6. Online Course on Data-Driven Modelling and Optimization (3+0)

Objectives:

The course is designed to train students and upskill professionals in different data-driven modelling approaches and optimization techniques needed to succeed in industry and research. At the end of the course, participants would be able to use data-driven approaches to recognize, model, and solve optimization problems that arise in engineering and related (e.g., data science, finance, business) contexts.

Syllabus:

Data-Driven Modelling Concepts: Mathematical (linear algebra, calculus, probability) and programming (python, data exploration) foundation, Computational Thinking; Unconstrained Optimization: Linear and nonlinear least squares, regression, regularization, conjugate gradient, quasi-newton; Machine Learning and Neural Networks: Classification models, single layer perceptrons, deep networks, optimization algorithms in ML and big data; Constrained Optimization: Linear Programming Problems, Quadratic Programming, Lagrangian Methods; Bayesian Optimization and Genetic Algorithms.

Target Group:

Any industry/R&D professional; Research students in engineering and sciences; Aspiring data scientists looking for upskilling

Faculty:

Dr. Deepak N Subramani

Assistant Professor,

Dept. of Computational and Data Sciences,

IISc., Bengaluru.

E-mail: deepakns@iisc.ac.in

Reference Books:

1. J Nocedal and S Wright

Numerical Optimization,

Springer Series in Operations Research and Financial Engineering, (2nd Edition) 2006.

2. C. Shah

A Hands-on Introduction to Data Science,

Cambridge University Press 2020.

3. C. Balaji

Essentials of Thermal System Design and Optimization,

Ane Book Pvt. Ltd. 2011.

Who can apply?

B.E/B.Tech. or M.E/M.Tech/MCA/M.Sc.

Pre-requisites:

Basic Mathematics and Programming

Course Fee: Rs. 15.000/- + 18% GST

Online Seats are Limited to 100

Online Classes using Microsoft Teams/Google Meet

Schedule: Tuesday & Thursday 6.00 pm - 7.30 pm

Check eligibility and Enroll at CCE-IISc - http://cce.iisc.ac.in/prof-courses.html

Detailed Weekly Plan

Module	Name	Topics	Lectures	Hours	Week
1	Mathematical and	Computational thinking, linear	8	12	1,2,3,4
	Programming Foundation	algebra, calculus, python			
		programming, data exploration			
		and visualization, Types of data-			
		driven models.			
2	Unconstrained	Linear and nonlinear LS,	6	9	5,6,7,
	Optimization	regularization, conjugate gradient,			8 (Mid
		quasi-newton, time-series models.			Term)
3	Machine Learning and	Classification algorithms, single	6	9	9,10,11
	Neural Networks	layer perceptrons, deep neural			
		networks, optimization algorithms			
		for ML (SGD, ADAM).			
4	Constrained Optimization	Constrained optimization theory	4	6	12,13
		and KKT conditions, Linear			
		programming formulation and			
		algorithms, Quadratic Programs			
5	Bayesian Optimization	GA, simulated annealing,	4	6	14,15,
	and Genetic Algorithms	Bayesian optimization.			16 (Final)