for seeding pairwise alignments,
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high-frequency minimizers lead to excessive false-positive seed hits.
Examining all repetitive seed hits can prohibitively increase runtime
of anchor chaining routines during the mapping process (Xin,
2018). A popular yet sub-optimal way to deal with this problem is
to mask minimizers whose frequency exceeds a certain threshold.
For instance, Minimap2 (Li, 2018b) discards the top 0.02% most
frequently occurring minimizers, whereas Mashmap (Jain et al.,
2018) discards the top 0.001% by default. An unfortunate conse-
quence of masking is that minimizer matches are no longer guaran-
teed, and accuracy is reduced in repetitive genomic regions.
Negative effects of k-mer masking have been highlighted before,
such as poor homology detection in genomic repeats (Frith, 2011)
and mis-assembly of high-copy plasmids (Koren et al., 2017).

To address the above problem, we propose optimizations to the
standard minimizer sampling technique. We formulate the idea of
‘weighted-minimizers’, where k-mers that are assigned higher (or
lower) weights are more (or less) likely to be selected as minimizers.
Using this technique, we show that down-weighting highly repetitive
k-mers avoids excessive false-positive matches, while still maintain-
ing the guarantee that all matching substrings of length wþ k� 1 or
greater will share a minimizer. The idea of using k-mer frequency to
guide minimizer selection was first discussed by Chikhi et al. (2015)
for a different application (further discussed in Section 1.1). In add-
ition to weighted minimizers, we also incorporate and demonstrate
the utility of ‘robust winnowing’ (Schleimer et al., 2003). In the case
of multiple equally minimum k-mers in a window, robust winnow-
ing breaks the tie by preferring a k-mer that has already been chosen
by a previous window. This differs from the standard algorithm
(Roberts et al., 2004), which selects all equally minimum k-mers,
and is a simple yet crucial trick for efficient handling of low-
complexity sequences such as ‘ACACAC. . .’. After implementing the
above optimizations, we prove that the time complexity to compute
weighted, robust minimizers remains linear with regard to sequence
length and that the original minimizer match guarantee is preserved.

We refer to our implementation as Winnowmap, which replaces
the minimizer sampling and indexing algorithms of the widely used
alignment tool Minimap2 (Li, 2018b). In doing so, we reuse
Minimap2’s highly efficient anchor chaining and gapped alignment
routines. Winnowmap implements binary weights for efficiency’s
sake, i.e. weights are constrained to only two possible values. We
evaluate the speed and accuracy of Winnowmap using simulated
and real long-read sequencing data aligned to the human reference
genome GRCh38 (Schneider et al., 2017), including the recently
completed X chromosome that contains the first-ever assembled
human centromere (Miga et al., 2019). Compared to Minimap2,
our results demonstrate that Winnowmap reduces the mapping
error-rate over the entire X chromosome (0.14–0.06%), with the
biggest gains achieved in the highly repetitive centromeric region
(3.6–0.0%). Maintaining high alignment accuracy within long gen-
omic repeats is critical for accurate genome assembly and variant
calling. By avoiding masking, we show that Winnowmap maintains
uniform minimizer density, while the masking heuristic used by

Minimap2 leads to significant drops in minimizer density, especially
within long tandem repeats like the centromeric satellite array.
Moreover, Winnowmap uses less memory (up to 50% less) while
maintaining a similar runtime versus Minimap2. Here, we focus on
sequence read mapping, but we expect our optimizations to benefit
all applications of minimizers.

1.1 Related work
Once a k-mer ordering is defined, the set of minimizers picked from
an input sequence becomes deterministic. Accordingly, our idea of
weighted-minimizers is implemented by manipulating the k-mer
ordering to prefer higher weighted k-mers. There have been prior
attempts to optimize minimizer selection for different applications.
Chikhi et al. (2015) use frequency-based minimizer sampling for
low-memory construction of de Bruijn graphs. In their implementa-
tion, a sorted frequency table of all rk k-mers (r is the size of the al-
phabet) is computed to define a k-mer order. While sampling
minimizers, a low-frequency k-mer would be selected over a high-
frequency k-mer. However, this implementation does not generalize
to long-read mapping applications, because there often exists a large
number of erroneous low-frequency k-mers in the read set and deter-
mining an explicit order of k-mers is both difficult and unnecessary.
Instead, our probabilistic approach requires storing only the set of
repetitive k-mers in a reference, which is typically a much smaller
set. In addition, the weighting strategy could be generalized to other
criteria besides k-mer frequency, e.g. up-weighting haplotype-specif-
ic k-mers in a reference for diploid mapping.

A few works have focused on optimizing k-mer ordering to re-
duce the minimizer density (DeBlasio et al., 2019; Marçais et al.,
2018; Orenstein et al., 2016). These optimizations are complemen-
tary to our objective as we seek to avoid excessive false-positive hits
that occur by sampling high-frequency k-mers. Our formulation of
weighted-minimizers is partly inspired by (Chum et al., 2008),
which extends the MinHash technique to incorporate tf-idf weight-
ing and was adopted by Canu (Koren et al., 2017) for sequence read
overlap detection. Below we present background on the classic min-
imizer sampling (Roberts et al., 2004) and weighted MinHash
(Chum et al., 2008) techniques, the two key ideas on which our al-
gorithm is based.

2 Background

2.1 Minimizer sampling
Here, we formally discuss the standard minimizer sampling algo-
rithm and recall its properties. Continuing the same notation, w
denotes window length and r is size of the alphabet. Let U be the
universe of all rk k-mers, and h : U! ½0; 1� be a random hash func-
tion that assigns each k-mer to a real number within a unit interval.
The function h induces an ordering among k-mers. Although
Roberts et al. (2004) originally described the algorithm using a lex-
icographical ordering, a randomized ordering often works better in
practice (Marçais et al., 2017).

The minimizer sampling algorithm entails computing the min-
imum k-mer within each consecutive window of length w. Ties are
handled by picking all equally minimum k-mers (Fig. 1). Perhaps,
the easiest way to compute minimizers is to use two loops such that
the outer loop iterates through the input sequence while the inner
loop computes a minimum k-mer within each window. Assuming
the hash h of a k-mer is computable in O(1) time, this nested-loop
approach requires O(nw) time for an input sequence of length n.
However, there exists a linear-time O(n) algorithm for computing
sliding-window minimum elements (Smith, 2011), where the trick is
to use a double-ended queue while streaming k-mers (Fig. 2). This
algorithm starts with an empty queue Q (Algorithm 1, line 1).
Before inserting a new k-mer at the back end of Q, the algorithm
scans and discards all k-mers higher than the current one (line 5).
This is because all the previously seen higher k-mers cannot be mini-
mizers of either the current or subsequent windows. Due to this
step, Q maintains sorted k-mer order in each iteration. After insert-
ing the new k-mer, we also discard those k-mers from the front that

sequence

k-mer order 11 13 4 9 2 2

positions of sampled k-mers

window length w

minimizers 

Fig. 1. Visualization of the minimizer sampling technique (Roberts et al., 2004). The

sequence being sampled is shown as a black line. Assuming a pre-defined order of k-

mers (e.g. lexicographical), the sampling selects each of the smallest k-mer(s) (shown

as red arrows) in consecutive sliding windows (shown as blue intervals). The length

of each window, i.e. w is three in the above example
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are located outside the range of the current window (line 8). Due to
the sorted order in Q, the smallest k-mer is simply drawn from front
of Q (line 12). Note that, each element of the array arr is inserted
and deleted only once throughout the algorithm. Therefore, the total
runtime of the algorithm is linear in sequence length. Schleimer et al.
(2003) proved that the expected density, i.e. fraction of k-mers
sampled from a random input sequence equals 2=ðwþ 1Þ. This
holds true for all practical values of w ðw� rkÞ (Marçais et al.,
2017).

We intentionally split Algorithm 1 into a main routine and four
helper functions. Later when we introduce optimizations to this

algorithm to avoid sampling repetitive k-mers, we will only modify
the functions leaving the main routine intact. Below, we summarize
the properties of the minimizer sampling Algorithm 1 as a lemma.
Readers are referred to the original articles (Roberts et al., 2004;
Smith, 2011) for formal proofs.

Lemma 1. The following statements are true:

1. Algorithm 1 computes the desired set of minimizers.

2. k-mer order values in queue Q of Algorithm 1 remain sorted in

non-decreasing order during execution.

3. Assuming k-mer hashing is an O(1) operation, then Algorithm 1

uses O(n) time where n is the length of input sequence.

4. If we ignore the possibility of k-mer ties within a window and as-

sume that k-mer hash values are independent and uniformly dis-

tributed, then the expected density of minimizers is 2=ðwþ 1Þ.
5. At least one matching minimizer will be sampled from two

strings with matching substrings of length � wþ k� 1.

2.2 MinHash and k-mer weighting
MinHash (Broder, 1997), like minimizer sampling, can be used to
compute a signature of a sequence. It is a well-known locality sensi-
tive hashing scheme for Jaccard similarity. Recall that the Jaccard
similarity of two k-mer sets X and Y is jX \ Yj=jX [ Yj. Assuming
k-mer hash values are independent and uniformly distributed,
Broder (1997) proved that the probability of mini2XðhðiÞÞ ¼
mini2YðhðiÞÞ is equal to the Jaccard similarity. This enables an un-
biased estimation of Jaccard while using only a subset of the original
sets. When using Jaccard, elements in X \ Y contribute uniformly to
the similarity value. However, in some applications, the ‘import-
ance’ of each element can vary. For instance, when comparing two
sequences, a match of a rare k-mer carries more significance than a
match of a highly repetitive k-mer. Accordingly, Chum et al. (2008)
proposed a variant of the Jaccard similarity metric called weighted
set-similarity. Suppose function l : U!N assigns a weight to a k-
mer, then the weighted set-similarity between two k-mer sets X and
Y is given by:

JwðX;YÞ ¼

X
i2X\Y

lðiÞ
X

i2X[Y

lðiÞ

Note that, JwðX;YÞ is more influenced by higher-weighted k-
mers. It is possible to extend the MinHash algorithm to develop
an unbiased estimator for Jw. Let h1; h2 . . . hs be s independent
random hash functions where s equals the highest k-mer weight
maxi2X[Y lðiÞ. A k-mer i is hashed using the first lðiÞ hash func-
tions: f ðiÞ ¼ minj¼1...lðiÞ hjðiÞ. Naturally if a k-mer has a higher
weight, its expected hash value f(i) is lower because more ran-
dom hashes are considered. As a result, the probability of a k-
mer i 2 X being selected as signature of set X is decided by its
weight and equals lðiÞ=

P
j2X lðjÞ. Thus, similar to the original

MinHash algorithm, the probability of mini2Xðf ðiÞÞ ¼ mini2Yðf ðiÞÞ
is JwðX;YÞ.

In the above approach, we need to perform substantial hash eval-
uations to generate lðiÞ uniformly distributed random numbers for
each k-mer i. As a result, the above technique would require a large
amount of space and time when input weights are large. Moreover,
the above technique constrains the weights to be natural numbers.
To remedy this, Chum et al. (2008) suggest an optimization which
allows estimating Jw using a single hash evaluation for each k-mer.
Their optimization follows from the observation that only the rela-
tive order of k-mer hash values matters and not their absolute val-
ues. As a result, it becomes possible to use a single random hash
function while transforming its output to match the cumulative dis-
tribution of the function f. Their proposed alternative hashing func-

tion assigns k-mer i to 1� ðh1ðiÞÞ1=lðiÞ. This also generalizes the

above algorithm to real-numbered weights l : U! Rþ. This

Fig. 2. Visualizing a single iteration of Algorithm 1. As the window slides to the

right, the new k-mer is inserted at the back of the double-ended queue Q, and a min-

imizer is selected from front end of the queue. The above figure also uses two equal

k-mers (order¼ 5) in different colours to highlight how ties are handled in

Algorithm 1

Algorithm 1: Standard procedure for computing minimizers
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algorithm partly inspired our formulation of weighted-minimizer
sampling (Section 4).

3 Algorithm for robust winnowing

It is useful to recall the definition of robust winnowing:

Definition 1 (Schleimer et al., 2003). Robust winnowing: In each win-

dow, select the minimum k-mer. If possible, break ties by selecting the

same k-mer as the window one position to the left. If not, select the

rightmost minimal k-mer.

This tie breaking differs from the original algorithm of Roberts
et al. (2004), which preserves all equally minimum k-mers. Robust
sampling has one advantage and one disadvantage. The advantage is
that we avoid sampling too many minimizers in low-complexity sub-
strings such as ‘ACACAC. . .’ or ‘AAAAA. . .’ (Fig. 3). Its disadvan-
tage is that the minimizer selection from a window during a tie
depends on the context, i.e. it depends on which minimizers were
selected in prior windows. However, our results show that the ad-
vantage outweighs the disadvantage, and this optimization yields
significant improvements in runtime and memory-usage without
affecting accuracy.

Schleimer et al. (2003) did not provide an algorithm and time
complexity for computing robust minimizers, so for completeness
we provide here a linear-time algorithm (Algorithm 2) that borrows
psuedocode from Algorithm 1, while modifying its furtherPop
and furtherSample functions. Lemma 2 proves correctness of the
proposed algorithm. Similar to Algorithm 1, it is trivial to argue that
the runtime remains linear. Further, any matching substring of
length � wþ k� 1 between two sequences sample at least one ro-
bust minimizer of same order.

Lemma 2. Algorithm 2 computes the desired set of minimizers using the

robust winnowing criteria.

Proof. Using the robust winnowing scheme, we sample a new robust

minimizer at iteration i iff either of the following are true: (i) the newest

k-mer is lower than all k-mers in Q, or (ii) a prior robust minimizer (i.e.

the front k-mer of Q) goes out of range. In the first case, the new k-mer

will be selected as a robust minimizer by the sample function and

pushed to the front of Q, while discarding other k-mers in Q. In the se-

cond case, we must pick the right-most minimum k-mer if there are mul-

tiple equal minimums in Q. The function furtherPop pops all but the

right-most minimum in Q. h

4 Weighted minimizer sampling

Using the same notation as before, function l : U! Rþ assigns a
weight to a k-mer. Weighted minimizer sampling is defined as
following.

Definition 2 Weighted minimizer sampling: Build a random ordering of

all k-mers such that for a k-mer set X ¼ fk1; k2; . . . ; kjXjg � U; Pðki ¼
minðk1;k2; . . . ; kjXjÞÞ ¼ lðkiÞ=ðlðk1Þ þ lðk2Þ þ � � � þ lðkjXjÞÞ 8i2½1;jXj�.
Using this k-mer ordering, execute the robust-winnowing procedure.

In the original minimizer sampling algorithm (Section 2.1), the
k-mer ordering is defined directly using a random hash function. As
a result, any k-mer in a window is equally likely to be selected as a
minimizer (assuming no k-mer ties). The advantage of the weighted
technique is that it allows us to bias selection of certain k-mers over
others. If ðk1; k2; . . . kwÞ is the set of k-mers in a window, then the
probability of k-mer ki being minimum equals lðkiÞ=ðlðk1Þþ
lðk2Þ þ � � � þ lðkwÞÞ. As a result, the higher the weight of a k-mer
relative to its neighbouring k-mers in a window, the more likely it is
to be sampled as a minimizer. The weighted technique reduces to
the original unweighted algorithm if all k-mer weights are equal. To
define a k-mer ordering needed for weighted minimizer sampling,
we borrow the optimized hashing technique of Chum et al. (2008)
(Section 2.2). Given a random hash function h : U! ½0;1�, we
assign the order of a k-mer ki to be 1� hðkiÞ1=lðkiÞ.

We now analyse the expected density of weighted minimizer
sampling. Recall that the expected density equals the expected frac-
tion of k-mers sampled from a random input sequence. While the

C A C A C A C A C

k=3, w=4

3-mers C A C

3-mer order 2 1 2 1 2 1 2 1 2

C A C A C A C A C

2 1 2 1 2 1 2 1 2

standard algorithm robust winnowing

positions of sampled k-mers

A C A

C A C

C A C

A C A

C A C

minimizers 

C A C A C A C A C

k=3, w=4

3-mers C A C

3-mer order 2 1 2 1 2 1 2 1 2

C A C A C A C A C

2 1 2 1 2 1 2 1 2

standard algorithm robust winnowing

positions of sampled k-mers

A C A

C A C

C A C

A C A

C A C

minimizers 

(a) (b)

Fig. 3. Visualization of tie breaking in the standard minimizer and robust winnowing algorithms. We use a low-complexity sequence ‘CACACA. . .’ to illustrate the difference

between the two approaches. The sequence comprised two 3-mers, ‘CAC’ and ‘ACA’, which are ordered lexicographically in the above example. In the left plot, we break ties

by sampling all equally minimum k-mers per window, where as we follow the robust winnowing tie breaking in the right plot. Note that robust winnowing samples half the

minimizers as compared to the standard approach in this repetitive sequence example

Algorithm 2: Computing minimizers using the robust win-

nowing method
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expected density using the original algorithm equals 2=ðwþ 1Þ
(Lemma 1), here the expected density depends on k-mer weights.

Lemma 3. Suppose k1; k2; . . . kn�kþ1 are the k-mers in the order as they

appear in a random input sequence of length n. Assume rk � w. The

expected density of weighted minimizer sampling equals:

1

n� kþ 1
1þ

Xn�k�wþ1

i¼1

lðkiÞ þ lðkiþwÞPiþw
j¼i lðkjÞ

0
@

1
A

Proof. Suppose Wi is window of w consecutive k-mers starting at pos-

ition i. Window Wi is said to be charged if the minimum k-mer in win-

dow Wi differs from the minimum k-mer in window Wi�1, i.e. Wi selects

a new minimum. The expected density of a minimizer sampling can be

analysed by counting total number of charged windows in the input

sequence.

A union of two windows Wi and Wi�1 defines an interval of length

wþ 1 in the input sequence. Accordingly, k-mers ki�1; ki; . . . kiþw�1

occur in this interval, and let kmin be the minimum k-mer among these.

As rk � w, we safely ignore the possibility of ties. Window Wi is

charged if and only if either kmin ¼ ki�1 or kmin ¼ kiþw�1. Define ran-

dom variable Xi to be 1 if Wi is charged and 0 if not. For i 2
½2; n� k�wþ 2� (for all windows except the first)

E½Xi� ¼ Pðkmin ¼ ki�1Þ þ Pðkmin ¼ kiþw�1Þ

E½Xi� ¼
lðki�1Þ þ lðkiþw�1ÞPiþw�1

j¼i�1 lðkjÞ

For i ¼ 1;E½Xi� ¼ 1. Therefore, the expected density

¼ 1

n� kþ 1
E½Rn�k�wþ2

i¼1 Xi�
� �

¼ 1

n� kþ 1

Xn�k�wþ2

i¼1

E½Xi�

0
@

1
A

¼ 1

n� kþ 1
1þ

Xn�k�wþ2

i¼2

lðki�1Þ þ lðkiþw�1ÞPiþw�1
j¼i�1 lðkjÞ

0
@

1
A

¼ 1

n� kþ 1
1þ

Xn�k�wþ1

i¼1

lðkiÞ þ lðkiþwÞPiþw
j¼i lðkjÞ

0
@

1
A

h

The theoretical worst case expected density of weighted minim-
izer sampling occurs when k-mers k1; k2; . . . ; kn�kþ1 are distinct (i.e.
rk � n) and lðk1Þ � lðk2Þ � . . .� lðkn�kþ1Þ. In this case, the
density approximately equals 1. A best case scenario is one where
k1;k2; . . . ; kn�kþ1 are distinct and weights lðkwÞ; lðk2wÞ; lðk3wÞ . . .
are significantly higher than all the other k-mer weights. In this case,
density is optimal and equals 1=w. It is also useful to see that if
lðk1Þ ¼ lðk2Þ ¼ � � � ¼ lðkn�kþ1Þ, then the sampling density is
asymptotically equal to 2=ðwþ 1Þ. This implies that the density
matches with the original algorithm within equally weighted por-
tions of the sequence.

Winnowmap implements binary-weighted minimizer sampling
to avoid indexing highly repetitive k-mers for long-read mapping.
Given any reference genome, we assume the availability of a pre-
computed set S of repetitive k-mers, i.e. k-mers that occur with fre-
quency above a certain cut-off. This set can be computed efficiently
using a k-mer counting tool. We assign any k-mer ki 2 U a weight
of � < 1 if ki 2 S, and 1 otherwise (Algorithm 3). By default,
Winnowmap uses a frequency cut-off of 1024 for determining high-
ly repetitive k-mers, and sets � ¼ 1=8. Asymptotic time complexity

of minimizer sampling remains linear in sequence length if we use a
rk-sized bit array to store the set S that supports membership
queries in O(1) time. Here, each arithmetic operation for raising a
hash value to a power (line 6) is assumed to consume constant time.
If rk-sized bit space (34 GB for k¼19) exceeds available memory
resources, a search tree data structure with OðjSjÞ space and
Oðlog jSjÞ lookup time could be used instead. In practice jSj � rk,
e.g. jSj ¼ 62 114 with k¼19 using the human genome reference.

Lemma 4. The following statements are true for Algorithm 3:

1. Assuming k-mer hashing is an O(1) operation, then Algorithm 3 uses

O(n) time where n is length of input sequence

2. At least one minimizer of the same order will be sampled from two

strings with matching substrings of length � wþ k� 1

Algorithm 3 involves a few computational overheads that affect indexing

performance in practice. First, random accesses in a rk-sized bit array in

each iteration make the implementation slow (line 5). Second, comput-

ing a power arithmetic operation for each occurrence of repetitive k-

mers is expensive (line 6). We implement a few optimizations to avoid

these overheads. We use a space-efficient bloom filter to query member-

ship in S, which incurs a marginal false-positive rate. For the second

issue, we compute x1=� without using a power operation. For example, if

� is 1/8, then x1=� ¼ x8 can be computed using three multiplications.

Finally, we use �x1=� and –x (lines 6 and 7) to assign k-mer order values

instead of 1� x1=� and 1� x, respectively, to avoid rounding errors (e.g.

1� 1e-20 rounded to 1). As a result of these optimizations, weighted

minimizer sampling is nearly as fast as the standard minimizer sampling.

5 Results

In this section, we demonstrate the empirical advantage of robust
winnowing and weighted minimizer sampling for long read map-
ping. As mentioned earlier, we have implemented Winnowmap
(v1.0) by replacing the minimizer sampling and indexing procedures
of the well-established mapping tool Minimap2 (Li, 2018b).
Minimap2 has been previously shown to achieve excellent read
mapping results in terms of accuracy and speed, so in this section,
we compare Winnowmap directly against Minimap2 (v2.17-r954-
dirty).

5.1 Experimental setup
5.1.1 Hardware and software

For all our experiments, we used a server equipped with two Intel
Xeon E5-2698 v4 20-core processors and 1 TB memory. Both
Winnowmap and Minimap2 were run in parallel-mode using 16
CPU threads, and we report wall-clock time in our results. We used
recommended parameters for mapping PacBio and Oxford
Nanopore (ONT) reads based on Minimap2’s user documentation.

Algorithm 3: Algorithm for computing weighted minimizers
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These are -cx map-pb for PacBio reads, and -cx map-ont for
ONT reads. Winnowmap requires an additional parameter specify-
ing a file containing the list of highly repetitive k-mers for a refer-
ence genome. In our experiments, this file was assumed to be pre-
computed. Given the latest advances in k-mer counting algorithms,
this is a low-overhead operation, especially for the values of k typic-
ally used for long-read mapping (e.g. 15 for ONT reads and 19 for
PacBio reads). Winnowmap uses Meryl (Rhie et al., 2020) for k-mer
counting, which takes about 3 min for the human whole-genome
reference.

Winnowmap uses a default window length of 50. In contrast,
Minimap2 performs dense minimizer sampling using a default win-
dow length of 10. Our results show that, unlike Minimap2,
Winnowmap can tolerate sparser sampling without compromising
accuracy. Minimap2 relies on standard minimizer sampling
(Roberts et al., 2004) before masking the top 0.02% most frequent
minimizers from its index. Winnowmap does not use any masking
heuristics. All other algorithmic features and parameters are the
same between Minimap2 and Winnowmap.

5.1.2 Benchmarking datasets

Our datasets include two simulated sets of PacBio reads (D1, D2)
and one set of real ultra-long ONT reads (D3). Total count, N50,
and maximum length of these read sets is shown in Table 1. The
simulated read sets were obtained using PBSIM (Ono et al., 2013)
with a mean error-rate of 10% and mean read length of 15 kbp.
PacBio read set D1 was simulated from a recently finished human X
chromosome (Miga et al., 2019) and D2 simulated from the human
whole-genome reference GRCh38 (Schneider et al., 2017), respect-
ively. The assembly of chromosome X (v0.7) contains the first-ever
resolved centromere (3.1 Mbp), which allowed us to evaluate map-
ping accuracy within a long tandem repeat. Finally, read set D3 is a
small random sample of the rel3 human ‘CHM13’ whole-genome,
ultra-long ONT sequencing data (Miga et al., 2019). A minimum
read length of 1 kbp was enforced during sub-sampling. The read
sets were mapped to the human chromosome X assembly (D1) and
the human reference genome (D2, D3), respectively.

5.1.3 Evaluation criteria

For simulated read sets D1 and D2, we evaluated mapping accuracy
against the known truth. We followed a similar criteria previously
used by Li (2018b). A read is said to be mapped correctly if its pri-
mary alignment overlaps with the true interval, and the overlapping
bases constitute �10% of the union of the true and the reported

Table 1. List of datasets used for evaluation

Id Type Source Number of sequences N50 Max. length Reference

D1 PacBio (simulated) Human chrX (CHM13) 51 424 15 184 25 000 Human chrX (CHM13)

D2 PacBio (simulated) Human WG (GRCh38) 101 571 15 155 25 000 Human WG (GRCh38)

D3 ONT (real) Human WG (CHM13) 1000 71 795 350 239 Human WG (GRCh38)

Table 2. Comparison of mapping performance between Winnowmap and Minimap2 using datasets

Dataset Window

length (w)

Method Unmapped

reads (%)

Incorrectly

mapped

reads (%)

Indexing

time (s)

Mapping

time (s)

Memory-usage

(GB)

D1 10 Winnowmap 0.00 0.06 5.5 107.6 8.5

50 Winnowmap 0.00 0.06 6.7 34.8 2.9

10 Minimap2 0.00 0.14 4.9 26.5 5.9

50 Minimap2 0.01 0.77 3.0 32.8 5.9

D2 10 Winnowmap 0.00 1.83 67.6 1292.6 91.2

50 Winnowmap 0.00 1.81 57.7 92.2 7.3

10 Minimap2 0.00 1.85 55.4 70.3 11.1

50 Minimap2 0.02 2.07 40.1 67.7 8.7

D3 10 Winnowmap 4.50 NA 87.4 2901.0 70.4

50 Winnowmap 10.80 NA 65.1 39.8 9.9

10 Minimap2 9.70 NA 62.6 6.7 12.5

50 Minimap2 14.70 NA 40.2 3.1 7.3

Note: We tested both methods while varying window length, which controls the minimizer sampling rate. Larger window lengths lead to more sparse sampling.

Minimap2 uses w¼ 10 by default. Winnowmap is more robust to sparse sampling and, as a result, uses a larger default window length of 50. The best numbers

are highlighted in bold.
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Fig. 4. Step histogram plot showing frequency of minimizers sampled using a com-

plete human chromosome X as the reference. Frequency of minimizers was com-

puted in each consecutive ‘super-window’ of length 1 Mbp across the reference

sequence. We compare three sampling algorithms using window length parameter

w¼10. ‘Standard’ method refers to the classic minimizer sampling algorithm from

Roberts et al. (2004), without any masking or modification. Minimap2 uses the

standard algorithm, but masks the most frequently occurring minimizers (top

0.02%) in the reference (count � 160 for this reference). Winnowmap uses weighted

minimizer sampling. Both ‘Standard’ and Winnowmap methods maintain at least

one minimizer per window in their index and achieve near-uniform density. The

masking heuristic in Minimap2 reduces minimizer density throughout the chromo-

some X, and a significant drop is observed in its long repetitive centromere (58–61

Mbp). Interestingly, we also observe a slight increase in Winnowmap’s minimizer

density in this region
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alignment intervals. We used Minimap2’s paftools utility (Li,
2018a) to compute mapping accuracy using this criteria. We also
measured indexing time, mapping time, peak memory use, fraction
of unmapped reads and minimizer sampling density.

5.2 Comparison with Minimap2
We evaluated performance of Winnowmap and Minimap2 using
datasets D1–D3 (Table 2). We tested the two algorithms using both
window length parameters 10 and 50. While discussing differences
between Winnowmap and Minimap2, we refer to the results
obtained using their default window length parameters, i.e. 50 for
Winnowmap, 10 for Minimap2. Using simulated read sets D1 and
D2, Winnowmap achieves better read mapping accuracy than
Minimap2. Moreover, the accuracy of Winnowmap is much less
affected by the varying window length. Compared to Minimap2,
Winnowmap reduces read mapping error from 0.14 to 0.06% on
dataset D1, and from 1.85 to 1.81% on dataset D2. Both
Winnowmap and Minimap2 were able to map all reads in D1 and
D2. In the D3 dataset, there are many very long reads but also a
higher fraction of short reads. This resulted in a significant fraction
of unmapped reads using both algorithms. Using its default window
length, Winnowmap has comparable mapping and indexing runtime
to Minimap2, while using less memory. However, with a small win-
dow length of 10, the runtime and memory use of Winnowmap is
much higher because weighted minimizer sampling is less effective
for small window lengths. Large windows provide more freedom for
the weighted minimizer sampling to choose a non-repetitive k-mer
over a repetitive k-mer. This prevents the anchor chaining phase in
Minimap2 from turning into a computational bottleneck with too
many anchors to consider during mapping.

Winnowmap significantly improves accuracy in large repeats.
Using dataset D1, we evaluated its accuracy within the centromeric
region of chromosome X, which comprises 	1500 tandemly arrayed

copies of a 2057 bp repeat unit spanning 	3.1 Mbp. These tandem
copies are nearly identical; for example a canonical tandem unit
aligns to the other 1504 copies with an average and maximum align-
ment identity of 98.7% and 99.6%, respectively. To measure map-
ping accuracy within this repeat array, we considered all 1057 reads
that were sampled from the region (positions 57 828 561–
60 934 693). Table 3 shows the mapping accuracy with different
window length parameters. Compared to Minimap2, Winnowmap
reduces mapping error from 3.6 to 0.0% and its accuracy is again
robust to changing window length. This improvement is possible as
Winnowmap maintains all minimizers in the index whereas
Minimap2 masks repetitive minimizers. To visualize the effect of
masking, we show minimizer sampling density across the length of
chromosome X in Figure 4. This plot shows the minimizer sampling
density of three methods: (i) the standard minimizer sampling
(Roberts et al., 2004) without any modification (blue), (ii) minimizer
sampling and masking in Minimap2 (orange), and (iii) weighted
minimizer sampling in Winnowmap (green). The window length
was fixed to 10 for all the three methods. Minimap2’s masking heur-
istic leads to reduced sampling density with the most significant dip
observed in the centromere region. Although it is possible to turn off
the masking heuristic using a command line parameter in
Minimap2, it drastically increases the runtime as discussed in the
next section. Minimap2 also makes it possible for users to adjust
what fraction of k-mers should be masked; however, this is a com-
plex relationship that is dependent on the repeat content of the refer-
ence genome. Minimizer weighting is adaptive and does not require
a fixed threshold parameter.

5.3 Benefit of weighted minimizer sampling and robust

winnowing
Weighted minimizer sampling in Winnowmap includes two key
optimizations, (i) robust winnowing and (ii) weighted sampling.
These two optimizations are independent of one another and we
evaluated the advantages of each. To do this, we compared (i)
Winnowmap, (ii) a version of Winnowmap that implements only ro-
bust winnowing and (iii) a version of Minimap2 that implements the
standard minimizer sampling without the masking heuristic.
Accordingly, these three methods are referred to as ‘Optimization
1þ2’, ‘Optimization 1’, and ‘Standard’, respectively, in Figure 5. As
there is no masking involved, these three methods index all minimiz-
ers irrespective of their frequency. Here, we show mapping time and
peak memory usage using datasets D1-D3 while keeping window
length equal. We used a window length of 10 for datasets D1 and
D2, and 50 for dataset D3. The ‘Standard’ method crashed on data-
set D3 with a window length of 10. These results demonstrate that
these Winnowmap optimizations are crucial for speed and memory
efficiency.

6 Conclusions

Minimizer sampling is a simple yet powerful technique to speed up
genome sequence analysis. When this technique is used for seeding
sequence alignments, minimizers with high frequency often lead to
too many false-positive seed matches. The large number of false
hits naturally leads to high memory-usage and runtime. To date, a
popular way to deal with this issue has been to mask highly repeti-
tive minimizers. While this masking heuristic eliminates false hits,
the underlying guarantee of a minimizer seed match is lost in the
process. As a result, masking decreases mapping accuracy within
long genomic repeats. In this article, we describe optimizations to
the standard minimizer sampling procedure and evaluate the
improvements to long-read mapping. We have introduced
weighted minimizer sampling, where users can specify which k-
mers should be more (or less) likely to be selected as minimizers.
Finally, when there are multiple equally minimum k-mers in a win-
dow (e.g. in low complexity regions), robust winnowing is effective
in preventing oversampling.

We implemented weighted minimizer sampling and robust win-
nowing in Winnowmap. Winnowmap makes it feasible to map

Table 3. Evaluation of mapping accuracy in the centromeric region

of human chromosome X

Window

length (w)

Method Unmapped

reads (%)

Incorrectly

mapped

reads (%)

10 Winnowmap 0.0 0.0

Minimap2 0.0 3.6

25 Winnowmap 0.0 0.0

Minimap2 0.0 14.5

50 Winnowmap 0.0 0.0

Minimap2 0.6 34.7

The best numbers are highlighted in bold.

Note: Here, we consider only those reads in dataset D1 which were

sampled from centromeric repeat array.

Fig. 5. Benefit of the proposed minimizer sampling optimizations to long read map-

ping performance. We compare three methods: ‘Standard’ (default minimizer sam-

pling, no masking), ‘Optimization 1’ (robust winnowing) and ‘Optimization 1þ2’

(robust winnowing and weighted minimizer sampling). All three methods select at

least one minimizer in each window. The left plot indicates total mapping time

whereas the right plot indicates total memory usage, using datasets D1st. The x-axis

is log-scaled in both plots. The combination of both optimizations is crucial in

Winnowmap to achieve good efficiency
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PacBio or ONT reads without the need for a masking heuristic. As a
result, it achieves superior mapping accuracy by maintaining a uni-
form sampling density across the reference sequence using a simple
weighting criteria.

Future work will be focused in three directions. First, we will ex-
plore more sophisticated weight functions, e.g. down-weighting er-
roneous k-mers in addition to repetitive k-mers. A set of likely
erroneous k-mers could be detected prior to mapping by intersecting
the k-mer sets of the reads and the reference genome. Second, we
will test the idea of weighted minimizer sampling in other applica-
tions such as long-read overlapping and metagenomic read classifi-
cation. Third, the density bounds that were discussed in this article
are defined for arbitrary weights. However, in most applications, we
can assume weight values are bounded between ½1=c; c�, where c is a
constant. It will be useful to derive tight bounds on the expected
density under this constraint.
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