
Brief CommuniCation
https://doi.org/10.1038/s43588-022-00201-8

1Intel Labs, Bangalore, India. 2Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India. ✉e-mail: saurabh.kalikar@intel.com;
chirag@iisc.ac.in; vasimuddin.md@intel.com; sanchit.misra@intel.com

Long-read sequencing is now routinely used at scale for
genomics and transcriptomics applications. Mapping long
reads or a draft genome assembly to a reference sequence is
often one of the most time-consuming steps in these applica-
tions. Here we present techniques to accelerate minimap2,
a widely used software for this task. We present multiple
optimizations using single-instruction multiple-data paral-
lelization, efficient cache utilization and a learned index data
structure to accelerate the three main computational modules
of minimap2: seeding, chaining and pairwise sequence align-
ment. These optimizations result in an up to 1.8-fold reduction
of end-to-end mapping time of minimap2 while maintaining
identical output.

Long-read or single-molecule sequencing technology from
Pacific Biosciences (PacBio) and Oxford Nanopore Technology
(ONT) have made substantial leaps in terms of read lengths,
sequencing throughput and accuracy since their introduction to the
market. Longer read lengths naturally benefit genomics and tran-
scriptomics applications, for example, to detect complex structural
variation in case of DNA sequencing1, or for novel isoform discov-
ery during RNA sequencing2. As a result, long-read sequencing is
now being adopted in population-scale and biodiversity genome
surveys3–5. However, increased sequencing throughput (for exam-
ple, >1 Tbp per day6) also demands faster processing of data to save
time and cloud computing costs. Among the many steps performed
to analyze a long-read dataset, mapping of long DNA or RNA reads
to a reference sequence is usually the first and among the most time-
consuming steps in any bioinformatics workflow.

Minimap2 is a widely used sequence-alignment program that
supports many use-cases, including mapping long reads or a draft
genome assembly to a reference sequence7. Although minimap2
uses well-engineered heuristics and software libraries, its perfor-
mance remains considerably below the peak computing perfor-
mance of a modern CPU. In minimap2, frequent branching in the
code, irregular memory accesses and irregular computation make
it challenging to efficiently utilize the available hardware resources.
Owing to its complexity, only a few attempts have been made to
accelerate minimap2, and they have also been confined to accelerat-
ing only one of the three modules within minimap2 (refs. 8–10).

The highest speedup reported so far for minimap2 on multicore
CPUs is 1.4 fold, and this was achieved without guaranteeing output
identical to the original implementation10.

The minimap2 algorithm7 is based on the standard seed-chain-
align procedure (Extended Data Fig. 1). The seeding stage identi-
fies short fixed-length exact matches between a read and a reference
sequence. Minimap2 makes use of minimizer technique11—a pop-
ular k-mer sampling method to improve time and space require-
ments. Before mapping, minimap2 performs offline indexing of the

reference sequence, where it builds a multimap using a hash table
with minimizers as keys and minimizer locations as values. This
hash table is used during the seeding step when exact matches are
collected by searching read minimizers in the reference index. Such
matching pairs of minimizers form a set of anchors that are sorted
and passed onto the chaining stage. From the complete list of sorted
anchors, the chaining stage identifies an ordered subset of anchors
that are co-linearly positioned along a diagonal12,13. Minimap2 uses a
customized chaining score function to prioritize the highest-scoring
chains, which are likely to yield the desired base-to-base alignments
of a read. It uses dynamic programming for chaining and has two
versions: dynamic programming (DP)-based chaining and range
minimum query (RMQ)-based DP chaining. The time complexity
of the DP chaining algorithm is O(n2) in the number of anchors
and is used when the number of anchors are expected to be small.
The time complexity of the RMQ-based DP chaining algorithm is
O(n log n) in the number of anchors and is used when the number
of anchors are expected to be large. The RMQ-based DP chaining is
used as a long-join heuristic in minimap2 to chain anchors that are
too far from each other in the array; it uses a simplified cost func-
tion whereas DP chaining penalizes gaps more effectively. The third
and final alignment stage computes base-level alignments for filling
the gaps between adjacent anchors in these chains.

In this work we re-engineered the three key computational mod-
ules in minimap2: (1) seeding, (2) anchor chaining and (3) pairwise
sequence alignment. Optimization of the seeding stage was achieved
by replacing the standard hash-table lookup with a machine learn-
ing-based lookup using a hardware-efficient implementation of
learned index data structures14. Acceleration of the anchor chaining
step was achieved by designing a single-instruction multiple-data
(SIMD)-based parallel chaining algorithm, which uses vector pro-
cessing units (VPUs) available on modern CPUs. To program the
VPUs, special SIMD instructions are used that perform the same
operation on multiple data items simultaneously, thus enabling
parallel computation. The VPUs have evolved through the genera-
tions of modern CPUs. Streaming SIMD extensions (SSE) provide a
128-bit SIMD instruction set, whereas the recent CPUs come with
Advanced Vector Extensions 2/512 (AVX-2 and AVX-512), which
support 256-bit and 512-bit SIMD instructions, respectively. In the
final sequence-alignment stage, we reduced runtime by converting
128-bit (SSE) instructions to 256-bit (AVX-2) and 512-bit (AVX-
512) instructions. In all of the proposed optimizations, we ensured
that the final output remains 100% identical to that of minimap2,
which allows users to easily switch to a faster version of minimap2
whenever faster computing throughput is desired.

We compared our optimized minimap2 implementation,
mm2-fast, with minimap2 by mapping - real (1) ONT, (2) PacBio
continuous long reads (CLRs), (3) PacBio high-fidelity (HiFi)

Accelerating minimap2 for long-read sequencing
applications on modern CPUs
Saurabh Kalikar1 ✉, Chirag Jain2 ✉, Md Vasimuddin1 ✉ and Sanchit Misra   1 ✉

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

mailto:saurabh.kalikar@intel.com
mailto:chirag@iisc.ac.in
mailto:vasimuddin.md@intel.com
mailto:sanchit.misra@intel.com
http://orcid.org/0000-0001-7863-858X
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-022-00201-8&domain=pdf
http://www.nature.com/natcomputsci

Brief CommuniCation NaTurE CoMpuTaTioNaL SCiENCE

human-sequencing data and (4) human de novo genome assem-
blies - to the human genome reference using multiple generations
of server-grade CPUs. We achieved an up to 1.8-fold speedup
compared with minimap2. In the future the mm2-fast code will be
maintained as minimap2 further develops.

results
Experimental set-up. We performed our experiments on four dif-
ferent processor architectures: Intel Xeon Platinum 8180 (Skylake),
Intel Xeon Platinum 8280 (Cascade Lake), Intel Xeon Platinum
8380 (Ice Lake) and AMD EPYC 7742 (Rome). Architectural
specifications of these systems are listed in Supplementary Table
1. Our implementation, mm2-fast, was built on top of minimap2
v2.22 and therefore all of our benchmarks show a comparison of
mm2-fast with v2.22 of minimap2. Our tests involved three types of
real human long-read sequencing data (ONT Guppy 3.6.0, PacBio
HiFi, PacBio CLR), as well as three human genome assemblies for
mapping to the standard reference GRCh3815. The assemblies were
useful to demonstrate the utility of mm2-fast for faster genome–
genome comparisons. Long-read sequencing datasets used here
were available publicly and derived from human trio benchmark
genomes HG002, HG003 and HG004 (Supplementary Table 2). The
three human genome assemblies are associated with nearly haploid
CHM1316 and diploid HG002 genomes17. Each type of dataset was
mapped using parameters recommended in minimap2 documenta-
tion (Supplementary Table 3).

Minimap2 profile. We profiled a single-threaded execution of
minimap2 using datasets listed in Supplementary Table 2, and sepa-
rately measured time consumed by three key modules (1) seeding,
(2) chaining (DP chaining and RMQ-based DP chaining) and (3)
alignment. Figure 1 shows the performance comparison and pro-
file of minimap2 with our optimized implementation (mm2-fast).
All of the runtime values shown are normalized by the total time
consumed by minimap2 corresponding to each dataset. For pro-
filing using a single thread, we used a random subset of 100,000
reads from each of the ONT, PacBio CLR and PacBio HiFi data-
sets, but no sampling was performed in the case of draft genome
assemblies. We observed that the three modules collectively con-
tribute to around 85–97% of the total mapping time across different
datasets. The breakdown of time consumption among the modules

was: seeding (3–13%), chaining (9–68%) and alignment (18–76%).
Out of the time spent in chaining, 0–54% was spent in DP chain-
ing, whereas RMQ-based DP chaining accounted for 4–36% of the
time. Interestingly, the time distribution of the three modules var-
ied across all of the input data types. For instance, the chaining was
the most time-consuming step for the ONT and assembly datasets,
whereas PacBio CLR and HiFi datasets spent the majority of the
time in the alignment phase. We therefore focused on all of the three
key modules to achieve better performance.

Summary of optimizations. In mm2-fast, we implemented the
following optimizations while ensuring that the mapping output
obtained from our optimized minimap2 remains identical to mini-
map2. The optimization details and the design choices are available
in the Methods.

•	 Seeding. We replaced the hash-based minimizer lookup with
the learned index-based search over the sorted list of the mini-
mizers in the reference sequence. Internally, learned indexes use
machine learning models to predict the positions of the desired
minimizers. This resulted in nearly three to fourfold speedup in
minimizer lookup and an up to 1.15-fold speedup in the seed-
ing phase.

•	 Chaining. We accelerated DP chaining by vectorizing the tra-
versal over the predecessor anchors using SIMD instructions
and 32-bit integer/floating-point representation. Our AVX-512-
based vectorized chaining achieved an up to 3.1-fold speedup
over the implementation of DP chaining in minimap2.

•	 Alignment. Minimap2 implements base-level alignments using
SSE2 instructions with 128-bit vector registers. As AVX-2 and
AVX-512 instructions with support of 256-bit and 512-bit vec-
tor registers, respectively, are available in majority of modern
general-purpose processors, we modified the alignment phase
to add AVX-2- and AVX-512-based implementations. Our
AVX-512-based version yielded up to 2.2-fold speedup over the
SSE2-based implementation in minimap2.

Performance comparison. In Fig. 1, the bars for minimap2 and
our optimized implementation (mm2-fast) show relative time con-
sumption of each module across various datasets using a single
thread on a Cascade Lake CPU. The speedups achieved for each

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

HG002

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

m
in

im
ap

2

m
m

2-
fa

st

HG003

ONT

HG004 HG002 HG003 HG004 HG002 HG003 HG004 CHM13 HG002
(hap1)

HG002
(hap2)

N
or

m
al

iz
ed

 r
un

tim
e

Chaining

Seeding

1.72× 1.66× 1.66× 1.63× 1.65× 1.65×
1.48× 1.49× 1.47×

1.27×
1.39× 1.41×

DP chaining RMQ chaining Alignment Misc

PacBio CLR

Use cases and datasets

PacBio HiFi Assembly

Fig. 1 | Work distribution for three modules. Seeding, chaining (DP chaining and RMQ-based DP chaining) and alignment for minimap2 and mm2-fast
across different datasets. Both of the implementations were run using a single thread of a Cascade Lake CPU. The x-axis shows various query datasets,
whereas the y-axis is the normalized time with respect to the mapping time consumed by minimap2 corresponding to each dataset. The speedup achieved
by mm2-fast over minimap2 for randomly sampled 100,000 reads for ONT, PacBio CLR and PacBio HiFi and assembly contigs are shown on top of the
mm2-fast bars.

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Brief CommuniCationNaTurE CoMpuTaTioNaL SCiENCE

dataset are also shown. For single-threaded execution, we achieved
up to 1.7-fold speedup compared with minimap2.

Figure 2 shows a performance comparison of minimap2 and
mm2-fast over full datasets listed in Supplementary Table 2 using
multithreaded execution on an entire socket of a Cascade Lake CPU.
Using multithreaded execution on a single socket, we achieved an
up to 1.8-fold speedup compared with minimap2. mm2-fast also
scales well with multithreading. On a single socket system with 28
cores, we achieved up to 24.5-fold speedup compared with single-
threaded execution (Supplementary Fig. 1). mm2-fast consumes
nearly the same amount of memory as minimap2 (Supplementary
Table 4). A step by step guide to using mm2-fast and verify the cor-
rectness is provided in Supplementary Section 1.

Cross-platform performance and compatibility. To ensure that
our optimizations deliver speedups across various architectures, we
compared the performances of mm2-fast and minimap2 on three
generations of Intel architectures—Skylake, Cascade Lake and Ice
Lake—and the recent AMD Rome architecture. The first three
support both AVX-2 and AVX-512 vector processing, and thus we
used AVX-512 version of mm2-fast on them for these experiments.
Rome, however, only supports AVX-2 and hence that version of
mm2-fast was used. Supplementary Table 1 provides details on the
architectural specifications of these systems. Extended Data Fig. 2
shows the speedups achieved on the four architectures. For each of
the query datasets, we consistently achieved high speedups on all
four of the processors. Note that these systems with different archi-
tectures run on different turbo-frequencies and thus their relative
performance is not comparable.

Construction of the learned index. Across the four use-cases men-
tioned in Supplementary Table 2, the construction of the learned
index for mm2-fast takes only 2 min 23 s to 3 min 27 s. Moreover, the
construction of the learned index is a one-time activity for any ref-
erence sequence and use-case combination; thus, the time spent in
the construction of index gets amortized over the multiple samples
that are mapped against the index. We therefore did not include it
for both mm2-fast and minimap2 during the comparisons.

Discussion
Improving long-read and genome assembly mapping time is impor-
tant for three reasons: (1) it cuts down waiting time for a general
user, (2) it is desirable for population-scale sequencing to achieve
better throughput and reduce cloud computing costs, and (3) it

improves the efficiency of real-time sequencing applications—
including targeted sequencing18–20—by matching speed of computa-
tion with the rate of data generation.

Mapping tools designed for long-read analysis need to account
for high sequencing error-rate and, as a result, involve complex heu-
ristics to maintain scalability using large genomes. Three computa-
tional modules (that is, seeding, co-linear chaining and alignment)
were identified as the most time-consuming steps in minimap2.
We focused on accelerating all three of them while developing
mm2-fast.

We performed extensive profiling of software performance dur-
ing the development of mm2-fast to, for example, optimize the
count of the instructions executed, the cache-efficiency and other
important hardware parameters that dictate CPU performance.
mm2-fast is designed to achieve end-to-end hardware-aware accel-
eration of minimap2 on CPUs while maintaining identical output.
Unlike minimap2, mm2-fast implements a learned index to allow
faster minimizer lookups, a SIMD-parallel co-linear chaining
algorithm and a revised implementation for sequence-alignment.
Although the proposed optimizations will generally be useful for
any tool which follows seed-chain-align procedure21–23, we chose
minimap2 to demonstrate the impact of these optimizations as it is
a commonly used read mapper. mm2-fast leverages features avail-
able in modern CPUs (for example, wide SIMD instructions) and
will work on any modern general-purpose processor; it also offers
a similar user-interface to minimap2 for compilation, learned index
construction and read mapping.

Using mm2-fast, we achieved variable speedups depending on
the type of input data, that is, ONT, PacBio CLR, PacBio HiFi and
genome assemblies. This is attributed to the fact that input sequence
lengths and error rates change with the type of data, and also mini-
map2 uses different parameters (for example, the k parameter to set
the k-mer size) for each type of data. As output of mm2-fast remains
identical to minimap2 (v2.22) in all scenarios, mm2-fast can be
directly used as a faster alternative.

There are many interesting directions that can be explored to
further optimize minimap2. Here we addressed the read-mapping
applications of long reads but do not support all-to-all read over-
lap computations yet. Computing read overlaps is the most time-
consuming step during de novo genome assembly, hence this will
be an important module for future acceleration. Second, it may
be possible to accelerate dynamic RMQ data structures used in
minimap2 for co-linear chaining of minimizer matches. Dynamic
RMQ data structures are implemented using segment trees. Here

minimap2 mm2-fast

HG002 HG003 HG004 HG002 HG003 HG004 HG002 HG003 HG004 CHM13 HG002
(hap1)

HG002
(hap2)

ONT CLR HiFi Assembly

Use cases and datasets

1.72× 1.74×

1.43× 1.43× 1.46× 1.47× 1.51× 1.52×

1.26×
1.39×

1.52×

1.76×

5.7 h 9.6 h 9.7 h 3 h 1.4 h 1.3 h 1 h 1.1 h 1 h 0.4 h 0.2 h 0.2 h
N

or
m

al
iz

ed
 r

un
tim

e

0

0.8

0.6

0.4

1.2

0.2

1

Fig. 2 | Performance comparison of minimap2 and mm2-fast on a single socket Cascade lake CPU (28 cores) for full datasets. The x-axis shows various
query datasets, whereas the y-axis is the normalized time with respect to the mapping time taken by minimap2 corresponding to each dataset. The labels
above the bars for minimap2 show the end-to-end mapping time in hours, whereas the labels above the bars of our optimized implementation mm2-fast
show the speedup achieved.

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Brief CommuniCation NaTurE CoMpuTaTioNaL SCiENCE

the irregular organization of data in a tree-like structure makes vec-
torization challenging. Range minimum query operations may be
accelerated using a better cache-efficient design, further speeding
up minimap2.

Methods
Seeding using a learned index. A recent work by Kraska and colleagues24 has
shown that an index structure can be viewed as a model that maps a key to its
position, and therefore can be replaced by machine learning models. For instance,
a B-tree can be seen as a model that maps a key to its position in a sorted list. The
learned index structures can take advantage of the distribution of the keys and
train a machine learning model (for example, a recursive model index or RMI)
such that it outperforms traditional B-trees in search time and memory footprint.
Following ref. 24, several other learned index structures have been proposed25–28.
Learned indexes have emerged as a performant alternative to solve problems in
various domains including bioinformatics, for example, for genome indexing using
FM-index14 and suffix array29. In this work we design a learned index-based hash
table to improve the query time for minimizer lookup during the seeding phase.

Hash table implementation in minimap2. A hash table index is used in minimap2
to store all minimizers of a reference sequence as keys, and their positions in
the reference sequence as values. In the seeding phase, a successful hash lookup
returns all positions at which a query minimizer occurs in the reference sequence.
Typically, such hash table lookups are known to be faster. However, they may incur
overheads due to a large number of collisions, and also incur high cache misses
as a side-effect of irregular memory accesses during hash table access, including
collision resolution. For instance, the hash table in minimap2 uses a traditional
quadratic probing technique, which may lead to sub-optimal cache performance.
In the following, we present our learned index-based hash table design which
outperforms the traditional hash table implementation in minimap2.

Design of a learned hash table. The hash lookup problem can be modeled as
a search on a list of key–value pairs that is sorted according to the keys. In our
learned hash table design, we maintain two data structures as illustrated in
Extended Data Fig. 3. The first is a key-sorted list of key–value pairs where keys
are the actual minimizers. The second is a position list containing a concatenated
list of lists of positions of all of the minimizers. For each minimizer key, the value
part of the first data structure encodes the starting index in the position list and
the count of the positions for the minimizer. For instance, in Extended Data Fig.
3, a minimizer entry mm5 → [8, 3] shows that mm5 appears three times on the
reference sequence, at indexes 5, 21 and 57; these three positions are stored at three
consecutive locations in the position list, starting from index 8. We use a learned
index structure to search for the minimizer entry in the first data structure.

Among the proposed learned index structures, RMI exhibits the best
performance/size tradeoff for real-world read-only in-memory dense arrays30. RMI
consists of a multilayer tree structure with a model at each tree node. An RMI with
more than two layers is almost never needed31. Therefore, we train a two-layer
RMI model to learn the distribution of the sorted keys and use the trained RMI
to search through the sorted list. Extended Data Fig. 4 shows a two-level RMI
model and illustrates, with an example, how we perform a lookup operation. While
performing a lookup operation for a minimizer, the model at the root layer is used
to predict the correct model to use at the leaf layer. The predicted model at the leaf
layer is used to predict the position of the key in the sorted list. RMI guarantees
that the key is present within a certain range from the predicted location30. If
the desired key is not found at the predicted position, the last-mile search is
conducted in the provided range to find the key. The last-mile search is typically
short because the key is expected to be in proximity of the predicted location. In
our experiments, we observed that RMI-based lookup is nearly three to four times
faster than the existing hash table implementation in minimap2.

Design choices. We make the following design choices and apply architecture-
aware optimizations similar to ref. 14, to achieve maximum speedup using RMI:
•	 Number of leaf nodes. The number of leaf layer models plays a crucial role in

the efficiency of the RMI lookup30. Using a large number of leaf layer models
delivers better prediction and shorter last-mile searches—at the cost of larger
memory consumption. By default, we use n/32 leaf layer models where n is the
total number of minimizers in the list since empirically that provided a good
tradeoff between prediction accuracy and memory consumption.

•	 Vectorized last-mile search. The last-mile search is performed using binary
search. Once only a few elements remain for search (say, less than eight 64-bit
elements for AVX-512 vector instructions), we compare them simultaneously
using SIMD instructions.

•	 Batched processing. Irregular memory accesses while traversing through the
RMI tree and the last-mile search lead to higher cache misses, which adversely
affect the performance. We use software prefetches to hide the memory latency
by processing a batch of lookups at a time. Each individual lookup can be split
into a sequence of steps to be performed: (1) visit the RMI root and predict
leaf layer model, (2) visit leaf model and predict the location of the key, and

(3) one step for each iteration of the binary search performed around the
prediction. During batch processing, we process all of the lookups in a batch
in round-robin fashion. Every time a lookup gets a turn, we advance that
lookup by one step and use software prefetches to start prefetching the data
into the caches for its next step. While the data is getting prefetched, we go
over the rest of the lookups in the batch one by one and advance them by one
step and start their prefetches. By the time, a lookup gets a turn again, the data
it requires for the next step is already expected in cache. If all of the steps of a
lookup are done, we replace it with the next unprocessed lookup from outside
the batch. We continue this until all of the lookups are done. The batch size
should be large enough to hide the memory latency but not so large that data
corresponding to all of the lookups in a batch do not fit in cache. We theoreti-
cally compute a range of ideal batch sizes and empirically find the best batch
size from that range.

SIMD acceleration for co-linear chaining. Chaining in minimap2. The seeding
phase outputs a list of all identified anchors sorted according to their position in
the reference sequence for further processing in the chaining stage. An anchor is
defined as a matching minimizer between a query and a reference sequence. It can
be represented as a 3-tuple (r, q, l), where r and q are the positions of the matching
minimizer on the reference and the query sequence, respectively, and l is the length
of the minimizer.

Given a list L: {a1, a2, …, an} of anchors sorted according to their reference
positions, the chaining step identifies ordered subsets of co-linear anchors as
chains which achieve the highest chaining scores. Let S(i) be the highest chaining
score for a chain that ends at anchor ai; S(i) is computed using the following
dynamic programming (DP) recursion in minimap2:

S(i) = max
(

max
j<i

(S(j) + ai.l

− gap_cost(i, j) − overlap(i, j)) , ai.l
)

where the gap_cost(i, j) function penalizes the score on the basis of the distance
between anchors ai and aj, and overlap(i, j) denotes the count of overlapping
bases between ai and aj. DP chaining linearly scans the previous S(j) values, thus
requiring the O(n) time in computation of every S(i). RMQ-based DP chaining
performs an RMQ query over a binary tree to get the best S(j) in O(log(n)) time,
but needs to simplify the cost function to enable that. In mm2-fast, we accelerate
the former. Extended Data Fig. 5 depicts the chaining of two co-linear anchors and
their corresponding gaps and overlap.

DP chaining in minimap2. Supplementary Algorithm 1 presents a DP-based
anchor-chaining implementation in minimap2. For each anchor ai in the list (line
3), the inner loop (line 8) iterates over all of the anchors aj where start ≤j < i. DP-
based execution pattern ensures that the maximal chaining scores till anchor ai−1
are already computed before the computation of score for ai. The expression in line
11 computes the chaining score. The two variables max_score and predecessor_
index (lines 12–14) track the maximum scoring chain found so far and the index
of the predecessor anchor connected to it. Considering that the gap cost and the
overlap can be computed in constant time, the worst-case time complexity for the
whole chaining step is O(n2).

Minimap2 applies a set of heuristics to accelerate the chaining step. The while
loop (line 6) decides the range of predecessors based on the distance between the
two anchors with respect to the reference sequence (that is, Reference_gap, as
illustrated in Extended Data Fig. 5). For instance, if the gap between two anchors
is above a user-specified threshold, the gap cost is assumed to be infinity. As
the anchors are sorted, the range of anchors with larger distance can trivially be
ignored for the score computation. The if condition in the inner loop (line 9)
applies another set of filters based on the distances between the anchors with
respect to the query sequence (that is, Query_gap, as illustrated in Extended
Data Fig. 5). The anchor being considered is ignored if the gap is above a certain
threshold or negative. After every iteration of the inner loop, the max_skip
condition (line 15) is evaluated. According to the heuristic, if we do not find a
better score over the last max_skip attempts, then the inner loop terminates. In
minimap2, the default value for max_skip is 25. The sole purpose of this heuristic
is to accelerate the chaining step potentially at the cost of chaining accuracy. The
heuristic can be disabled by setting max_skip to a large value (say, infinity) to
achieve better chaining accuracy. The actual conditional expressions and further
implementation details can be found in minimap2 paper7.

Our SIMD-based DP chaining. As shown above in the ‘Results’ section, chaining
is one of the most compute-intensive steps in the complete pipeline. Despite
various heuristics used in the chaining step, the majority of the time is consumed
in the execution of the inner loop. We accelerate the chaining step by redesigning
the inner loop to exploit SIMD parallelism. Typically, modern compilers provide
support for auto-vectorization using compilation flags or annotations which can
identify opportunities to convert sequential loops to their SIMD version. However,
in practice, a loop with dependencies and branching instructions makes auto-
vectorization difficult. We tried auto-vectorizing the inner loop using the latest

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Brief CommuniCationNaTurE CoMpuTaTioNaL SCiENCE

versions of gcc and icpc compilers and verified that none of the modern compilers
could auto-vectorize the loop. Designing a SIMD-friendly chaining algorithm is
non-trivial because the inner loop contains multiple conditional branches, such
as Query_gap and max_skip, and during the computation of max_score. In our
optimizations, we carefully resolved the branches and inter-loop dependencies
and adopted a hybrid (sequential + SIMD) approach to maximize the vectorization
gains. We ensured that the sequential and vectorized versions produce identical
chaining output.

More specifically, we made the following improvements to the chaining module
•	 Inner-loop vectorization. Supplementary Algorithm 2 shows our vector-

ized algorithm for anchor chaining using 32-bit number representation. We
denote ω as a SIMD width. For instance, using AVX-512-bit instructions and
32-bit numbers, we can process ω = 512

32 = 16 elements simultaneously. The
inner loop at line 8 implements a ω-way vectorized version that computes the
maximal chaining scores. Vector instructions perform the same operation over
multiple data elements. In Supplementary Algorithm 2, the notation A[i:j]
represents a vector operation on a range of data elements A[i] to A[j]. A[i:i]
broadcasts the value of A[i] to the vector register. Similarly, [i:j] and [i:i] load
and broadcast the constant values to the registers, respectively. Conditional
branches (if conditions) are vectorized using ω-bit vector masks; if the branch
is taken, the respective bit in the vector mask is set to 1 (line 10). We vector-
ized gap_cost and overlap evaluation, and compute the chaining scores for ω
predecessor anchors in one vectorized iteration. Once the chaining score is
computed, we apply the computed mask m_continue (line 12) such that the
scores are zeroed out when the respective bit is set in the mask. Similar to the
scalar version, the two vector registers max_score and predecessor_index track
the maximum scores across vector lanes. After every loop iteration, max_score
is compared against the computed chaining scores and masked so that the
maximum score is guaranteed to be present in the register. Finally, we extract
the maximum score and the predecessor index using a sequential pass over
max_score (line 16).

•	 Hybrid vectorized + sequential execution. In an ideal scenario, loop
vectorization delivers maximum benefit when there is no path divergence
due to conditional instructions. In the presence of path divergences, vector-
ized implementation has to compute all control paths and use appropriate
masks to obtain the desired outputs. For instance, we need to compute the
chaining scores for all vector lanes even though some of the iterations would
have continued without computing the chaining scores in the sequential
algorithm (Supplementary Algorithm 1, line 10). This results in wasted
computation over the vector lanes and leads to sub-optimal performance.
When using AVX-512 vectorization, we typically found enough number of
vector lanes busy in computing the scores, thus benefiting from vectorization
and achieving performance improvement. However, in the case of shorter
inner loops (say, <16 iterations), we observed that only a few iterations in
the sequential algorithm computed the chaining score. In such a case, due to
path divergence, a single vector-iteration might incur more instructions than
the sequential executions of few scalar iterations. We mitigated this issue by
adopting a hybrid approach: mm2-fast falls back to the sequential execution
of the inner loop if there are fewer than five iterations; else, it uses the vector-
ized implementation.

•	 Disabling max_skip heuristic. As mentioned earlier, the max_skip condition
in Supplementary Algorithm 1 uses a heuristic parameter max_skip, which
accelerates chaining in minimap2 at the cost of chaining accuracy. Moreover,
the max_skip condition also poses challenges to vectorization as it carries
loop dependencies. In our optimizations, we disabled this heuristic by setting
max_skip to infinity and removed the condition from our vectorized imple-
mentation. This benefited us in two ways: (1) we resolved the loop carrying
dependency, resulting in less complex SIMD implementation and a better
speedup, and (2) we achieved better chaining accuracy. Note that the perfor-
mance improvement reported in the result section compares the performance
of our optimizations with max_skip = ∞ against minimap2 with its default set-
ting (max_skip = 25). We achieve an up to 3.1-fold speedup in chaining over
minimap2 (default heuristics max_skip = 25) and up to 8.4-fold compared
with minimap2 (max_skip = ∞). Supplementary Fig. 2 shows the end-to-end
performance comparison of mm2-fast against minimap2, with max_skip = 25
and max_skip = ∞.

SIMD acceleration for pairwise sequence alignment. Minimap2 computes DP-
based global sequence alignment to extend through the gaps between adjacent
chained anchors. The presence of long gaps between anchors results in slower
DP-based alignment, which can be accelerated using SIMD-based vectorization;
however, longer sequences for alignment demand more bits to capture the
alignment score; this leads to a lower number of available vector lanes and
hence lower parallelism. Minimap2 adopts the Suzuki–Kasahara formulation
for DP-based alignment. Suzuki–Kasahara formulation bounds the number of
bits required to capture the score in a DP matrix to the scoring parameters. In
practice, these bounds ensure that 8-bits are sufficient for maintaining score values.
Therefore, with 128-bit vector processing available with SSE, 16-way parallelism is
available.

Minimap2 applies intra-task parallelism, exploiting parallelism in a single
DP matrix. All of the DP matrix cells along an anti-diagonal are independent of
each other; thus, minimap2 applies vectorization with SSE instructions along
anti-diagonals to accelerate the alignment. To do so, minimap2 switches from row-
column-based matrix coordinates to diagonal–anti-diagonal-based coordinates.
Furthermore, to reduce the computation burden, minimap2 restricts the DP cell
computations to a certain band around the main anti-diagonal. Minimap2 uses
a default band value of 500. Precise details about the alignment computation are
available in refs. 7,32.

Streaming SIMD extension instructions provide only 16-way parallelism;
using AVX-512, the available parallellism increases fourfold to 64-way. Moreover,
the default band value in minimap2 is large enough to keep all of the vector lanes
of AVX-512 occupied. In mm2-fast, we accelerated the DP-based alignment by
utilizing AVX-512 vectorization and used additional logic to maintain the output
identical to minimap2. To support a wide range of processors, we also developed
an AVX-2 version.

Manymap10 also provides an accelerated version of the alignment module of
minimap2 by upgrading the vectorization to AVX-512. Manymap also applies
optimizations to marginally reduce the instructions in the inner DP loop; however,
its alignment output differs from minimap2. In minimap2, the actual band of DP
matrix that is computed could be greater than or equal in size to the given band
size; this is because actual anti-diagonal computed in minimap2 is a multiple of the
SIMD width (8 for SSE); SIMD widths change when we switch from SSE to AVX-2/
AVX-512. Consequently, the same DP matrix computations with longer SIMD
widths can result in computing a bigger band size. Therefore, to maintain the exact
same output, we introduced additional instructions in our implementations to
ensure the computation of the exact same band as minimap2. Manymap does not
guarantee the same (Supplementary Section 2). Due to this, we skip comparing the
performance of mm2-fast with manymap.

Ideally, moving from SSE to AVX-512 has a potential for fourfold improvement
in the runtime; however, in practice, we saw 1.8–2.2-fold speedups due to the
following factors: (1) smaller sequences lead to under-utilization of vector lanes;
(2) smaller anti-diagonals near the two corners of the DP matrix lead to idle vector
lanes; (3) latency and throughput difference between SSE and AVX-512 vector
instructions; and (4) use of additional instructions in the AVX-512 version to
ensure the exact same output as the SSE version. The memory requirements and
access pattern of the AVX-2 and AVX-512 versions in mm2-fast remain the same
as the SSE version in minimap2.

Data availability
Datasets used for benchmarking are publicly available (Supplementary Table
2). Human reference genome is available at https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/release/references/GRCh38/GCA_000001405.15_
GRCh38_no_alt_analysis_set.fasta.gz. All ONT and PacBio HiFi datasets (HG002,
HG003, HG004) used are available at https://precision.fda.gov/challenges/10/view.
Datasets for PacBio CLR (HG002, HG003, HG004) are available at https://github.
com/genome-in-a-bottle/giab_data_indexes. Genome assemblies are available at:
CHM13: NCBI (GCA009914755.3), HG002 (hap1) and HG002 (hap2) are publicly
available at ref. 33. The speedup shown in the paper can also be realized with a
smaller subset of the above datasets. Source Data are provided with this paper.

Code availability
The mm2-fast source code is available under the open source MIT license at
https://github.com/bwa-mem2/mm2-fast. The particular version of mm2-fast
used in this manuscript is publicly available at ref. 34. The scripts used for the
experiments in the manuscript are available at ref. 35.

Optimization Notice: Software and workloads used in performance tests may
have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For
more information go to http://www.intel.com/performance. Intel, Xeon, and Intel
Xeon Phi are trademarks of Intel Corporation in the US and/or other countries.

Received: 20 July 2021; Accepted: 25 January 2022;
Published: xx xx xxxx

references
 1. Chaisson, M. J. et al. Multi-platform discovery of haplotype-resolved

structural variation in human genomes. Nat. Commun. 10, 1–16 (2019).
 2. Conesa, A. et al. A survey of best practices for RNA-seq data analysis.

Genome Biol. 17, 1–19 (2016).
 3. Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight

into the role of structural variants in human diseases and other traits. Nat.
Genet. 53, 779–886 (2021).

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/references/GRCh38/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/references/GRCh38/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/references/GRCh38/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta.gz
https://precision.fda.gov/challenges/10/view
https://github.com/genome-in-a-bottle/giab_data_indexes
https://github.com/genome-in-a-bottle/giab_data_indexes
https://github.com/bwa-mem2/mm2-fast
http://www.intel.com/performance
http://www.nature.com/natcomputsci

Brief CommuniCation NaTurE CoMpuTaTioNaL SCiENCE

 4. Rhie, A. et al. Towards complete and error-free genome assemblies of all
vertebrate species. Nature 592, 737–746 (2021).

 5. De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-
scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).

 6. PromethION Brochure (Nanophore Technologies, 2021); https://nanoporetech.
com/sites/default/files/s3/literature/PromethION-brochure.pdf

 7. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34, 3094–3100 (2018).

 8. Guo, L., Lau, J., Ruan, Z., Wei, P. & Cong, J. Hardware acceleration of long
read pairwise overlapping in genome sequencing: a race between FPGA and
GPU. In 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines 127–135 (IEEE, 2019).

 9. Zeni, A. et al. LOGAN: high-performance GPU-based X-drop long-read
alignment. In 2020 IEEE International Parallel and Distributed Processing
Symposium 462–471 (IEEE, 2020).

 10. Feng, Z., Qiu, S., Wang, L. & Luo, Q. Accelerating long read alignment on
three processors. In Proc. 48th International Conference on Parallel Processing
1–10 (ACM, 2019).

 11. Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M. & Yorke, J. A. Reducing
storage requirements for biological sequence comparison. Bioinformatics 20,
3363–3369 (2004).

 12. Abouelhoda, M. I. & Ohlebusch, E. Chaining algorithms for multiple genome
comparison. J. Discrete Algorithms 3, 321–341 (2005).

 13. Jain, C., Gibney, D. & Thankachan, S. V. Co-linear chaining with overlaps and
gap costs. Preprint at https://www.biorxiv.org/content/10.1101/2021.02.03.429
492v2 (2021).

 14. Ho, D. et al. LISA: learned indexes for DNA sequence analysis. Preprint at
https://arxiv.org/abs/1910.04728 (2020).

 15. Schneider, V. A. et al. Evaluation of GRCh38 and de novo haploid genome
assemblies demonstrates the enduring quality of the reference assembly.
Genome Res. 27, 849–864 (2017).

 16. Nurk, S., Koren, S., Rhie, A., Rautiainen, M. et al. The complete sequence of a
human genome. Preprint at https://doi.org/10.1101/2021.05.26.445798 (2021).

 17. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-
resolved de novo assembly using phased assembly graphs with hifiasm.
Nat. Methods 18, 170–175 (2021).

 18. Payne, A. et al. Readfish enables targeted nanopore sequencing of gigabase-
sized genomes. Nat. Biotechnol. 39, 442–450 (2021).

 19. Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Targeted nanopore
sequencing by real-time mapping of raw electrical signal with uncalled.
Nat. Biotechnol. 39, 431–441 (2021).

 20. Zhang, H. et al. Real-time mapping of nanopore raw signals. Bioinformatics
https://doi.org/10.1093/bioinformatics/btab264 (2021).

 21. Jain, C., Rhie, A., Hansen, N., Koren, S. & Phillippy, A.M. A long read
mapping method for highly repetitive reference sequences. Preprint at
https://www.biorxiv.org/content/10.1101/2020.11.01.363887v1.full (2020).

 22. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using
single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

 23. Ren, J. & Chaisson, M. lRA: the long read aligner for sequences and contigs.
Preprint at https://doi.org/10.1371/journal.pcbi.1009078 (2020).

 24. Kraska, T., Beutel, A., Chi, E.H., Dean, J. & Polyzotis, N. The case for learned
index structures. In ACM International Conference on Management of Data
489–504 (ACM, 2018).

 25. Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R. & Kraska, T.
FITing-Tree: a data-aware index structure. In SIGMOD ’19: Proceedings of the
2019 International Conference on Management of Data 1189–1206
(ACM, 2019); https://doi.org/10.1145/3299869.3319860

 26. Ferragina, P. & Vinciguerra, G. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. PVLDB 13,
1162–1175 (2020).

 27. Ding, J. et al. ALEX: An Updatable Adaptive Learned Index. In SIGMOD ‘20:
Proceedings of the 2020 International Conference on Management of Data
969-984 (ACM, 2020). https://doi.org/10.1145/3318464.3389711

 28. Wu, Y., Yu, J., Tian, Y., Sidle, R. & Barber, R. Designing succinct secondary
indexing mechanism by exploiting column correlations. In SIGMOD ’19:
Proceedings of the 2019 International Conference on Management of Data
1223–1240 (ACM, 2019). https://doi.org/10.1145/3299869.3319861

 29. Kirsche, M., Das, A. & Schatz, M. C. Sapling: accelerating suffix array queries
with learned data models. Bioinformatics 37, 744–749 (2021).

 30. Marcus, R. et al. Benchmarking learned indexes. In PVLDB Vol.
14, 1–13 (2021).

 31. Marcus, R., Zhang, E. & Kraska, T. CDFShop: exploring and optimizing
learned index structures. In SIGMOD ’20: Proc. 2020 ACM SIGMOD
International Conference on Management of Data 2789–2792 (ACM, 2020);
https://doi.org/10.1145/3318464.3384706

 32. Suzuki, H. & Kasahara, M. Introducing difference recurrence relations for
faster semi-global alignment of long sequences. BMC Bioinformatics 19,
33–47 (2018).

 33. Cheng, H., Concepcion, G., Feng, X., Zhang, H. & Li, H. Human Assemblies
Evaluated in the Hifiasm Paper (Zenodo, 2020); https://doi.org/10.5281/
zenodo.4393631

 34. Kalikar, S., Jain, C., Md, V. & Misra, S. mm2-fast Source Code Used in the
Manuscript—Accelerating Minimap2 for Long-Read Sequencing Applications on
Modern CPUs (Zenodo, 2022); https://doi.org/10.5281/zenodo.5888171

 35. Kalikar, S., Jain, C., Md, V. & Misra, S. Scripts Used for the Experiments
in the Manuscript—Accelerating Minimap2 for Long-Read Sequencing
Applications on Modern CPUs (Zenodo, 2022); https://doi.org/10.5281/
zenodo.5884451

Acknowledgements
This work is supported in part by the National Supercomputing Mission (NSM) India
under DST/NSM/R&D_HPC_Applications to C.J. The authors are grateful to H. Li
for guidance and technical discussions on minimap2 and working with us to get our
improvements integrated in a branch of minimap2 github repo.

Author contributions
S.K. led the software implementation of mm2-fast. All authors contributed to algorithm
design, experiments and manuscript preparation, and read and approved the final
manuscript.

Competing interests
S.K., V.M. and S.M. are employees of Intel Corporation.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43588-022-00201-8.

Correspondence and requests for materials should be addressed to
Saurabh Kalikar, Chirag Jain, Md Vasimuddin or Sanchit Misra.

Peer review information Nature Computational Science thanks Aydin Buluc, Zemin
Ning and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work. Handling editor: Fernando Chirigati, in collaboration with the Nature
Computational Science team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

https://nanoporetech.com/sites/default/files/s3/literature/PromethION-brochure.pdf
https://nanoporetech.com/sites/default/files/s3/literature/PromethION-brochure.pdf
https://www.biorxiv.org/content/10.1101/2021.02.03.429492v2
https://www.biorxiv.org/content/10.1101/2021.02.03.429492v2
https://arxiv.org/abs/1910.04728
https://doi.org/10.1101/2021.05.26.445798
https://doi.org/10.1093/bioinformatics/btab264
https://www.biorxiv.org/content/10.1101/2020.11.01.363887v1.full
https://doi.org/10.1371/journal.pcbi.1009078
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3299869.3319861
https://doi.org/10.1145/3318464.3384706
https://doi.org/10.5281/zenodo.4393631
https://doi.org/10.5281/zenodo.4393631
https://doi.org/10.5281/zenodo.5888171
https://doi.org/10.5281/zenodo.5884451
https://doi.org/10.5281/zenodo.5884451
https://doi.org/10.1038/s43588-022-00201-8
http://www.nature.com/reprints
http://www.nature.com/natcomputsci

Brief CommuniCationNaTurE CoMpuTaTioNaL SCiENCE Brief CommuniCationNaTurE CoMpuTaTioNaL SCiENCE

Extended Data Fig. 1 | Minimap2 workflow depicting its three key modules – (i) seeding, (ii) chaining, and (iii) alignment – and mm2-fast optimizations.
The seeding stage identifies short fixed-length exact matches between a read and a reference sequence. Chaining stage selects an ordered subset of these
exact matches (anchors) to form a chain. The final alignment stage computes base-level alignments for filling the gaps between adjacent anchors in these
chains. Our optimizations to each of the modules are shown in the blue dotted rectangle.

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Brief CommuniCation NaTurE CoMpuTaTioNaL SCiENCEBrief CommuniCation NaTurE CoMpuTaTioNaL SCiENCE

Extended Data Fig. 2 | Cross-platform performance of our optimizations for rome, Skylake, Cascade lake and ice lake architectures using single
socket. X-axis shows various query datasets and y-axis indicates the speedup achieved by mm2-fast over minimap2 – both running on the same CPU.

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Brief CommuniCationNaTurE CoMpuTaTioNaL SCiENCE Brief CommuniCationNaTurE CoMpuTaTioNaL SCiENCE

Extended Data Fig. 3 | Data structures used for hash table. Minimizers extracted from the reference sequence are stored in a sorted list as key-value
pairs. Position list maintains a separate list of the positions of minimizers on the reference sequence.

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Brief CommuniCation NaTurE CoMpuTaTioNaL SCiENCEBrief CommuniCation NaTurE CoMpuTaTioNaL SCiENCE

Extended Data Fig. 4 | two-layer rMi. An example minimizer lookup is illustrated - get_mm_hits(mm5) calls a lookup for a minimizer mm5. The RMI root
predicts the leaf layer model which in turn predicts the location of mm4 in the sorted list. Finally, the last mile search from mm4 walks to the location of
mm5 and returns its value to the caller.

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

Brief CommuniCationNaTurE CoMpuTaTioNaL SCiENCE Brief CommuniCationNaTurE CoMpuTaTioNaL SCiENCE

Extended Data Fig. 5 | Chaining of two co-linear anchors A and B. Here two anchors overlap on the query sequence. Gap cost function in minimap2 is
calculated using the reference gap, query gap, and the average length of all anchors avg_qlen.

NAtUre CoMPUtAtioNAl SCieNCe | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci

	Accelerating minimap2 for long-read sequencing applications on modern CPUs
	Results
	Experimental set-up.
	Minimap2 profile.
	Summary of optimizations.
	Performance comparison.
	Cross-platform performance and compatibility.
	Construction of the learned index.

	Discussion
	Methods
	Seeding using a learned index
	Hash table implementation in minimap2
	Design of a learned hash table
	Design choices
	SIMD acceleration for co-linear chaining
	DP chaining in minimap2
	Our SIMD-based DP chaining
	SIMD acceleration for pairwise sequence alignment

	Acknowledgements
	Fig. 1 Work distribution for three modules.
	Fig. 2 Performance comparison of minimap2 and mm2-fast on a single socket Cascade Lake CPU (28 cores) for full datasets.
	Extended Data Fig. 1 Minimap2 workflow depicting its three key modules – (i) seeding, (ii) chaining, and (iii) alignment – and mm2-fast optimizations.
	Extended Data Fig. 2 Cross-platform performance of our optimizations for Rome, Skylake, Cascade Lake and Ice Lake architectures using single socket.
	Extended Data Fig. 3 Data structures used for hash table.
	Extended Data Fig. 4 Two-layer RMI.
	Extended Data Fig. 5 Chaining of two co-linear anchors A and B.

