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Long-read sequencing is now routinely used at scale for 
genomics and transcriptomics applications. Mapping long 
reads or a draft genome assembly to a reference sequence is 
often one of the most time-consuming steps in these applica-
tions. Here we present techniques to accelerate minimap2, 
a widely used software for this task. We present multiple 
optimizations using single-instruction multiple-data paral-
lelization, efficient cache utilization and a learned index data 
structure to accelerate the three main computational modules 
of minimap2: seeding, chaining and pairwise sequence align-
ment. These optimizations result in an up to 1.8-fold reduction 
of end-to-end mapping time of minimap2 while maintaining 
identical output.

Long-read or single-molecule sequencing technology from 
Pacific Biosciences (PacBio) and Oxford Nanopore Technology 
(ONT) have made substantial leaps in terms of read lengths, 
sequencing throughput and accuracy since their introduction to the 
market. Longer read lengths naturally benefit genomics and tran-
scriptomics applications, for example, to detect complex structural 
variation in case of DNA sequencing1, or for novel isoform discov-
ery during RNA sequencing2. As a result, long-read sequencing is 
now being adopted in population-scale and biodiversity genome 
surveys3–5. However, increased sequencing throughput (for exam-
ple, >1 Tbp per day6) also demands faster processing of data to save 
time and cloud computing costs. Among the many steps performed 
to analyze a long-read dataset, mapping of long DNA or RNA reads 
to a reference sequence is usually the first and among the most time-
consuming steps in any bioinformatics workflow.

Minimap2 is a widely used sequence-alignment program that 
supports many use-cases, including mapping long reads or a draft 
genome assembly to a reference sequence7. Although minimap2 
uses well-engineered heuristics and software libraries, its perfor-
mance remains considerably below the peak computing perfor-
mance of a modern CPU. In minimap2, frequent branching in the 
code, irregular memory accesses and irregular computation make 
it challenging to efficiently utilize the available hardware resources. 
Owing to its complexity, only a few attempts have been made to 
accelerate minimap2, and they have also been confined to accelerat-
ing only one of the three modules within minimap2 (refs. 8–10).

The highest speedup reported so far for minimap2 on multicore 
CPUs is 1.4 fold, and this was achieved without guaranteeing output 
identical to the original implementation10.

The minimap2 algorithm7 is based on the standard seed-chain-
align procedure (Extended Data Fig. 1). The seeding stage identi-
fies short fixed-length exact matches between a read and a reference 
sequence. Minimap2 makes use of minimizer technique11—a pop-
ular k-mer sampling method to improve time and space require-
ments. Before mapping, minimap2 performs offline indexing of the 

reference sequence, where it builds a multimap using a hash table 
with minimizers as keys and minimizer locations as values. This 
hash table is used during the seeding step when exact matches are 
collected by searching read minimizers in the reference index. Such 
matching pairs of minimizers form a set of anchors that are sorted 
and passed onto the chaining stage. From the complete list of sorted 
anchors, the chaining stage identifies an ordered subset of anchors 
that are co-linearly positioned along a diagonal12,13. Minimap2 uses a 
customized chaining score function to prioritize the highest-scoring 
chains, which are likely to yield the desired base-to-base alignments 
of a read. It uses dynamic programming for chaining and has two 
versions: dynamic programming (DP)-based chaining and range 
minimum query (RMQ)-based DP chaining. The time complexity 
of the DP chaining algorithm is O(n2) in the number of anchors 
and is used when the number of anchors are expected to be small. 
The time complexity of the RMQ-based DP chaining algorithm is 
O(n log n) in the number of anchors and is used when the number 
of anchors are expected to be large. The RMQ-based DP chaining is 
used as a long-join heuristic in minimap2 to chain anchors that are 
too far from each other in the array; it uses a simplified cost func-
tion whereas DP chaining penalizes gaps more effectively. The third 
and final alignment stage computes base-level alignments for filling 
the gaps between adjacent anchors in these chains.

In this work we re-engineered the three key computational mod-
ules in minimap2: (1) seeding, (2) anchor chaining and (3) pairwise 
sequence alignment. Optimization of the seeding stage was achieved 
by replacing the standard hash-table lookup with a machine learn-
ing-based lookup using a hardware-efficient implementation of 
learned index data structures14. Acceleration of the anchor chaining 
step was achieved by designing a single-instruction multiple-data 
(SIMD)-based parallel chaining algorithm, which uses vector pro-
cessing units (VPUs) available on modern CPUs. To program the 
VPUs, special SIMD instructions are used that perform the same 
operation on multiple data items simultaneously, thus enabling 
parallel computation. The VPUs have evolved through the genera-
tions of modern CPUs. Streaming SIMD extensions (SSE) provide a 
128-bit SIMD instruction set, whereas the recent CPUs come with 
Advanced Vector Extensions 2/512 (AVX-2 and AVX-512), which 
support 256-bit and 512-bit SIMD instructions, respectively. In the 
final sequence-alignment stage, we reduced runtime by converting 
128-bit (SSE) instructions to 256-bit (AVX-2) and 512-bit (AVX-
512) instructions. In all of the proposed optimizations, we ensured 
that the final output remains 100% identical to that of minimap2, 
which allows users to easily switch to a faster version of minimap2 
whenever faster computing throughput is desired.

We compared our optimized minimap2 implementation, 
mm2-fast, with minimap2 by mapping - real (1) ONT, (2) PacBio 
continuous long reads (CLRs), (3) PacBio high-fidelity (HiFi) 
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human-sequencing data and (4) human de novo genome assem-
blies - to the human genome reference using multiple generations 
of server-grade CPUs. We achieved an up to 1.8-fold speedup 
compared with minimap2. In the future the mm2-fast code will be 
maintained as minimap2 further develops.

results
Experimental set-up. We performed our experiments on four dif-
ferent processor architectures: Intel Xeon Platinum 8180 (Skylake), 
Intel Xeon Platinum 8280 (Cascade Lake), Intel Xeon Platinum 
8380 (Ice Lake) and AMD EPYC 7742 (Rome). Architectural 
specifications of these systems are listed in Supplementary Table 
1. Our implementation, mm2-fast, was built on top of minimap2 
v2.22 and therefore all of our benchmarks show a comparison of 
mm2-fast with v2.22 of minimap2. Our tests involved three types of 
real human long-read sequencing data (ONT Guppy 3.6.0, PacBio 
HiFi, PacBio CLR), as well as three human genome assemblies for 
mapping to the standard reference GRCh3815. The assemblies were 
useful to demonstrate the utility of mm2-fast for faster genome–
genome comparisons. Long-read sequencing datasets used here 
were available publicly and derived from human trio benchmark 
genomes HG002, HG003 and HG004 (Supplementary Table 2). The 
three human genome assemblies are associated with nearly haploid 
CHM1316 and diploid HG002 genomes17. Each type of dataset was 
mapped using parameters recommended in minimap2 documenta-
tion (Supplementary Table 3).

Minimap2 profile. We profiled a single-threaded execution of 
minimap2 using datasets listed in Supplementary Table 2, and sepa-
rately measured time consumed by three key modules (1) seeding, 
(2) chaining (DP chaining and RMQ-based DP chaining) and (3) 
alignment. Figure 1 shows the performance comparison and pro-
file of minimap2 with our optimized implementation (mm2-fast). 
All of the runtime values shown are normalized by the total time 
consumed by minimap2 corresponding to each dataset. For pro-
filing using a single thread, we used a random subset of 100,000 
reads from each of the ONT, PacBio CLR and PacBio HiFi data-
sets, but no sampling was performed in the case of draft genome 
assemblies. We observed that the three modules collectively con-
tribute to around 85–97% of the total mapping time across different 
datasets. The breakdown of time consumption among the modules 

was: seeding (3–13%), chaining (9–68%) and alignment (18–76%). 
Out of the time spent in chaining, 0–54% was spent in DP chain-
ing, whereas RMQ-based DP chaining accounted for 4–36% of the 
time. Interestingly, the time distribution of the three modules var-
ied across all of the input data types. For instance, the chaining was 
the most time-consuming step for the ONT and assembly datasets, 
whereas PacBio CLR and HiFi datasets spent the majority of the 
time in the alignment phase. We therefore focused on all of the three 
key modules to achieve better performance.

Summary of optimizations. In mm2-fast, we implemented the 
following optimizations while ensuring that the mapping output 
obtained from our optimized minimap2 remains identical to mini-
map2. The optimization details and the design choices are available 
in the Methods.

•	 Seeding. We replaced the hash-based minimizer lookup with 
the learned index-based search over the sorted list of the mini-
mizers in the reference sequence. Internally, learned indexes use 
machine learning models to predict the positions of the desired 
minimizers. This resulted in nearly three to fourfold speedup in 
minimizer lookup and an up to 1.15-fold speedup in the seed-
ing phase.

•	 Chaining. We accelerated DP chaining by vectorizing the tra-
versal over the predecessor anchors using SIMD instructions 
and 32-bit integer/floating-point representation. Our AVX-512-
based vectorized chaining achieved an up to 3.1-fold speedup 
over the implementation of DP chaining in minimap2.

•	 Alignment. Minimap2 implements base-level alignments using 
SSE2 instructions with 128-bit vector registers. As AVX-2 and 
AVX-512 instructions with support of 256-bit and 512-bit vec-
tor registers, respectively, are available in majority of modern 
general-purpose processors, we modified the alignment phase 
to add AVX-2- and AVX-512-based implementations. Our 
AVX-512-based version yielded up to 2.2-fold speedup over the 
SSE2-based implementation in minimap2.

Performance comparison. In Fig. 1, the bars for minimap2 and 
our optimized implementation (mm2-fast) show relative time con-
sumption of each module across various datasets using a single 
thread on a Cascade Lake CPU. The speedups achieved for each 
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Fig. 1 | Work distribution for three modules. Seeding, chaining (DP chaining and RMQ-based DP chaining) and alignment for minimap2 and mm2-fast 
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dataset are also shown. For single-threaded execution, we achieved 
up to 1.7-fold speedup compared with minimap2.

Figure 2 shows a performance comparison of minimap2 and 
mm2-fast over full datasets listed in Supplementary Table 2 using 
multithreaded execution on an entire socket of a Cascade Lake CPU. 
Using multithreaded execution on a single socket, we achieved an 
up to 1.8-fold speedup compared with minimap2. mm2-fast also 
scales well with multithreading. On a single socket system with 28 
cores, we achieved up to 24.5-fold speedup compared with single-
threaded execution (Supplementary Fig. 1). mm2-fast consumes 
nearly the same amount of memory as minimap2 (Supplementary 
Table 4). A step by step guide to using mm2-fast and verify the cor-
rectness is provided in Supplementary Section 1.

Cross-platform performance and compatibility. To ensure that 
our optimizations deliver speedups across various architectures, we 
compared the performances of mm2-fast and minimap2 on three 
generations of Intel architectures—Skylake, Cascade Lake and Ice 
Lake—and the recent AMD Rome architecture. The first three 
support both AVX-2 and AVX-512 vector processing, and thus we 
used AVX-512 version of mm2-fast on them for these experiments. 
Rome, however, only supports AVX-2 and hence that version of 
mm2-fast was used. Supplementary Table 1 provides details on the 
architectural specifications of these systems. Extended Data Fig. 2 
shows the speedups achieved on the four architectures. For each of 
the query datasets, we consistently achieved high speedups on all 
four of the processors. Note that these systems with different archi-
tectures run on different turbo-frequencies and thus their relative 
performance is not comparable.

Construction of the learned index. Across the four use-cases men-
tioned in Supplementary Table 2, the construction of the learned 
index for mm2-fast takes only 2 min 23 s to 3 min 27 s. Moreover, the 
construction of the learned index is a one-time activity for any ref-
erence sequence and use-case combination; thus, the time spent in 
the construction of index gets amortized over the multiple samples 
that are mapped against the index. We therefore did not include it 
for both mm2-fast and minimap2 during the comparisons.

Discussion
Improving long-read and genome assembly mapping time is impor-
tant for three reasons: (1) it cuts down waiting time for a general 
user, (2) it is desirable for population-scale sequencing to achieve 
better throughput and reduce cloud computing costs, and (3) it 

improves the efficiency of real-time sequencing applications—
including targeted sequencing18–20—by matching speed of computa-
tion with the rate of data generation.

Mapping tools designed for long-read analysis need to account 
for high sequencing error-rate and, as a result, involve complex heu-
ristics to maintain scalability using large genomes. Three computa-
tional modules (that is, seeding, co-linear chaining and alignment) 
were identified as the most time-consuming steps in minimap2. 
We focused on accelerating all three of them while developing 
mm2-fast.

We performed extensive profiling of software performance dur-
ing the development of mm2-fast to, for example, optimize the 
count of the instructions executed, the cache-efficiency and other 
important hardware parameters that dictate CPU performance. 
mm2-fast is designed to achieve end-to-end hardware-aware accel-
eration of minimap2 on CPUs while maintaining identical output. 
Unlike minimap2, mm2-fast implements a learned index to allow 
faster minimizer lookups, a SIMD-parallel co-linear chaining 
algorithm and a revised implementation for sequence-alignment. 
Although the proposed optimizations will generally be useful for 
any tool which follows seed-chain-align procedure21–23, we chose 
minimap2 to demonstrate the impact of these optimizations as it is 
a commonly used read mapper. mm2-fast leverages features avail-
able in modern CPUs (for example, wide SIMD instructions) and 
will work on any modern general-purpose processor; it also offers 
a similar user-interface to minimap2 for compilation, learned index 
construction and read mapping.

Using mm2-fast, we achieved variable speedups depending on 
the type of input data, that is, ONT, PacBio CLR, PacBio HiFi and 
genome assemblies. This is attributed to the fact that input sequence 
lengths and error rates change with the type of data, and also mini-
map2 uses different parameters (for example, the k parameter to set 
the k-mer size) for each type of data. As output of mm2-fast remains 
identical to minimap2 (v2.22) in all scenarios, mm2-fast can be 
directly used as a faster alternative.

There are many interesting directions that can be explored to 
further optimize minimap2. Here we addressed the read-mapping 
applications of long reads but do not support all-to-all read over-
lap computations yet. Computing read overlaps is the most time-
consuming step during de novo genome assembly, hence this will 
be an important module for future acceleration. Second, it may 
be possible to accelerate dynamic RMQ data structures used in 
minimap2 for co-linear chaining of minimizer matches. Dynamic 
RMQ data structures are implemented using segment trees. Here 
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the irregular organization of data in a tree-like structure makes vec-
torization challenging. Range minimum query operations may be 
accelerated using a better cache-efficient design, further speeding 
up minimap2.

Methods
Seeding using a learned index. A recent work by Kraska and colleagues24 has 
shown that an index structure can be viewed as a model that maps a key to its 
position, and therefore can be replaced by machine learning models. For instance, 
a B-tree can be seen as a model that maps a key to its position in a sorted list. The 
learned index structures can take advantage of the distribution of the keys and 
train a machine learning model (for example, a recursive model index or RMI) 
such that it outperforms traditional B-trees in search time and memory footprint. 
Following ref. 24, several other learned index structures have been proposed25–28. 
Learned indexes have emerged as a performant alternative to solve problems in 
various domains including bioinformatics, for example, for genome indexing using 
FM-index14 and suffix array29. In this work we design a learned index-based hash 
table to improve the query time for minimizer lookup during the seeding phase.

Hash table implementation in minimap2. A hash table index is used in minimap2 
to store all minimizers of a reference sequence as keys, and their positions in 
the reference sequence as values. In the seeding phase, a successful hash lookup 
returns all positions at which a query minimizer occurs in the reference sequence. 
Typically, such hash table lookups are known to be faster. However, they may incur 
overheads due to a large number of collisions, and also incur high cache misses 
as a side-effect of irregular memory accesses during hash table access, including 
collision resolution. For instance, the hash table in minimap2 uses a traditional 
quadratic probing technique, which may lead to sub-optimal cache performance. 
In the following, we present our learned index-based hash table design which 
outperforms the traditional hash table implementation in minimap2.

Design of a learned hash table. The hash lookup problem can be modeled as 
a search on a list of key–value pairs that is sorted according to the keys. In our 
learned hash table design, we maintain two data structures as illustrated in 
Extended Data Fig. 3. The first is a key-sorted list of key–value pairs where keys 
are the actual minimizers. The second is a position list containing a concatenated 
list of lists of positions of all of the minimizers. For each minimizer key, the value 
part of the first data structure encodes the starting index in the position list and 
the count of the positions for the minimizer. For instance, in Extended Data Fig. 
3, a minimizer entry mm5 → [8, 3] shows that mm5 appears three times on the 
reference sequence, at indexes 5, 21 and 57; these three positions are stored at three 
consecutive locations in the position list, starting from index 8. We use a learned 
index structure to search for the minimizer entry in the first data structure.

Among the proposed learned index structures, RMI exhibits the best 
performance/size tradeoff for real-world read-only in-memory dense arrays30. RMI 
consists of a multilayer tree structure with a model at each tree node. An RMI with 
more than two layers is almost never needed31. Therefore, we train a two-layer 
RMI model to learn the distribution of the sorted keys and use the trained RMI 
to search through the sorted list. Extended Data Fig. 4 shows a two-level RMI 
model and illustrates, with an example, how we perform a lookup operation. While 
performing a lookup operation for a minimizer, the model at the root layer is used 
to predict the correct model to use at the leaf layer. The predicted model at the leaf 
layer is used to predict the position of the key in the sorted list. RMI guarantees 
that the key is present within a certain range from the predicted location30. If 
the desired key is not found at the predicted position, the last-mile search is 
conducted in the provided range to find the key. The last-mile search is typically 
short because the key is expected to be in proximity of the predicted location. In 
our experiments, we observed that RMI-based lookup is nearly three to four times 
faster than the existing hash table implementation in minimap2.

Design choices. We make the following design choices and apply architecture-
aware optimizations similar to ref. 14, to achieve maximum speedup using RMI:
•	 Number of leaf nodes. The number of leaf layer models plays a crucial role in 

the efficiency of the RMI lookup30. Using a large number of leaf layer models 
delivers better prediction and shorter last-mile searches—at the cost of larger 
memory consumption. By default, we use n/32 leaf layer models where n is the 
total number of minimizers in the list since empirically that provided a good 
tradeoff between prediction accuracy and memory consumption.

•	 Vectorized last-mile search. The last-mile search is performed using binary 
search. Once only a few elements remain for search (say, less than eight 64-bit 
elements for AVX-512 vector instructions), we compare them simultaneously 
using SIMD instructions.

•	 Batched processing. Irregular memory accesses while traversing through the 
RMI tree and the last-mile search lead to higher cache misses, which adversely 
affect the performance. We use software prefetches to hide the memory latency 
by processing a batch of lookups at a time. Each individual lookup can be split 
into a sequence of steps to be performed: (1) visit the RMI root and predict 
leaf layer model, (2) visit leaf model and predict the location of the key, and 

(3) one step for each iteration of the binary search performed around the 
prediction. During batch processing, we process all of the lookups in a batch 
in round-robin fashion. Every time a lookup gets a turn, we advance that 
lookup by one step and use software prefetches to start prefetching the data 
into the caches for its next step. While the data is getting prefetched, we go 
over the rest of the lookups in the batch one by one and advance them by one 
step and start their prefetches. By the time, a lookup gets a turn again, the data 
it requires for the next step is already expected in cache. If all of the steps of a 
lookup are done, we replace it with the next unprocessed lookup from outside 
the batch. We continue this until all of the lookups are done. The batch size 
should be large enough to hide the memory latency but not so large that data 
corresponding to all of the lookups in a batch do not fit in cache. We theoreti-
cally compute a range of ideal batch sizes and empirically find the best batch 
size from that range.

SIMD acceleration for co-linear chaining. Chaining in minimap2. The seeding 
phase outputs a list of all identified anchors sorted according to their position in 
the reference sequence for further processing in the chaining stage. An anchor is 
defined as a matching minimizer between a query and a reference sequence. It can 
be represented as a 3-tuple (r, q, l), where r and q are the positions of the matching 
minimizer on the reference and the query sequence, respectively, and l is the length 
of the minimizer.

Given a list L: {a1, a2, …, an} of anchors sorted according to their reference 
positions, the chaining step identifies ordered subsets of co-linear anchors as 
chains which achieve the highest chaining scores. Let S(i) be the highest chaining 
score for a chain that ends at anchor ai; S(i) is computed using the following 
dynamic programming (DP) recursion in minimap2:

S(i) = max
(

max
j<i

(S(j) + ai.l

− gap_cost(i, j) − overlap(i, j)) , ai.l
)

where the gap_cost(i, j) function penalizes the score on the basis of the distance 
between anchors ai and aj, and overlap(i, j) denotes the count of overlapping 
bases between ai and aj. DP chaining linearly scans the previous S(j) values, thus 
requiring the O(n) time in computation of every S(i). RMQ-based DP chaining 
performs an RMQ query over a binary tree to get the best S(j) in O(log(n)) time, 
but needs to simplify the cost function to enable that. In mm2-fast, we accelerate 
the former. Extended Data Fig. 5 depicts the chaining of two co-linear anchors and 
their corresponding gaps and overlap.

DP chaining in minimap2. Supplementary Algorithm 1 presents a DP-based 
anchor-chaining implementation in minimap2. For each anchor ai in the list (line 
3), the inner loop (line 8) iterates over all of the anchors aj where start ≤j < i. DP-
based execution pattern ensures that the maximal chaining scores till anchor ai−1 
are already computed before the computation of score for ai. The expression in line 
11 computes the chaining score. The two variables max_score and predecessor_
index (lines 12–14) track the maximum scoring chain found so far and the index 
of the predecessor anchor connected to it. Considering that the gap cost and the 
overlap can be computed in constant time, the worst-case time complexity for the 
whole chaining step is O(n2).

Minimap2 applies a set of heuristics to accelerate the chaining step. The while 
loop (line 6) decides the range of predecessors based on the distance between the 
two anchors with respect to the reference sequence (that is, Reference_gap, as 
illustrated in Extended Data Fig. 5). For instance, if the gap between two anchors 
is above a user-specified threshold, the gap cost is assumed to be infinity. As 
the anchors are sorted, the range of anchors with larger distance can trivially be 
ignored for the score computation. The if condition in the inner loop (line 9) 
applies another set of filters based on the distances between the anchors with 
respect to the query sequence (that is, Query_gap, as illustrated in Extended 
Data Fig. 5). The anchor being considered is ignored if the gap is above a certain 
threshold or negative. After every iteration of the inner loop, the max_skip 
condition (line 15) is evaluated. According to the heuristic, if we do not find a 
better score over the last max_skip attempts, then the inner loop terminates. In 
minimap2, the default value for max_skip is 25. The sole purpose of this heuristic 
is to accelerate the chaining step potentially at the cost of chaining accuracy. The 
heuristic can be disabled by setting max_skip to a large value (say, infinity) to 
achieve better chaining accuracy. The actual conditional expressions and further 
implementation details can be found in minimap2 paper7.

Our SIMD-based DP chaining. As shown above in the ‘Results’ section, chaining 
is one of the most compute-intensive steps in the complete pipeline. Despite 
various heuristics used in the chaining step, the majority of the time is consumed 
in the execution of the inner loop. We accelerate the chaining step by redesigning 
the inner loop to exploit SIMD parallelism. Typically, modern compilers provide 
support for auto-vectorization using compilation flags or annotations which can 
identify opportunities to convert sequential loops to their SIMD version. However, 
in practice, a loop with dependencies and branching instructions makes auto-
vectorization difficult. We tried auto-vectorizing the inner loop using the latest 
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versions of gcc and icpc compilers and verified that none of the modern compilers 
could auto-vectorize the loop. Designing a SIMD-friendly chaining algorithm is 
non-trivial because the inner loop contains multiple conditional branches, such 
as Query_gap and max_skip, and during the computation of max_score. In our 
optimizations, we carefully resolved the branches and inter-loop dependencies 
and adopted a hybrid (sequential + SIMD) approach to maximize the vectorization 
gains. We ensured that the sequential and vectorized versions produce identical 
chaining output.

More specifically, we made the following improvements to the chaining module
•	 Inner-loop vectorization. Supplementary Algorithm 2 shows our vector-

ized algorithm for anchor chaining using 32-bit number representation. We 
denote ω as a SIMD width. For instance, using AVX-512-bit instructions and 
32-bit numbers, we can process ω = 512

32 = 16 elements simultaneously. The 
inner loop at line 8 implements a ω-way vectorized version that computes the 
maximal chaining scores. Vector instructions perform the same operation over 
multiple data elements. In Supplementary Algorithm 2, the notation A[i:j] 
represents a vector operation on a range of data elements A[i] to A[j]. A[i:i] 
broadcasts the value of A[i] to the vector register. Similarly, [i:j] and [i:i] load 
and broadcast the constant values to the registers, respectively. Conditional 
branches (if conditions) are vectorized using ω-bit vector masks; if the branch 
is taken, the respective bit in the vector mask is set to 1 (line 10). We vector-
ized gap_cost and overlap evaluation, and compute the chaining scores for ω 
predecessor anchors in one vectorized iteration. Once the chaining score is 
computed, we apply the computed mask m_continue (line 12) such that the 
scores are zeroed out when the respective bit is set in the mask. Similar to the 
scalar version, the two vector registers max_score and predecessor_index track 
the maximum scores across vector lanes. After every loop iteration, max_score 
is compared against the computed chaining scores and masked so that the 
maximum score is guaranteed to be present in the register. Finally, we extract 
the maximum score and the predecessor index using a sequential pass over 
max_score (line 16).

•	 Hybrid vectorized + sequential execution. In an ideal scenario, loop 
vectorization delivers maximum benefit when there is no path divergence 
due to conditional instructions. In the presence of path divergences, vector-
ized implementation has to compute all control paths and use appropriate 
masks to obtain the desired outputs. For instance, we need to compute the 
chaining scores for all vector lanes even though some of the iterations would 
have continued without computing the chaining scores in the sequential 
algorithm (Supplementary Algorithm 1, line 10). This results in wasted 
computation over the vector lanes and leads to sub-optimal performance. 
When using AVX-512 vectorization, we typically found enough number of 
vector lanes busy in computing the scores, thus benefiting from vectorization 
and achieving performance improvement. However, in the case of shorter 
inner loops (say, <16 iterations), we observed that only a few iterations in 
the sequential algorithm computed the chaining score. In such a case, due to 
path divergence, a single vector-iteration might incur more instructions than 
the sequential executions of few scalar iterations. We mitigated this issue by 
adopting a hybrid approach: mm2-fast falls back to the sequential execution 
of the inner loop if there are fewer than five iterations; else, it uses the vector-
ized implementation.

•	 Disabling max_skip heuristic. As mentioned earlier, the max_skip condition 
in Supplementary Algorithm 1 uses a heuristic parameter max_skip, which 
accelerates chaining in minimap2 at the cost of chaining accuracy. Moreover, 
the max_skip condition also poses challenges to vectorization as it carries 
loop dependencies. In our optimizations, we disabled this heuristic by setting 
max_skip to infinity and removed the condition from our vectorized imple-
mentation. This benefited us in two ways: (1) we resolved the loop carrying 
dependency, resulting in less complex SIMD implementation and a better 
speedup, and (2) we achieved better chaining accuracy. Note that the perfor-
mance improvement reported in the result section compares the performance 
of our optimizations with max_skip = ∞ against minimap2 with its default set-
ting (max_skip = 25). We achieve an up to 3.1-fold speedup in chaining over 
minimap2 (default heuristics max_skip = 25) and up to 8.4-fold compared 
with minimap2 (max_skip = ∞). Supplementary Fig. 2 shows the end-to-end 
performance comparison of mm2-fast against minimap2, with max_skip = 25 
and max_skip = ∞.

SIMD acceleration for pairwise sequence alignment. Minimap2 computes DP-
based global sequence alignment to extend through the gaps between adjacent 
chained anchors. The presence of long gaps between anchors results in slower 
DP-based alignment, which can be accelerated using SIMD-based vectorization; 
however, longer sequences for alignment demand more bits to capture the 
alignment score; this leads to a lower number of available vector lanes and 
hence lower parallelism. Minimap2 adopts the Suzuki–Kasahara formulation 
for DP-based alignment. Suzuki–Kasahara formulation bounds the number of 
bits required to capture the score in a DP matrix to the scoring parameters. In 
practice, these bounds ensure that 8-bits are sufficient for maintaining score values. 
Therefore, with 128-bit vector processing available with SSE, 16-way parallelism is 
available.

Minimap2 applies intra-task parallelism, exploiting parallelism in a single 
DP matrix. All of the DP matrix cells along an anti-diagonal are independent of 
each other; thus, minimap2 applies vectorization with SSE instructions along 
anti-diagonals to accelerate the alignment. To do so, minimap2 switches from row-
column-based matrix coordinates to diagonal–anti-diagonal-based coordinates. 
Furthermore, to reduce the computation burden, minimap2 restricts the DP cell 
computations to a certain band around the main anti-diagonal. Minimap2 uses 
a default band value of 500. Precise details about the alignment computation are 
available in refs. 7,32.

Streaming SIMD extension instructions provide only 16-way parallelism; 
using AVX-512, the available parallellism increases fourfold to 64-way. Moreover, 
the default band value in minimap2 is large enough to keep all of the vector lanes 
of AVX-512 occupied. In mm2-fast, we accelerated the DP-based alignment by 
utilizing AVX-512 vectorization and used additional logic to maintain the output 
identical to minimap2. To support a wide range of processors, we also developed 
an AVX-2 version.

Manymap10 also provides an accelerated version of the alignment module of 
minimap2 by upgrading the vectorization to AVX-512. Manymap also applies 
optimizations to marginally reduce the instructions in the inner DP loop; however, 
its alignment output differs from minimap2. In minimap2, the actual band of DP 
matrix that is computed could be greater than or equal in size to the given band 
size; this is because actual anti-diagonal computed in minimap2 is a multiple of the 
SIMD width (8 for SSE); SIMD widths change when we switch from SSE to AVX-2/
AVX-512. Consequently, the same DP matrix computations with longer SIMD 
widths can result in computing a bigger band size. Therefore, to maintain the exact 
same output, we introduced additional instructions in our implementations to 
ensure the computation of the exact same band as minimap2. Manymap does not 
guarantee the same (Supplementary Section 2). Due to this, we skip comparing the 
performance of mm2-fast with manymap.

Ideally, moving from SSE to AVX-512 has a potential for fourfold improvement 
in the runtime; however, in practice, we saw 1.8–2.2-fold speedups due to the 
following factors: (1) smaller sequences lead to under-utilization of vector lanes; 
(2) smaller anti-diagonals near the two corners of the DP matrix lead to idle vector 
lanes; (3) latency and throughput difference between SSE and AVX-512 vector 
instructions; and (4) use of additional instructions in the AVX-512 version to 
ensure the exact same output as the SSE version. The memory requirements and 
access pattern of the AVX-2 and AVX-512 versions in mm2-fast remain the same 
as the SSE version in minimap2.

Data availability
Datasets used for benchmarking are publicly available (Supplementary Table 
2). Human reference genome is available at https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/release/references/GRCh38/GCA_000001405.15_
GRCh38_no_alt_analysis_set.fasta.gz. All ONT and PacBio HiFi datasets (HG002, 
HG003, HG004) used are available at https://precision.fda.gov/challenges/10/view. 
Datasets for PacBio CLR (HG002, HG003, HG004) are available at https://github.
com/genome-in-a-bottle/giab_data_indexes. Genome assemblies are available at: 
CHM13: NCBI (GCA009914755.3), HG002 (hap1) and HG002 (hap2) are publicly 
available at ref. 33. The speedup shown in the paper can also be realized with a 
smaller subset of the above datasets. Source Data are provided with this paper.

Code availability
The mm2-fast source code is available under the open source MIT license at 
https://github.com/bwa-mem2/mm2-fast. The particular version of mm2-fast 
used in this manuscript is publicly available at ref. 34. The scripts used for the 
experiments in the manuscript are available at ref. 35.
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Extended Data Fig. 1 | Minimap2 workflow depicting its three key modules – (i) seeding, (ii) chaining, and (iii) alignment – and mm2-fast optimizations. 
The seeding stage identifies short fixed-length exact matches between a read and a reference sequence. Chaining stage selects an ordered subset of these 
exact matches (anchors) to form a chain. The final alignment stage computes base-level alignments for filling the gaps between adjacent anchors in these 
chains. Our optimizations to each of the modules are shown in the blue dotted rectangle.
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Extended Data Fig. 2 | Cross-platform performance of our optimizations for rome, Skylake, Cascade lake and ice lake architectures using single 
socket. X-axis shows various query datasets and y-axis indicates the speedup achieved by mm2-fast over minimap2 – both running on the same CPU.
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Extended Data Fig. 3 | Data structures used for hash table. Minimizers extracted from the reference sequence are stored in a sorted list as key-value 
pairs. Position list maintains a separate list of the positions of minimizers on the reference sequence.
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Extended Data Fig. 4 | two-layer rMi. An example minimizer lookup is illustrated - get_mm_hits(mm5) calls a lookup for a minimizer mm5. The RMI root 
predicts the leaf layer model which in turn predicts the location of mm4 in the sorted list. Finally, the last mile search from mm4 walks to the location of 
mm5 and returns its value to the caller.
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Extended Data Fig. 5 | Chaining of two co-linear anchors A and B. Here two anchors overlap on the query sequence. Gap cost function in minimap2 is 
calculated using the reference gap, query gap, and the average length of all anchors avg_qlen.
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