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Abstract. We analyzed the uncertainty in convergence when using relative residue as a stop-
ping criterion, and the resulting over/under computation for a tolerance in error. We show that error
estimation is significant for efficient and accurate solution of moderate to high condition problems
(κ > 100). An O(1) estimator (at every iteration) was proposed more than a decade ago, for efficient
solving of symmetric positive-definite linear systems by the CG algorithm. Later, an O(k2) estimator
was described for the GMRES algorithm which allows for non-symmetric linear systems as well, and
here k is the iteration number. We suggest a minor modification in this GMRES estimation for
increased stability. In this work, we also propose an O(n) error estimator for A-norm and l2 norm of
the error vector in Bi-CG algorithms that can as well solve non-symmetric linear systems. Note that
computational cost of the estimator is expected to be significantly less than the O(n2) evaluation
at every iteration of these methods in solving problems of dimension n. The robust performance of
these estimates as a stopping criterion results in increased savings and accuracy in computation, as
condition number and size of problems increase.
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1. Introduction. Solving a system of linear equations in the form Ax = b is
a ubiquitous requirement in science and engineering (where A is a given matrix, x
and b are the unknown and known vectors respectively; x ∈ Rn and b ∈ Rn if A
∈ Rn×n). Iterative methods like CG (Conjugate Gradient), Bi-CG (Bi-Conjugate
Gradient) and GMRES (Generalized Minimal Residual) are commonly used to solve
large linear problems as they require O(n2) operations compared to direct solvers
which can evaluate A−1 explicitly in O(n3) operations. Iterations should be stopped
when the norm of the error εk = x−xk is less than a desired tolerance, where x is the
final solution to the linear system and xk is the iterate. Since the the actual error is

unknown, relative residue (‖rk‖‖b‖ ) is considered as stopping criteria where rk = b−Axk
is the residual vector at kth iteration. Such stopping criteria can work when the
system is well-conditioned and can be erroneous depending on the condition number
of A and the choice of initial approximation. It can stop the iterations too early
when the norm of error is still much larger than tolerance, or not stop early enough
and too many floating point operations having done for the required accuracy. Also
when condition number of the matrix is large, the residual of a CG/Bi-CG algorithm
need not show monotonic behaviour and oscillate while the actual error might still be
(however slowly) converging (and vice versa for the GMRES algorithm). The norm
of the relative residue can be as large as κ times or as small as 1

κ times the norm of
the relative error.

Even when most iterative algorithms are used with preconditioners, it is not guar-
anteed that the condition number of the matrix is reduced, and this is observed with
matrices of larger dimensions. In cases where the condition number of the matrix is in-
deed reduced, one would like the reduction of condition numbers of both the backward
problem (i.e. computing x given A and b) and the forward problem (i.e. computing
b given A and x). This is because while the former accelerates the convergence, the
latter reduces the uncertainty in the relationship between the residue and the actual
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error allowing one to stop iterations efficiently. Note that the condition number of
matrix is given by the product of the forward and backward components, and hence
both are inversely related to each other for any given κ(A). Thus the relative residue
remains a poor and inefficient indicator of convergence in general. Moreover, the
condition number of matrix κ(A) is typically unknown and costly to compute. Thus
for even marginally high condition numbers of matrices (κ(A) > 102), either the ac-
curacy or the efficiency of computation is degraded by the above conundrum. The
precision in measurements and engineering today renders both the size and condition
number of most problems large; making accurate stopping and restarting criteria in-
dispensable in ensuring computational efficiency of solvers. This motivated methods
to compute estimates of some norms of the error in iterative solvers. Such estimators
(e.g CGQL) are available for CG algorithm [6]. For solving non-symmetric linear sys-
tems using FOM (Full Orthogonalization method) and GMRES (Generalized Minimal
Residual) methods, formulas for estimation of errors have been suggested [5] recently.
We suggest a minor modification to this estimator proposed by Meurant, to increase
its stability and precision. Our objective is to derive an efficient estimator for solving
non-symmetric linear systems using BiCG, and present an analysis highlighting the
significance of these estimation algorithms for CG, BiCG and GMRES methods. This
analysis shows that these estimators are robust and increase the efficiency/accuracy
of computing notably. Note that this gain is expected even when errors in estimation
itself may not be negligible, as the factor scaling the relative residue to the actual
relative error can be more significant, i.e. as large as κ(A).

In the second part of this work, we also show that the expected reduction of
uncertainty in the relative error by using an estimator is proportional to κ(A, x), the
forward condition number of the problem for all κ(A, x) >> 1. A point to note is
that the error and residue are related trivially by a factor κ(A, x), but this same
factor relating the relative residue and relative error on average, required a detailed
analysis. Later, numerical results averaged over a large number of linear systems were
used to verify the derived theorems on this uncertainty in convergence. The under
and over computation due to this uncertainty is demonstrated, and its large increase
with the dimension of the linear system is relatively straight-forward to infer. We
show that the average under/over computing for problems with matrices of any given

κ(A) can be approximated with δ ∼ log(κ(A))
2log(1/εmc)−log(κ(A)) , and here εmc is the machine

precision. Thus error estimation becomes very significant as condition number and
size of problems increase.

Section 2 presents related work and discuss CG, Bi-CG and GMRES algorithms
and their error estimates. Section 3 presents the analysis of error estimates and its
performance as an efficient stopping criteria for these iterative methods of solving
linear systems.
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2. Methods.

2.1. Related work: Algorithms for CG and GMRES.

2.1.1. CGQL Algorithm (Conjugate Gradient and Quadrature Lanc-
zos). One of the most commonly used methods for solving linear systems with a real
Symmetric Positive Definite (SPD) matrix is the Conjugate Gradient (CG) algorithm.
It can be derived from several different perspectives, (i) an orthogonalization problem
(ii) minimization problem and (iii) Lanczos algorithm.

CGQL algorithm [3] helps in finding estimates of error i.e (‖x− xk‖) at each
iteration of CG by inducing a delay in the estimation. The idea of CGQL algorithm
is to use CG instead of the Lanczos algorithm, to compute explicitly the entries of
the some tridiagonal matrices (Tk) at each iteration k and derive recursive formulas
to compute the A-norm of error.

The square of the A-norm of error at CG iteration k is given by:

(2.1) ‖εk‖2A = ‖r0‖2[(T−1n )(1,1) − (T−1k )(1,1)]

Here Tk is the tridiagonal matrix produced by the Lanczos algorithm whose entries
can be computed from coefficients of CG algorithm equally well. Also ε and r are
the error and residual vectors respectively. The main essence of the CGQL lies in
computing difference between (1, 1) elements of the inverse of two tridiagonal matrices
generated from a Lanczos algorithm with the same starting vectors as CG algorithm.
Let d be a delay integer, the approximation of the A-norm of error at iteration k − d
is given by

(2.2) ‖εk−d‖2A = ‖r0‖2[(T−1k )(1,1) − (T−1k−d)(1,1)]

2.1.2. Estimator for GMRES. A delay based error estimator for FOM and
GMRES was proposed by Meurant in [5]. Unlike CGQL which uses a Tridiagonal
matrix to compute error estimates, GMRES error estimator uses Hessenberg matrix
(or its some form). Error estimate denoted by χk−d at (k− d)th iteration in GMRES
as provided by Meurant[5] is given by:

(2.3)
χ2
k−d

‖r0‖2
= γ2k−d

∥∥∥H̃−1k−de1∥∥∥2 +
∥∥γk−dH−1k−dwk−d + (ek−d, H

−1
k−de1)uk−d

∥∥2
Here Hk represents the Hessenberg matrix (Hk = V Tk AVk) at any kth iteration

where Vk is a n × k matrix whose columns are orthonormal basis vectors. ek is the
canonical (identity) vector and all other constants like u,w and γ are derived from
GMRES algorithm. A brief explanation regarding the derivation of this estimator can
be found in the Appendix.

2.1.3. Proposed modification to the GMRES error estimator. It can
be seen that the estimator for GMRES [7] proposed by Meurant in [5] satisfies the
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Equation 2.4.

(2.4)
χ2
k−d

‖r0‖2
=
‖εk−d‖2 − ‖εk‖2

‖r0‖2︸ ︷︷ ︸
term1

+ ‖sk‖2︸ ︷︷ ︸
term2

+

[
2hk+1,k

(
ek, H

−1
k e1

) (
(H−1n ek+1)k, H−1k e1 + sk

)
- 2hk−d+1,k−d

(
ek−d, H

−1
k−de1

) (
(H−1n ek−d+1)k−d − (H−1k ek−d+1)k−d, H−1k−de1 + sk−d

) ]
︸ ︷︷ ︸

term3

where sk = (ek, H
−1
k e1)uk

Equation 2.4 consists of three terms and the third term inside the square bracket
is negligible compared to other two terms. Note that for large d which is a delay in
estimation, ‖sk‖2 also becomes negligible. However d is kept small in practice (≈ 10),

hence in such cases, term ‖sk‖2 significantly contributes to the value of error estimate
and needs to be accounted.

For converging problems, ‖εk−d‖2 � ‖εk‖2,

(2.5) χ2
k−d ≈ ‖εk−d‖

2
+ ‖r0‖2 ‖sk‖2

Equation 2.5 shows that the estimator is offset from exact value of error by term
‖r0‖2 ‖sk‖2 and should be accounted in the error estimator. This offset term can also
cause unstable overshoots in estimation as seen in figure 2.1.

(2.6)
χ2
k−d

‖r0‖2
= |γ2k−d

∥∥∥H̃−1k−de1∥∥∥2
+
∥∥γk−dH−1k−dwk−d + (ek−d, H

−1
k−de1)uk−d

∥∥2 − ∥∥(ek, H
−1
k e1)uk

∥∥2|

The absolute operation in Equation 2.6 is necessary as in non-converging situa-
tions, the operand can become negative.
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Fig. 2.1. Convergence plot showing comparison of different relative error estimates and true
relative error for randomly generated nonsymmetric positive definite matrix (κ(A) ≈ 106) with
random right hand side vector b. (d = 10). Note that undershoots of the modified estimator (blue)
are much smaller than the overshoots of the original estimator (red), and the logarithmic scale
should be noted.

It was also seen that GMRES error estimator even after correction may behave
erratically when numerical precision of computing system is exhausted as seen in figure
2.2. The exhaustion of numerical precision can lead to near singularity of Hessenberg
matrix Hk formed during the Arnoldi iteration which can cause large errors in H−1k
and its functions. Note that ‖sk‖ is also a function of H−1k and can be used as trigger
to predict this exhaustion of numerical precision as seen in figure 2.2 making this error
estimate a robust stopping criterion.
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Fig. 2.2. Behaviour of relative error estimates in GMRES on symmetric positive definite matrix
(κ(A) = 106) when the numerical precision is exhausted. The term ‖sk‖ can be used as trigger to
improve the estimator and for detection of exhaustion of numerical precision.
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2.2. BiCGQL: Proposed estimator for A-norm and l2 norm of errors in
Bi-Conjugate gradient Algorithm (BiCG).

Similar to the CGQL for CG, A-norm of error in this case can be represented in
terms of residual vector of BiCG algorithm and tridiagonal matrices produced by a
non-symmetric version of the Lanczos algorithm. A-norm of error (which we better
denote as A-measure for matrices which are not positive definite) when matrix is
non-symmetric, is given by:

‖εk‖2A = εTkAεk = rTk (AT )−1rk = rTk A
−1rk(2.7)

And, when A ∈ RN×N and r ∈ RN ; rTk (AT )−1rk is a scalar quantity whose
transpose will be itself and thus rTk (AT )−1rk = rTk A

−1rk. Here, r is the residual
vector pertaining to the BiCG method. When A is positive definite, the right side
of the above equation is always positive. In case of indefinite matrices, the absolute
value of the above equation is considered and we define such an A-measure of the
error in these cases. Moreover the l2 norm of error is given by:

(2.8) ‖εk‖22 = εTk εk = rTk (AT )−1A−1rk

If A = AT , A-norm and l2 norm of error is given by rTk A
−1rk and rTk A

−2rk
respectively. We are interested in approximating (2.7) and (2.8). In the following
sections we derive approximation of A-norm and l2 norm of error at every iteration
of BiCG. BiCG is included as Algorithm 1 in the appendix for reference.

2.2.1. O(n) expression to estimate A-norm of error. Writing the consecu-
tive difference between A-norm of error at iteration k and k + 1 we get the following
relation when A is a non-symmetric matrix (See Appendix for BiCG Algorithm):

rTk (AT )−1rk − rTk+1(AT )−1rk+1 = rTk (AT )−1rk − (rk − αkApk)(AT )−1(rk − αkApk)

= −αkrTk pk − αkrTk (AT )−1Apk + α2
kp
T
kApk

(2.9)

In the above equation the first and third terms of R.H.S can be trivially computed
using iterates of the Bi-CG Algorithm. Second term involves computation of A−1

hence we further reduce it. As rk+1 = rk − αkApk and Apk =
rk − rk+1

αk
we can

derive the following relation:

(2.10)
rTk A

−1rk − rTk+1A
−1rk+1 = αkr

T
k pk − αkrTk (AT )−1(

rk − rk+1

αk
)− α2

kp
T
kApk

=⇒ rTk+1A
−1rk+1 = −αkrTk pk + rTk+1A

−1rk + α2
kp
T
kApk

Error (εk = x−xk) is given by A−1rk. Also, εk can be written as a weighted sum
of search directions from k to n given below in Equation 2.11.

(2.11) εk =

n∑
j=k

αjpj
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If εk+d denotes the error at k + d iteration then εk+d � εk for some d > 0 (when
error reduces with iterations) and we neglect the further terms of the series sum. We
use the error vector in Equation 2.11 to give an estimate of A-norm of error after
inducing a delay of d iterations. So Equation 2.10 now becomes:

(2.12) rTk+1A
−1rk+1 ≈ −αkrTk pk + rTk+1(

k+d∑
j=k

αjpj) + α2
kp
T
kApk

It should be noted that when A is positive definite, the above expression is always
positive and thus provides a lower bound for the square of A-norm of error. Note that
the above is derived from Bi-CG, and when A = AT , this estimator for A-norm is
equivalent to the CGQL estimator for A-norm (Section 5.3 in Appendix). Moreover,
RHS of Equation 2.12 is not a unique relation for evaluation of A-measure of error
using Bi-CG iterates.

2.2.2. O(n) expression to estimate l2 norm of error. Rewriting the consec-
utive difference between l2 norm of error at iteration k and k+ 1 we get the following
relation when A is a non-symmetric matrix:

(2.13) rTk (AT )−1A−1rk − rTk+1(AT )−1A−1rk+1 = rTk (AT )−1A−1rk

− (rk − αkApk)(AT )−1A−1(rk − αkApk)

Rearranging Equation 2.13, we get:

(2.14) rTk (AT )−1A−1rk − rTk+1(AT )−1A−1rk+1 = 2αkp
T
kA
−1rk − α2

k‖pk‖2

Using 2.11 and εk = A−1rk we can rewrite above as

(2.15) rTk+1(AT )−1A−1rk+1 ≈ −2αkp
T
k (

k+d∑
j=k+1

αjpj) + ‖
k+d∑
j=k+1

αjpj‖2

Here, d signifies the delay in approximation. Also, BiCG method shows irregular
convergence, and in such cases larger values of d can result in less accurate approxi-
mations. Hence, values of d < 10 is recommended which is much less than N resulting
in an efficient estimation. Note that by O(n) we mean arithmetic complexity. Lemma
2.1 further justifies the arithmetic complexity for the above expressions.

Lemma 2.1. Equation 2.12 and 2.15 involve arithmetic operations of O(n).

Proof. Equation 2.12 is an approximation to A norm of error at k + 1 iteration
and it involves three terms. All the terms involve inner products of vectors in Rn and
require n multiplication operations; referred to as O(n) arithmetic operations here.
Note that the third term involves the matrix-vector product Apk which is provided
by the Bi-CG Algorithm at every iteration with no additional cost to this estimator.
Similarly, the moving-window summation in the second term involves a single inner
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product at every iteration. Thus estimation of A norm of error in BiCG algorithm
requires O(3n) arithmetic operations in total. Here d denotes the delay in estimation
where αk is a scalar.

Similarly, evaluation of Equation 2.15 requires two inner products in the moving-
window summations and result in O(2n) operations.

3. Numerical results and an analysis of estimators.

3.1. A-norm and l2 norm estimators for Bi-CG. In Figure 3.1 plot of esti-
mator along with A-norm of the error is shown when A is a Non-symmetric matrix.
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Fig. 3.1. BiCGQL estimator for a Non-symmetric matrix (indefinite); absolute values are
considered for rTA−1r and its approximation; dimension of the matrix = 500 × 500; condition
number of the matrix is 106 and d = 10

Figure 3.2 shows the comparison between l2 norm approximation, actual l2 norm
of the error and l2 norm of the residue.



9

0 50 100 150 200 250 300 350

Iterations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

R
e
la

ti
v
e
 E

rr
o

r
l
2

 norm estimation of error

l
2

 norm of error

estimator

||r||/||b||

Fig. 3.2. Comparison between BiCGQL l2 norm of estimator, actual l2 norm of the error and
l2 norm of the residue; dimension of the matrix = 500× 500; condition number of the matrix is 106

and d = 10

It is evident that BiCGQL estimators work efficiently both cases. In both the
figures we see that the error norm is also more stable than the norm of the residue.
Similar behaviour can be seen when the matrix A is Non-symmetric positive definite,
and the convergence is faster and stable as compared to indefinite cases.

3.2. Analysis of estimators.

3.2.1. Condition number of the problem. Condition number is useful in
matrix computations as they enable us to estimate the accuracy of computed result.
Condition number of a forward problem (that is computing b given A and x) and
backward problem (computing x from A and b) respectively are:

(3.1) κ(A, x) = ‖A‖ ‖x‖
‖Ax‖

(3.2) κ(A, b) = ‖A−1‖ ‖b‖
‖A−1b‖

Condition number of the matrix is given by the product of κ(A, x) and κ(A, b)
and is given by:

(3.3) κ = ‖A‖‖A−1‖

3.2.2. Evaluation metrics. Equation 3.1 and 3.2 relate to the condition num-
ber of the forward and backward problem respectively when one solves for a linear
system. In order to test the estimator, we choose the relative error in estimating norm
(l2-norm or A-norm) of error by the estimator as an uncertainty metric of estimator.
This metric for kth iteration can be expressed as follows:
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(3.4)

∣∣∣∣∣∣∣∣
χk
‖x‖
− ‖εk‖
‖x‖

‖εk‖
‖x‖

∣∣∣∣∣∣∣∣
where χk is the estimate of norm of error at kth iteration. However, we are

more interested in comparing the estimator and relative residual in order to come up
with robust stopping criterion in krylov subspace based algorithms. Also the metric
should consider all iterations on which we could measure the uncertainties, Hence, we
define uncertainty ratio U.R.(j) of jth order as Performance or Uncertainty metric in
estimating the norm of error as follows:

(3.5) U.R.(j) =
1

n− d

n−d−1∑
k=0


∣∣∣∣∣∣∣∣∣
‖rk‖j

‖b‖j
− ‖εk‖

j

‖x‖j

χjk
‖x‖j

− ‖εk‖
j

‖x‖j

∣∣∣∣∣∣∣∣∣



where n is dimension of matrix and d is the delay in estimation. We consider j =
1 and 2 for subsequent analysis which are defined as follows:

(3.6) U.R.(1) =
1

n− d

n−d−1∑
k=0


∣∣∣∣∣∣∣∣
‖rk‖
‖b‖

− ‖εk‖
‖x‖

χk
‖x‖
− ‖εk‖
‖x‖

∣∣∣∣∣∣∣∣


&

(3.7) U.R.(2) =
1

n− d

n−d−1∑
k=0


∣∣∣∣∣∣∣∣∣
‖rk‖2

‖b‖2
− ‖εk‖

2

‖x‖2

χ2
k

‖x‖2
− ‖εk‖

2

‖x‖2

∣∣∣∣∣∣∣∣∣



According to 3.6 and 3.7, it can be seen that U.R.(1) and U.R.(2) are functions of
matrix A and vectors b, x0 and delay parameter d of estimator. Further we show why
the condition number of forward problem (Equation 3.1) encapsulates the parameters
of the problem in this estimation. Calculating ‖x‖ is not trivial but we use the norm
of x at each iterate (i.e ‖xk‖) in place of ‖x‖ since ‖xk‖ converges to ‖x‖ in first few
iterations and doing so brings marginal changes in the estimation.
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3.2.3. Theorem on Expectation of U.R.(1) and U.R.(2) .

Theorem 3.1. For fixed singular values of non-singular square real matrix A
and forward condition number κ(A, x),

E
(
U.R.(1)

)
≥
√

8

3
frc(fe)

d

(
‖A‖F√

n

‖x‖
‖b‖

)(
1 +

d

n− d
log(n− d)

)
&

E
(
U.R.(2)

)
≥ f2rc(f2e )d

(
‖A‖2F
n

‖x‖2

‖b‖2

)(
1 +

d

n− d
log(n− d)

)
where d is the delay in estimation, n is the dimension of the matrix A, κ(A, x)�

1, frc is the minimum relative uncertainty in residual with respect to error and fe is
the minimum convergence rate of error. The expectation is taken over the problems
(Ax = b) satisfying above constraints.

Proof. This is the brief version of proof for the above theorem. The detailed
version is given in the appendix 5.5.

Derivation for E(U.R.(2)):
The U.R.(2) can be written as

(3.8) U.R.(2) =
1

n− d

n−d−1∑
k=0

∣∣∣∣∣∣∣∣∣
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2
− 1

χ2
k

‖εk‖2
− 1

∣∣∣∣∣∣∣∣∣
The direction of error vector εk can be considered as randomly uniform on the

surface of n-dimensional sphere. Hence, we have,

E

(
‖rk‖2

‖εk‖2

)
= E

(
‖Aεk‖2

‖εk‖2

)
=
‖A‖2F
n

As κ(A, x) is fixed, the quantity κF (A, x) =
‖A‖F√

n

‖x‖
‖b‖

is also fixed due to the

following inequality of matrices.

‖A‖√
n
≤
‖A‖F√

n
≤ ‖A‖

Since, κ(A, x)� 1, we can write,

E
(
U.R.(2)

)
≈ κ2F (A, x)

n− d

n−d−1∑
k=0

1

E

(∣∣∣∣∣ χ2
k

‖εk‖2
− 1

∣∣∣∣∣
)
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For delay-based estimators, χ2
k ≈ ‖εk‖

2 − ‖εk+d‖2 which implies

χ2
k

‖εk‖2
− 1 ≈ −‖εk+d‖

2

‖εk‖2

Therefore,

E
(
U.R.(2)

)
≈ κ2F (A, x)

n− d

n−d−1∑
k=0

1

E

(
‖εk+d‖2

‖εk‖2

) ≈ κ2F (A, x)

n− d

n−d−1∑
k=0

1

E(‖εk+d‖2)

E(‖εk‖2)

E
(
U.R.(2)

)
=
κ2F (A, x)

n− d

n−d−1∑
k=0

E(‖εk‖2)

E(‖εk+d‖2)

At the kth iteration, the computed solution lies in k-dimensional krylov subspace
(for nonsingular matrix A). Hence, the error vector εk lies in n − k dimensional
subspace with gaussian distribution. We can write,

E(‖εk‖2) = E(c21 + c22 + ...+ c2n−k) ≈ n− k

Thus,

E
(
U.R.(2)

)
≈ κ2F (A, x)

n− d

n−d−1∑
k=0

n− k
n− k − d

≈ κ2F (A, x)

n− d

n−d−1∑
k=0

(
1 +

d

n− k − d

)

(3.9) E
(
U.R.(2)

)
≈

(
‖A‖2F
n

‖x‖2

‖b‖2

)(
1 +

d

n− d
log(n− d)

)
Derivation for E(U.R.(1)):

The random variable
‖rk‖
‖εk‖

‖x‖
‖b‖

has well defined bounds as follows:

κ(A, x)

κ
≤ ‖rk‖
‖εk‖

‖x‖
‖b‖
≤ κ(A, x)

We can assume that
‖rk‖
‖εk‖

‖x‖
‖b‖

follows a triangular distribution with mode at unity.

The triangular distribution for every k is static in nature and is justified by gaussian
assumption on error vector. The gaussian distribution has well known property that
linear combination of independent gaussian variables is gaussian. As κ(A, x) >> 1,

the triangular distribution on term
‖rk‖
‖εk‖

‖x‖
‖b‖

is highly skewed.

For such a skewed triangular distribution, we can write,

E

(
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2

)
≈ 3

2
E

(
‖rk‖
‖εk‖

‖x‖
‖b‖

)2
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Thus,

E

(
‖rk‖
‖εk‖

‖x‖
‖b‖

)
≈
√

2

3

(
‖A‖F√

n

‖x‖
‖b‖

)
Since, κ(A, x)� 1, we can write,

(3.10) E

(∣∣∣∣‖rk‖‖εk‖ ‖x‖‖b‖ − 1

∣∣∣∣) ≈
√

2

3

(
‖A‖F√

n

‖x‖
‖b‖

)
Consider,

ψk =
χk
‖εk‖

≈

√
1− ‖εk+d‖

2

‖εk‖2

It is required that |ψk − 1| → 0 ∀k as d → n, since it can be proven that estimate
has zero error if d = n. It is also required that mode of ψk to be at 1 since χk is an
estimate of ‖εk‖. Hence, we assume that |ψk − 1| has exponential distribution with
mean λ−1k i.e. |ψk − 1| ∼ expo(λk) (Here expo refers to exponential distribution). The

parameter λk can be estimated by the knowledge of E

(∣∣∣∣∣ χ2
k

‖εk‖2
− 1

∣∣∣∣∣
)

i.e. E(
∣∣ψ2
k − 1

∣∣)
by using the relation 3.11. The derivation of equation 3.11 can be found in appendix
5.7.

(3.11) E(
∣∣ψ2
k − 1

∣∣) =
2

λk
+

(
1 +

2

λk
+

2

λ2k

)
e−λk

Since,

E
(∣∣ψ2

k − 1
∣∣) =

n− k − d
n− k

= 1− d

n− k

we have,

2

λk
+

(
1 +

2

λk
+

2

λ2k

)
e−λk = 1− d

n− k

If λk > 1,

2

λk
≈ 1− d

n− k

and

E

(∣∣∣∣ χk‖εk‖ − 1

∣∣∣∣) =
1

λk
≈ 1

2

(
1− d

n− k

)
The probability density function of ψk can now be computed only by the knowledge

of
d

n− k
. The density function has mode at 1 which is the requirement of being the

estimator and

∣∣∣∣ χk‖εk‖ − 1

∣∣∣∣→ 0 in expectation as d→ n .
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Now,

E
(
U.R.(1)

)
≈ 1

n− d

n−d−1∑
k=0

E

(∣∣∣∣‖rk‖‖εk‖ ‖x‖‖b‖ − 1

∣∣∣∣)
E

(∣∣∣∣ χk‖εk‖ − 1

∣∣∣∣)

≈
√

2

3

(
‖A‖F√

n

‖x‖
‖b‖

) 1

n− d

n−d−1∑
k=0

1

1

2

(
1− d

n− k

)


≈
√

8

3

(
‖A‖F√

n

‖x‖
‖b‖

)(
1

n− d

n−d−1∑
k=0

1 +
d

n− k − d

)

(3.12) E
(
U.R.(1)

)
≈
√

8

3

(
‖A‖F√

n

‖x‖
‖b‖

)(
1 +

d

n− d
log(n− d)

)

Lemma 3.2.

U.R.(1) = O

κ(A, x)

(
1

E2

) d
n


&

U.R.(2) = O

κ(A, x)2
(

1

E2

) d
n


where E is the stopping tolerance on relative error.

Proof. Using Cauchy-Schwartz inequality, the U.R.(1) can be seen to satisfy equa-
tion 3.13.

(3.13) U.R.(1) ≤ κ(A, x)

n− d

n−d−1∑
k=0

1∣∣∣∣1− χk
‖εk‖

∣∣∣∣


For delay-based estimators,
χk
‖εk‖

≈

√
1− ‖εk+d‖

2

‖εk‖2
.

Since, we are interested in upperbound, term
‖εk+d‖2

‖εk‖2
<< 1 and error decreases

exponentially. The positive definite matrices have exponential convergence rates and
are considered as good matrices from convergence point of view. Hence, use of expo-
nential convergence rates is justified for indefinite matrices in order to find upperbound
on convergence rate. Therefore, we have,√

1− ‖εk+d‖
2

‖εk‖2
≈ 1− 1

2

‖εk+d‖2

‖εk‖2
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Let UB be upperbound on U.R.(1). Then,

UB ≈ 2

(
κ(A, x)

n− d

)(n−d−1∑
k=0

‖εk‖2

‖εk+d‖2

)

Now, we know that error can fall up to prescribed tolerance level only and we can
assume that relative error at starting iteration is O(1). Therefore,

(3.14)
‖εk‖2

‖εk+d‖2
≈
(

1

E2

) d
n

Thus,

UB ≈ 2 (κ(A, x))

(
1

E2

) d
n

Hence,

(3.15) U.R.(1) = O

κ(A, x)

(
1

E2

) d
n


Again using Cauchy-Schwartz inequality, the U.R.(2) can be seen to satisfy equa-

tion 3.16.

(3.16) U.R.(2) ≤ κ(A, x)2

n− d


n−d−1∑
k=0

1∣∣∣∣∣1− χ2
k

‖εk‖2

∣∣∣∣∣


i.e.

U.R.(2) ≤ κ(A, x)2

n− d

(
n−d−1∑
k=0

‖εk‖2

‖εk+d‖2

)

According to equation 3.14,

(3.17) U.R.(2) = O

κ(A, x)2
(

1

E2

) d
n



The upperbounds 3.15 and 3.17 are used to study the trends of U.R.(1) and U.R.(2)

with
d

n
respectively in figures 3.6 and 3.7.
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3.3. Experimental results on performance of error estimates as the
stopping criteria.

The Dataset consists of 10000 problems of high condition numbers for dimensions
of 100,250,500,1000 on which the performance metrics are measured. The conver-
gence of krylov subspace based iterative methods mostly depend on the eigenvalue
spectrum of a matrix when it is nearly normal as shown by Liesen et. al[4]. The un-
certainties in the estimation of error by estimator or residual can also depend on the
convergence behaviour apart from other parameters. Hence, we consider two kinds
of non-symmetric matrices i.e. positive definite and general. The performance of the
CG estimator is implicitly described by the Bi-CG estimator in the case of symmetric
positive definite matrices.

Figure 3.3 show the linear increase in Uncertainty Ratio (U.R.(1)) (for A-norm
of error estimation) as the condition number of the forward problem increases when
matrices are taken to be a general non-symmetric in the case of the Bi-CG estimator.
Here each blue dot signifies the mean average value of uncertainty ratio (Equation 3.6)
for a particular problem (i.e for a particular matrix A and a right hand side vector b
with x0 sampled randomly from surface of n-dimensional sphere).

Fig. 3.3. Linear increase in uncertainty ratio U.R.(1) for estimation of A-norm of error with
increase in condition number of the problem when A is general non-symmetric, green line represents

κ(A, x) and red line represents the threshold line below which
‖r‖
‖b‖ is a better estimator of error as

compared to χk
‖x‖

Figures 3.5 and 3.4 shows the behaviour of Uncertainty Ratio (U.R.(1)) for gen-
eral nonsymmetric matrices and nonsymmetric positive definite matrices respectively.
The linear trend with the forward condition number of the problem indicates the ro-
bustness of BiCGQL and GMRES error estimators with respect to relative residual in
high condition number problems and also validates the theorem presented in section
3.1.
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(a) n = 100 (b) n = 250

(c) n = 500 (d) n = 1000

Fig. 3.4. Linear increase in uncertainty ratio (U.R.(1)) for estimation of l2 norm of error with
increase in forward condition number of the problem (κF (A, x)) for nonsymmetric positive definite
matrices of different dimensions with d = 10.

3.3.1. Uncertainty Ratio and the delay parameter.

It is evident that increase in delay d will increase the estimator performance and in
order to assess that performance experimentally, uncertainty ratio U.R.(1) (normalized

by forward condition number based on frobenius norm) i.e. κF (A, x) =
‖A‖F√

n
‖x‖
‖b‖

is averaged over 10000 problems for each d with dimension n = 100. The same
experiment was done for U.R.(2) and results are shown in Figures 3.6 and 3.7. The
experimental results are compared with theoretical results provided in 3.1 and 3.2.
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(a) n = 100 (b) n = 250

(c) n = 500 (d) n = 1000

Fig. 3.5. Linear increase in uncertainty ratio (U.R.(1)) for estimation of l2 norm of error with
increase in forward condition number of the problem (κF (A, x)) for general nonsymmetric matrices
of different dimensions with d = 10.
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Fig. 3.6. Comparison of theoretical and experimental results on behaviour of U.R.(1) with ratio

of delay parameter to dimension of matrix

(
d

n

)
for BiCG and GMRES algorithms.
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Fig. 3.7. Comparison of theoretical and experimental results on behaviour of U.R.(2) with ratio

of delay parameter to dimension of matrix

(
d

n

)
for BiCG and GMRES algorithms.

The dataset consists of non-symmetric positive definite matrices of high condition
number of magnitude of 106. The results for both BiCG and GMRES algorithms are
above the average line and this could be explained by the increased convergence rates
due to positive definiteness of matrices. However, the Upperbound line tightly bounds
the average U.R. normalised by κF (A, x) for tolerance level of 10−6.

3.4. Computation saved with BiCGQL and GMRES estimators.

There can always be an under computation or an over computation involved
for a desired relative error, when only the relative reside is used as the indicator of
convergence. One might stop the iterations too early or deploy too many iterations
due to this uncertainty in error in a solution, resulting in loss of efficiency or accuracy
(see figures 3.8 and 3.9).
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Fig. 3.8. Illustration of over computation due to large uncertainty of relative residue leading
to computation loss iterations for 1000× 1000 nonsymmetric positive definite matrix with condition
number having order of magnitude 1011 with random right hand side vector b. (d = 10)

Fig. 3.9. Illustration of under computation due to large uncertainty of relative residue leading
to accuracy loss iterations for matrix ’sherman2’ from matrix market provided along with its right
hand side. (d = 10)

Recall that the expected uncertainty ratio U.R.(1) is given by

E
(
U.R.(1)

)
≈
√

8

3

(
‖A‖F√

n

‖x‖
‖b‖

)(
1 +

d

n− d
log(n− d)

)

It can be observed that, if ratio
d

n
is kept constant, the average value of U.R.(1) or

U.R.(2) increases as O(log n) with dimension n of problem. The estimator becomes
increasingly useful as the dimensionality of problem increases because of O(n2) cost
of each iteration. Following analysis shows that for any given condition number of
problem, this over and under computing scales with dimension of matrix as O(n3) i.e.
loss in computing is of form (δ × n) × n2 where 0 < δ < 1. Note that our analysis
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showed only a weak (logarithmic) increase of uncertainty with dimension of the linear
system, and we assume a dimension independent uncertainty κ(A, x) in this section
to derive a conservative estimate of the change in computation due to an estimator
of error. The change in number of iterations deployed due to the estimator depends
upon the convergence of relative error and relative residual, and also the stopping
criterion used. Given an average uncertainty in convergence due to relative residue
as the only indicator, we can estimate the under or over computing by averaging
over stopping criteria for nominal types of convergence. Later we verify that this
estimate is conservative, again using a large number of solutions of linear systems of
manageable dimensions. We consider linear, super-linear and sub-linear convergence
and estimate δ as follows; starting with expected ratio of the relative residue and error
given earlier in 3.1.

(3.18) E(
‖rk‖ ‖x‖
‖εk‖ ‖b‖

) ≈ κ(A, x)

For the following analysis, let fr(k) =
‖rk‖
‖b‖

and fe(k) =
‖εk‖
‖x‖

.

Let the sub-linear convergence be of the form f = Re−αk and super-linear con-
vergence of the form f = R(1 − e−α(n−k)), where R represents the initial relative
residue or the relative error respectively with corresponding convergence rates αr and
αe. Here we assume that (3.18) is true for each type of convergence. To find a δ that
satisfies

(3.19) E(
fr(k ± δn)

fe(k)
) ≈ 1

Case (i): Sub-linear Convergence

Substituting a nominal model of sub-linear convergence of the form f = Re−αk,
we divide (3.18) with (3.19) to get a corresponding estimate.

eαr(±δn) ≈ κ(A, x)

where 1
n log(1/εmc) ≥ αr ≥ 1

n (log(1/εmc)−log(κ(A, x))) for +δ; and αr ≈ 1
n log(1/εmc)

for −δ in the above equation. These correspond to the end conditions after full con-
vergence, depending on whether fr(n) > fe(n) or fr(n) ≤ fe(n). This gives us the
conservative estimate of

log(κ(A, x))

log(1/εmc)
≤ δ ≤ log(κ(A, x))

log(1/εmc)− log(κ(A, x))

Case (ii): Super-linear Convergence

Substituting a nominal model of super-linear convergence of the form R(1 −
e−α(n−k)), we divide (3.18) with (3.19) to get an inequality

e2αr(±δn) ≤ κ(A, x)
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where 1
n log(1/εmc) ≥ αr ≥ 1

n (log(1/εmc) − log(κ(A, x))) for +δ; and αr ≈
1
n log(1/εmc) for −δ in the above. These correspond to the end conditions after full
convergence, depending on whether fr(n) > fe(n) or fr(n) ≤ fe(n). This gives us the
conservative estimate of

log(κ(A, x))

2 log(1/εmc)
≤ δ ≤ log(κ(A, x))

2(log(1/εmc)− log(κ(A, x)))

While, the above analysis assumed a nominal smooth convergence, actual over and
under computations can be larger. Thus, as a conservative indicator in recommending
the use of error estimates, the following relation is useful.

(3.20) δ ∼ log(κ(A))

2 log(1/εmc)− log(κ(A))

where we have replaced κ(A, x) with its field averaged value κ(A)
1
2 .
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(a) Nonsymmetric Positive Definite (BiCG) (b) General Nonsymmetric (BiCG)

(c) Nonsymmetric Positive Definite (GMRES) (d) General Nonsymmetric (GMRES)

Fig. 3.10. Comparison of theoretical and experimental results on average relative over/under
computation with condition number of matrix for different dimensions in BiCG and GMRES Al-
gorithms on different datasets. The red and blue solid lines bounds the uncertainty region of the
estimates of relative over/under computing with confidence level of one standard deviation. The
black solid line shows the theoretical estimate of δ mentioned in equation 3.20.

4. Conclusions. The importance of error estimators for efficient stopping (or
restarting) are clearly evident for problems with even moderately high condition num-
ber κ > 100, and is emphasized by numerical examples and an analysis of the expected
uncertainty in convergence when using the norm of the residual vector. Results show-
ing the reduction of uncertainty in convergence while using error estimators were
presented for both Bi-CG and GMRES algorithms. It was also highlighted that the
proposed estimator for Bi-CG converges to the earlier proposed estimator for the CG
algorithm in the case of symmetric positive-definite matrices. Further, a simple anal-
ysis of the change in computation due to the estimators was presented along with
numerical results of large number of problems of manageable dimensions. While Bi-
CG has much larger uncertainties in convergence because of its oscillatory behavior
(and this can be improved by using extended versions of the algorithm [1] [10] [9] [11]
[2]), the actual under and over computations for any required error are similar for
both these algorithms, as expected. Based on the results discussed in the previous
sections, we conclude that the estimate for the A-norm or the l2 norm of the error
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should be implemented into software realization of iterative solvers, instead of using
only the relative norm of the residual vector as a criterion for stopping.

5. Appendix.

5.1. Bi-CG and its relation to Non-symmetric Lanczos algorithm. Bi-
Conjugate Gradient algorithm is an extension to CG algorithm which is used to solve
a system of linear equations and works even for a Non-symmetric (possibly indefinite)
matrix.

Algorithm 1 Bi-Conjugate Gradient Algorithm

1: procedure
input A, AT , b, x0, y0

2: r0 = b - Ax0
3: r̃0 = b - AT y0
4: p0 = r0
5: q0 = r̃0
6: for k = 1...until convergence do

7: αk−1 =
r̃Tk−1rk−1

qTk−1Apk−1

8: xk = xk−1 + αk−1pk−1
9: yk = yk−1 + αk−1qk−1

10: rk = rk−1 − αk−1Apk−1
11: r̃k = r̃k−1 − αk−1AT qk−1
12: βk−1 = r̃k

T rk
r̃Tk−1rk−1

13: pk = rk + βk−1pk−1
14: qk = r̃k + βk−1qk−1
15: end for
16: end procedure

Bi-CG can also be derived from Non-symmetric Lanczos algorithm, for example
considering v1 and ṽ1 be the given starting vectors to Non-symmetric lancozs algo-
rithm (such that ‖v1‖ = 1 and (v1, ṽ1) = 1), the two three term recurrences which
help in forming two bi-orthogonal subspaces can be as follows:

For k=1,2....

(5.1)
zk = Avk − wkvk − ηk−1vk−1
z̃k = AT ṽk − wkṽk − η̃k−1ṽk−1

The coefficient wk being computed as wk = (ṽk, Avk). The other coefficients ηk
and η̃k are chosen (provided (z̃k, vk) = 0) such that ηkη̃k = (z̃k, zk) and the new
vectors at step k + 1 are given by:
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(5.2)

vk+1 =
zk
ηk

ṽk+1 =
z̃k
η̃k

The relationship between the bi-orthogonal subspaces and matrix A can be writ-
ten in the form of a non-symmetric tri-diagonal matrix form (under the condition

Ṽk
T
AVk = Tk) as:

(5.3) Tk =



ω1 η1 0 · · · 0

η̃1 ω2 η2
...

0
. . .

. . .
. . . 0

... η̃k−2 ωk−1 ηk−1
0 · · · 0 η̃k−1 ωk



5.2. GMRES error estimator. Let Vk be a matrix whose columns are or-
thonormal basis vectors vj , j = 1, ..., k, of Krylov subspace Kk(A, r0), where r0 is
initial residual. The iterates of GMRES are defined as xk = x0 + Vkzk where zk is
vector of weights for each of orthonormal basis vectors vj . We also have Hk = V Tk AVk
and AVn = VnHn with the assumption that Arnoldi process does not terminate early,
that is, hk+1,k 6= 0 for k = 1, 2, ..., n− 1.

At kth iteration, we have Hk that can be decomposed blockwise as:

Hk =

(
Hk−d Wk−d
Y Tk−d H̃k−d

)
Let

γk−d =
hk−d+1,k−d

(
ek−d, H

−1
k−de1

)
1− hk−d+1,k−d

(
ek−d, H

−1
k−dwk−d

)
where wk−d = Wk−dH̃

−1
k−de1.

Let the vector tk be the last column of
(
HT
k Hk

)−1
, tkk its last element and

δk+1 =
h2k+1,k

1 + h2k+1,ktkk

and

uk = δk+1tk
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Hence error estimate denoted by χk−d at (k−d)th iteration in GMRES as provided
by Meurant[5] is given by:

(5.4)
χ2
k−d

‖r0‖2
= γ2k−d

∥∥∥H̃−1k−de1∥∥∥2 +
∥∥γk−dH−1k−dwk−d + (ek−d, H

−1
k−de1)uk−d

∥∥2
5.3. Relating BiCGQL to CGQL . The difference between two consecutive

A-norm of error (A-measure) in case of a Conjugate gradient Algorithm at iteration
′k′ and ′k + 1′ can be given by:

(5.5) ‖εk‖2A − ‖εk+1‖2A = αkr
T
k rk

Hence by inducing a delay of ′d′ iterations we can easily compute A-norm of error.

(5.6)
‖εk‖2A − ‖εk+d‖2A =

∑k+d
j=k αjr

T
j rj

‖εk‖2A ≈
∑k+d
j=k αjr

T
j rj

For A-norm estimation of error in BiCGQL algorithm we derived the following
results:

(5.7) ‖εk+1‖2A = rTk+1A
−1rk+1 = −αkrTk pk + rTk+1A

−1rk + α2
kp
T
kApk

By using rk+1 = rk − αkApk the above result can also be written as:

(5.8) rTk A
−1rk − rTk+1A

−1rk+1 = αkr
T
k pk + αkr

T
k (AT )−1Apk − α2

kp
T
kApk

For a symmetric matrix A = AT the above equation can be further written as:

(5.9) rTk A
−1rk − rTk+1A

−1rk+1 = αkr
T
k pk + αkr

T
k pk − α2

kp
T
kApk

For an algorithm like CG pTi rj = 0 for i 6= j. Also rk+1 = rk − αkApk and thus

substituting Apk =
rk − rk+1

αk
in the last term we get:

(5.10)

rTk A
−1rk − rTk+1A

−1rk+1 = αkr
T
k pk + αkr

T
k pk − αkpTk rk + αkp

T
k rk+1

=⇒ rTk A
−1rk − rTk+1A

−1rk+1 = αkr
T
k pk

=⇒ rTk A
−1rk − rTk+1A

−1rk+1 = αkr
T
k rk + βk−1r

T
k pk−1

=⇒ rTk A
−1rk − rTk+1A

−1rk+1 = αkr
T
k rk

Equation 5.10 is equivalent to the A-norm estimation in CGQL Algorithm [3], and
thus the proposed A-norm estimator for BiCG is equivalent to the CGQL estimator
when A = AT .
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5.4. Relations between Non-Symmetric Lanczos Tridiagonal Matrix
(Tk) and Residual vectors (r and r̃) of BiCG algorithm . A direct relationship
between Tk , rk and r̃k can be given by:

(5.11) (T−1n )(1,1) = (T−1k )(1,1) +
r̃k
TA−1rk
‖r0‖2

(5.12) (T−1n )(1,1) = (T−1k+1)(1,1) +
r̃Tk+1A

−1rk+1

‖r0‖2

Subtracting 5.11 and 5.12 we get:

(5.13) (T−1k+1)(1,1) = (T−1k )(1,1) +
(r̃k

TA−1rk − r̃Tk+1A
−1rk+1)

‖r0‖2

As r̃k
TA−1rk − r̃Tk+1A

−1rk+1 = αkr̃
T
k rk for a Non-Symmetric matrix in BiCG:

(5.14) (T−1k+1)(1,1) = (T−1k )(1,1) +
(αkr̃

T
k rk)

‖r0‖2

Thus knowing the relation between two consecutive Tk inverse first elements we
can relate it with the estimator we developed for A-norm of error and the approach
of CGQL Algorithm. However relating Non-Symmetric Lanczos and BiCG through
Quadrature based methods will involve Complex Gaussian Quadratures ([8]). Hence
we have followed an equivalent but direct approach of estimation using the relations
of Bi-CG explicitly.

5.5. Proof for Theorem on Expectation of U.R.(2) . This is the detailed
proof for theorem mentioned in reference 3.1. The proof for Expectation of U.R.(1) is
same as given in reference 3.1.

Proof.
Derivation for E(U.R.(2)):

The U.R.(2) can be written as

(5.15) U.R.(2) =
1

n− d

n−d−1∑
k=0

ak

where

(5.16) ak =

∣∣∣∣∣∣∣∣∣
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2
− 1

χ2
k

‖εk‖2
− 1

∣∣∣∣∣∣∣∣∣
In order to find E(ak) we deal with numerator and denominator of ak separately.

Now, consider the error at kth iteration in GMRES or krylov-subspace based methods,

(5.17) εk = ε0 − Vkzk
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where Vk is the matrix representing basis of subspace of krylov vectors or search
directions.

The error in krylov subspace based iterative algorithm generally decreases and
convergence is guaranteed in atmost n iterations where n is dimension of matrix A.
The basis Vk can atmost span k dimensions and if we average across the problems
with constant forward condition number and singular values then the error vector εk
on average will lie in n-k dimensional subspace provided ε0 lies in entire n-dimensional
space with any direction being equally probable. Hence, we can write,

(5.18) εk = c1vi1 + c2vi2 + ...+ cn−kvin−k

&

(5.19) rk = c1σi1ui1 + c2σi2ui2 + ...+ cn−kσin−k
uin−k

where (i1, .., in−k) is a single combination out of
(
n

n−k
)

possible combinations and
uik and vik are the corresponding left and right singular vectors of matrix A respec-
tively.

Now, lets consider the problems where σik are fixed. In such a scenario,

Eσi1
,..,σin−k

(
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2

)
=

(
‖A‖2F ‖x‖

2

‖b‖2

)(
1

‖A‖2F

)
Eσi1

,..,σin−k

(
‖rk‖2

‖εk‖2

)

The operator Eσi1
,..,σin−k

will be replaced by Ên−k for following analysis.

Ên−k

(
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2

)
=

(
‖x‖2

‖b‖2

)
Ên−k

(∥∥c1σi1ui1 + ...+ cn−kσin−k
uin−k

∥∥2∥∥c1vi1 + ...+ cn−kvin−k

∥∥2
)

=

(
‖x‖2

‖b‖2

)
Ên−k

(
(c21σ

2
i1

+ c22σ
2
i2

+ ...+ c2n−kσ
2
in−k

)

(c21 + c22 + ...+ c2n−k)

)

As all directions in n−k dimensional space are equally probable for error to point
at, hence, the components follow gaussian distribution for such a vector and hence,
Ên−k(c2i ) = 1. Hence by first order approximation on expectation of ratio,

Ên−k

(
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2

)
≈

(
‖x‖2

‖b‖2

)(
Ên−k(c21σ

2
i1

+ c22σ
2
i2

+ ...+ c2n−kσ
2
in−k

)

Ên−k(c21 + c22 + ...+ c2n−k)

)

≈

(
‖x‖2

‖b‖2

)(
(σ2
i1

+ σ2
i2

+ ...+ σ2
in−k

)

n− k

)

However, to find total expectation, we should consider all possible combinations
of singular values to be equally probable and thus,

E

(
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2

)
≈

(
‖x‖2

‖b‖2

)
1(
n

n−k
) ∑

(i1,..,in−k)∈S

(
(σ2
i1

+ σ2
i2

+ ...+ σ2
in−k

)

n− k

)
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where S is index set containing all
(
n

n−k
)

combinations.

Now, for each combination (i1, .., in−k), we can write,

σ2
i1 + σ2

i2 + ...+ σ2
in−k

= ‖A‖2F − (σ2
in + σ2

in−1
+ ...+ σ2

in−k+1
)

Thus,

E

(
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2

)
≈

(
‖x‖2

‖b‖2

)
1

(n− k)

(
‖A‖2F −

∑
(i1,..,ik)∈S′

(
σ2
i1

+ σ2
i2

+ ...+ σ2
ik

)(
n
k

) )

where S′ is the complementary index set which contains all
(
n
k

)
combinations.

In this sum
∑

(i1,..,ik)∈S′
(
σ2
i1

+ σ2
i2

+ ...+ σ2
ik

)
, if σi1 is fixed to particular singular

value, then there are
(
n−1
k−1
)

possible combinations for choosing σi2 , .., σik . Since σi1
can be any one of the n singular values, the above sum can be written as

∑
(i1,..,ik)∈S′

(
σ2
i1 + σ2

i2 + ...+ σ2
ik

)
= ‖A‖2F

(
n− 1

k − 1

)

Therefore,

E

(
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2

)
≈

(
‖x‖2

‖b‖2

)
1

(n− k)

(
‖A‖2F −

‖A‖2F
(
n−1
k−1
)(

n
k

) )

(5.20) E

(
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2

)
≈

(
‖A‖2F ‖x‖

2

‖b‖2

)
1

(n− k)

(
1− k

n

)
≈
‖A‖2F
n

‖x‖2

‖b‖2

Consider

Q̂ =
‖rk‖2

‖εk‖2
‖x‖2

‖b‖2
∀k

It can be seen that the random variable Q̂ has well defined bounds as per Eqn. 5.21
which can be derived using Cauchy-Schwartz inequality:

(5.21)
κ(A, x)2

κ2
≤ Q̂ ≤ κ(A, x)2

let a =
κ(A, x)2

κ2
.

The lower bound a lies between 0 and 1 where as upperbound is much greater than
1. The random variable Q̂ can be seen to follow the relation 5.22 (proof in section 5.6
of Appendix):

(5.22) E
(∣∣∣Q̂− 1

∣∣∣) = E
(
Q̂
)
− 1 + 2

∫ 1

a

(1− q)fQ̂(q)dq
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Since, E
(
Q̂
)
≈
‖A‖2F
n

‖x‖2

‖b‖2
>> 1,

(5.23) E
(∣∣∣Q̂− 1

∣∣∣) ≈ ‖A‖2F
n

‖x‖2

‖b‖2

From Eqn. 5.16,

E(ak) ≈
E

(∣∣∣∣∣‖rk‖2‖εk‖2
‖x‖2

‖b‖2
− 1

∣∣∣∣∣
)

E

(∣∣∣∣∣ χ2
k

‖εk‖2
− 1

∣∣∣∣∣
)

For delay-based estimators, χ2
k ≈ ‖εk‖

2 − ‖εk+d‖2 which implies

χ2
k

‖εk‖2
− 1 ≈ −‖εk+d‖

2

‖εk‖2

Therefore,

E(ak) ≈

‖A‖2F
n

‖x‖2

‖b‖2

E

(
‖εk+d‖2

‖εk‖2

) ≈
‖A‖2F
n

‖x‖2

‖b‖2

E(‖εk+d‖2)

E(‖εk‖2)

Thus, According to Eqn. 5.18,

E(ak) ≈

‖A‖2F
n

‖x‖2

‖b‖2

E(c21 + c22 + ...+ c2n−k−d)

E(c21 + c22 + ...+ c2n−k)

It can be stated that E(c2i ) = 1 as averaging over all combinations of singular values
will not change the average since every combination is equally probable.
Thus,

E(ak) ≈

‖A‖2F
n

‖x‖2

‖b‖2

n− k − d
n− k

E(ak) ≈
‖A‖2F
n

‖x‖2

‖b‖2

(
1 +

d

n− k − d

)
Thus,

E
(
U.R.(2)

)
≈

(
‖A‖2F
n

‖x‖2

‖b‖2

)
1

n− d

n−d−1∑
k=0

(
1 +

d

n− k − d

)
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(5.24) E
(
U.R.(2)

)
≈

(
‖A‖2F
n

‖x‖2

‖b‖2

)(
1 +

d

n− d
log(n− d)

)

5.6. Expectation of
∣∣∣Q̂− 1

∣∣∣.
The random variable Q̂ takes values between a and b where a ≤ 1 ≤ b and let fQ̂(q)

be the probability density function of Q̂. In such case,

E
(∣∣∣Q̂− 1

∣∣∣) =

∫ b

a

|q − 1| fQ̂(q)dq

=

∫ 1

a

(1− q)fQ̂(q)dq +

∫ b

1

(q − 1)fQ̂(q)dq

= 2

∫ 1

a

(1− q)fQ̂(q)dq +

∫ b

a

(q − 1)fQ̂(q)dq

= E(Q̂)− 1 + 2

∫ 1

a

(1− q)fQ̂(q)dq

5.7. Expectation of
∣∣ψ2
k − 1

∣∣.
We have,

|ψk − 1| ∼ expo(λk)

The random variable ψk can take values from 0 to ∞. We assume that ψk is sym-
metrically distributed about 1 in range of 0 to 2. Thus, we can write,

P (1− a ≤ ψk ≤ 1 + a) = 1− e−λka ∀a ∈ [0, 1]

Also,

P (1− a ≤ ψk ≤ 1) =
1

2

(
1− e−λka

)
∀a ∈ [0, 1]

and

P (1 ≤ ψk ≤ 1 + a) =
1

2

(
1− e−λka

)
∀a ∈ [0, 1]

and

P (2 ≤ ψk ≤ b) = P (1 ≤ |ψk − 1| ≤ b− 1)

= e−λk − e−λk(b−1) ∀b ∈ (2,∞)

Using the above equations, one can derive the cumulative distribution function and
density function of ψk which are given respectively as follows.

Fk(y) =
1

2
e−λk

(
eλky − 1

)
, 0 ≤ y ≤ 1

= 1− 1

2
e−λk

(
1 + e−λk(y−2)

)
, 1 ≤ y ≤ 2

= 1− e−λk(y−1), y ≥ 2
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fk(y) =
λk
2
eλk(y−1), 0 ≤ y ≤ 1

=
λk
2
e−λk(y−1), 1 ≤ y ≤ 2

= λke
−λk(y−1), y ≥ 2

Using this density function, one can easily derive an expression for E
(∣∣ψ2

k − 1
∣∣)

and it is given by

E(
∣∣ψ2
k − 1

∣∣) =
2

λk
+

(
1 +

2

λk
+

2

λ2k

)
e−λk
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[2] Roland W Freund and Noël M Nachtigal, Qmr: a quasi-minimal residual method for
non-hermitian linear systems, Numerische mathematik, 60 (1991), pp. 315–339.

[3] Gene H Golub and Gérard Meurant, Matrices, moments and quadrature ii; how to com-
pute the norm of the error in iterative methods, BIT Numerical Mathematics, 37 (1997),
pp. 687–705.
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