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Abstract
Large spectral variations in the extinction of nanostructures are important for many applications
like optical antennas, cloaking materials, optical circuits and others. Such features in extinction
spectra are typically attained using plasmonic particles and high-index or complex
nanostructures. In this work, we show that large interference structures can manifest even in the
extinction spectra of a single dielectric particle with a low relative refractive index ( 2< ), and
notably even as a spectral region of transparency and directional scattering of incident light. This
is observed when the core and shell resonances of a layered spherical particle have overlaps with
each other in the energy spectrum. Interference between the core and shell modes results in larger
spectral features in magnitudes of the scattering constants an, bn i.e. a strong enhancement of
what is traditionally called the ripple structure in the extinction spectra of a dielectric particle.
This effect is in addition to any possible overlap of electric resonances of two different mode
numbers or the overlap of an electric and magnetic resonance, which have been shown to result
in sharp asymmetric (Fano) resonances in the forward or backscattering spectra of a high-index
or metallic particle.

Supplementary material for this article is available online

Keywords: Fano resonance, Mie theory, all-dielectric

(Some figures may appear in colour only in the online journal)

1. Introduction

Core–shell nanoparticles have been studied extensively in recent
years for their high optical efficiencies, and due to the sensitivity
of their optical properties to geometrical parameters [1, 2]. In
plasmonic metal nanoparticles, the electromagnetic energy can
be extremely localized with apparent near and far field optical
properties. This property can be used in the modification of local
emission properties, increasing the efficiency of absorption, and
has many biological applications [3–5]. Nevertheless the large
non-radiative losses in such metal particles discourage their use
in bulk materials for many applications. Hence, discovering
useful optical properties in non-plasmonic nanostructures is a
significant direction of research in developing nanoscale mate-
rials [6]. One path towards realizing new useful optical proper-
ties is the excitation of higher-order modes of nanostructures like
nanoshells [7–10].

Studies of layered nanospheres with an absorbing layer or
core were motivated by meteorological applications many
decades before the advent of plasmonics [11]. More recently,
the tunable properties of plasmonic core–shell nanostructures
have been studied for applications where low quality factors
and dissipative losses are not an impediment. Non-intuitive
properties of magnetic spheres like a negligible backscattering
efficiency were predicted decades ago, [12] and recent exper-
imental observations of certain cylindrical oligomers confirm
such behavior [13–15]. But studies of dielectric particles have
been mostly limited to large cylindrical and spherical micro-
structures for optical fiber communication and optical cavities
that exploit whispering gallery modes, respectively [16–20].
Note that a weak interference structure in the extinction spec-
trum of homogeneous particles on the order of wavelength in
size has been well known for some time [21]. This was
understood as the spectral maxima and minima representing the
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interference of the incident and forward-scattered light, and this
effect has been used in microwave signal processing before
[22]. Also, an asymmetric optical resonance for particles was
predicted by van de Hulst earlier than its quantum-mechanical
counterpart [23] and such a resonance was experimentally
observed using nanospheres with a sharp absorption spectrum
[24] before Fano resonances became well known in plas-
monics. Plasmonic particles offer the possibility of sharp
changes in the optical spectra when modes are strongly coupled
by their dissipative currents. This is indicated by an overlap of
resonance of two electric modes, e.g. a near overlap of peaks of
the scattering constants [25].

However, we highlight that stronger interference structures
can appear in spectra of some dielectric nanoshells with
dimensions close to the wavelength of incident light, i.e
2π > kd> 1, where k is the magnitude of the incident wave-
vector and d is the dimension of the layers. Spherical nanoshells
in particular allow us to derive polarization-independent reso-
nances. Transparencies where the optical efficiency of a large
nanoparticle reduces to unity due to a minimal interaction with
the incident field are equally significant spectral regions [26]. We
show that such effects are possible when coupled normal modes
of the nanoshell and core regions exhibit resonances close to
each other in the energy spectrum. Thus the refractive index
along with the dimensions of nanoshells that allow such behavior
becomes crucial. In other spectral regions, the optical properties
are not remarkably different from those of dielectric homo-
geneous spheres [20, 27]. Note that such particles can also
exhibit directional scattering typically in the forward or backward
directions in these significant spectral regions, which is a useful
property for optical antennas [28]. This classical behavior has
interesting quantum-mechanical interpretations that are poten-
tially useful in single-photon communication applications. In the
appendix, we also present a simple yet fundamental phase–
magnitude relationship of the spherical scattering coefficients of
homogeneous or layered dielectric spheres in generality.

We have decomposed the extinction spectra of nanoshell
particles using the coefficients of the spherical modes in the
well-known Lorenz–Mie theory [29]; the magnitude and
phase of mode coefficients an, bn for the external scattered
field; cn, dn for the normal modes of the core region; and fn,
gn, vn, wn for the normal modes of the shell region. The
properties of the scattered field and resulting absorption/
scattering are typically studied using mode coefficients of the
external field an, bn. The origin of such effects can also be
elucidated using interference of normal modes of the core and
shell regions that are coupled by boundary conditions. We
highlight this effect with realistic nanospheres in water such
as a dielectric core of silica which is very stable in nature
[30, 31], and a shell of titania which is an unremarkable non-
absorbing material in the visual spectrum, though strongly
absorbing in the UV [32, 33]. It is observed that hollow titania
nanoshells also exhibit similar but weaker behavior in the
absence of the silica core. Equally, homogeneous spheres of
titania or silica, or an imaginary effective material repre-
senting titania and silica, do not exhibit similar effects (see
figures S1 and S2, available online at stacks.iop.org/JOPT/
19/075603/mmedia). Numerical results also suggest that

these interference effects can survive size-dispersion in actual
realization of materials while allowing spectral tunability
based on the nominal geometrical parameters.

2. Methods

2.1. Analytical model

Consider a linearly polarized electromagnetic wave incident on
a core–shell nanosphere with inner radius a and outer radius b
(figure 1). The incident electric vector is polarized in the
direction of the x axis and the direction of propagation of the
incident wave is along the positive z axis. In spherical coor-
dinates, if the amplitude of the incident wave at the origin is E0,
then the incident field Ei, Hi, the electromagnetic field in the
core region E1, H1, the scattered field E3, H3 and the electro-
magnetic field in the shell region E2, H2 can be expressed in
spherical harmonics using the normal modes of a sphere
[21, 29] (see appendix). Here an and bn denote the coefficients
of scattered field, fn, gn, vn, wn represent the coefficients of
normal modes in shell region and cn, dn the coefficients of
normal modes of the core region respectively (see
equations (5)–(12) in the appendix).

The extinction and scattering cross-sections are given by
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where b is the radius of the sphere; note the factor ‘4 π’

included here, which means that the differential scattering

Figure 1. Schematic of the coordinate system used.
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cross-section at 180q =  is used to calculate Qb. This addi-
tional factor is sometimes ignored to express the relative
backscattering cross-section scaled to represent the total sur-
face area of the particle [21]. Also, in the above equation, the
removal of the antisymmetric operator 1 n-( ) , and a change to
the sum of the scattering constants instead of their difference,
will provide us with the forward scattering efficiency.

The final solutions for mode coefficients an, bn are well
known, and expressions to evaluate cn, dn, fn, gn, vn, wn can be
easily derived as well (equations (23)–(28) in the appendix).
The numerical evaluations of cross-sections using the above
Lorenz–Mie formalism [21, 34, 35] were also verified and
complemented by numerical volume integral methods such as
discrete dipole approximation [36]. All the simulations were
made with water, as an ambient medium of permittivity 1.77.
These results of internal polarization are also used in
elucidating the physics in the next section. As given by
equations (5) and (6), we studied nanoshells illuminated by
plane electromagnetic waves. We assume the titania is of
anatase phase and the dispersive permittivity of anatase is
different from its rutile phase [32, 33, 37, 38] (see supple-
mentary material for the refractive indices of the materi-
als used).

3. Results and discussion

Figure 2 shows the extinction spectra of silica–titania spheres
of three increasing dimensions with varying ratios of thick-
ness of shell and radius of particle. As mentioned before, the
larger shells exhibit non-intuitive spectra which we show later
to be due to interference effects better explained by the nor-
mal mode coefficients. The 180 nm diameter particles
(represented in figure 2(a)) are unremarkable as they show a
Rayleigh-scattering-type 1

4l
behavior for l > 450 nm as

expected, followed by an indication of interference structure
around the optical efficiency of 2 for 400 nm l< < 450 nm.
Light of smaller wavelengths (l < 350 nm) is strongly
absorbed by titania and the extinction spectra show a satur-
ation behavior based on the thickness of the shells [39]. The

360 nm diameter particles (represented in figure 2(b)) exhibit
a similar unremarkable Mie–Rayleigh behavior for wave-
lengths larger than 500 nm based on their larger size. On the
other hand, an abrupt reduction in optical efficiency to ∼1.5
for the spectral range 350–430 nm range is observed. This
efficiency is four times smaller than that of the smaller
180 nm sphere of similar constitution, and note that while
both titania and silica are in fact mostly non-absorbing in this
energy spectrum, the lack of stronger scattering for the larger
particles seems anomalous. Weak absorption close to the
absorption edge at 350 nm significantly enhances the typical
interference structure in the extinction spectrum of a dielectric
particle, resulting in this sharp asymmetric resonance around
370 nm. A similar more broadband effect for the larger sphere
of 600 nm diameter (represented in figure 2(c)) is observed,
which exhibits both a broader transparency (at λ∼450 nm)
and another resonance (at λ∼370 nm). The tunability of this
transparency using approximately the core–shell ratios of the
particle are highlighted in these results. Other results showing
that this effect is only weakly sensitive to the outer diameter
of the particle are shown in the supplementary information
(figure S1c). For a more qualitative investigation, we present
further numerical results of the nanoshells where the thickness
of the shell is half of the radius of the particle. In fact, the
phase of oscillations of internal polarizations in the core–shell
structure (with respect to incident field) shown in figure 3
indicates a non-trivial effect. At higher (λ = 320 nm) and
lower (λ = 425 nm) energies the wave nature of the internal
polarization is apparent (figures 3 and 3(b)); but at the critical
wavelength of ∼370 nm the oscillations of the polarizations
are neither like a passing nor a whispering gallery wave
(figure 3(c)).

The magnitude of the spherical mode coefficients an, bn
plotted in figure 4 emphasizes the significance of the higher-
order non-dipolar modes, especially for larger nanoshells of
600 nm diameter. This is evident from the magnitude of the
normal mode coefficients numbered 2–12; the dipolar modes
are represented by coefficients numbered 1. An analysis of
mode constants an and bn shows that large changes in mag-
nitude occur in many modes in the same regions of the

Figure 2. Extinction spectra as a function of free-space wavelength for silica–titania spheres in water at different shell ratios 0.3 to 0.7 (given
by the ratio of the thickness of the shell and outer radius of the particle); (a) 180 nm diameter, (b) 360 nm diameter, (c) 600 nm diameter. The
refractive index of the materials and extinction spectra for homogeneous spheres of silica, titania and their effective-media approximations
are presented in supplementary material for reference.
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spectrum. A cumulative effect of these large changes in
magnitude of scattering constants is reflected in the extinc-
tion/scattering spectra in figure 2. This is due to the fact that
the extinction cross-section is also given by the scattering
cross-section of a dielectric particle (equation (2)), and the
total scattering cross-section is just a sum over cross-sections
of all modes. This results in a fundamental relationship
between the phase and magnitude of the scattering coeffi-
cients (see appendix). The origin of this interference structure
in spectra of an and bn of a nanoshell particle requires further
analysis of the internal TE and TM modes of the shell and
core region.

In the case of spherical particles, large variations in
spectra can be broadly due to two types of interference
effects. The first is a ripple structure that is attributed to the
maxima and minima in the forward scattering of a dielectric
particle with a change in wavelength of incident light. This
manifests for dielectric particles of size on the order of
wavelength with a relative refractive index 2< and these are
typically elucidated by the behavior of the Ricatti–Bessel
functions and their ratios embedded in the boundary condi-
tions (equations (15)–(22)). The other, sharper, effect man-
ifests when there is a spectral overlap of resonance of two
underlying modes that interact, a sharp resonance and a
constant background. Let the amplitudes of oscillation of two
such modes be represented by two phasors; the amplitude of a
sharp Lorentzian resonance with a negligible damping redu-
ces to1 ow w-( ) while the broad background is i1 G( ). Note
that their phases are zero and 2p radians respectively. Thus

when the phases are offset by 2p radians away from the reso-
nance, they add as two non-interacting modes do. But around
resonance, the phases do align in a small region of the spectrum
during the cross-over of the resonating phasor from zero to π, and
this constructive addition of amplitudes results in an asymmetric
resonance of magnitude o o

2 2 2w w w w- + G - + G( ) ( ) ).
This effect can also manifest when two coupled modes, like those
of the core and shell modes, exhibit a spectral overlap of reso-
nance. Here, their typical forced-driven relationship implies a
phase offset of 2p between modes of the core and shell in most
regions of the spectrum. But any overlap of resonances aligns the
phases in a small region of spectrum and interference effects
appear (see figure S7 in the supplementary material for overlaps
in phase of constants c, f and v).

When magnetic and electric modes overlap in magnetic
spheres and oligomers of coupled dielectric spheres, magn-
etic-electric interference can result in Fano-type spectra.
Recently, this effect was also shown to be possible in a single
high-index homogeneous sphere due to spectral overlaps
between the internal electric and magnetic resonances
(represented by spectra of constants cn, dn) [40]. Also, one or
more modes of a conducting particle can exhibit addition and
cancellation with other mode phasors (an+bn), indicating
interacting currents. Resulting sharp spectral features of metal
particles have been referred to as plasmonic Fano resonances.
For example, the overlapping electric resonances of the first
two modes of a small plasmonic particle represented by
scattering constants a1, a2 results in Fano profiles in spectra of
the forward and backward scattering cross-sections [25]. As

Figure 3. The top row shows the phase of polarization oscillations (in radians) with respect to the incident field (Y-polarized plane wave
propagating in Z). The second row is the relative internal energy distribution. The 360 nm silica–titania core–shell particle of 0.5 shell ratio is
sectioned at the Y=0 plane to display a hemisphere and its internal distributions of polarizations. (a) Phase distribution of Pŷ at λ = 320 nm.

(b) Phase distribution of Pŷ at λ = 425 nm. (c) Phase distribution of Pŷ at critical λ = 375 nm. At λ = 375 nm: (d) Px
2∣ ∣ . (e) Py

2∣ ∣ . (f) Pz
2∣ ∣ . Note

that a similar plot of phase (in radians) and relative energy distribution for 600 nm nanospheres is presented in the supplementary material.
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mentioned before, even a homogeneous dielectric particle of
index 2< exhibits an interference/ripple structure in its
extinction spectra. But the typically shallow ripples in spectra
of magnitudes of an, bn of the relatively low-index dielectric
particles on the order of wavelength in size have been unin-
teresting for applications. We show that when the ripple
resonances of core and shell overlap, larger spectral structures
in the magnitudes of scattering coefficients an and bn are
indeed possible. A core–shell particle allows such an overlap
of resonances even when the modes of the core or shell alone
do not overlap with each other for a particle with relatively
low refractive index. This spectral signature is evident in the
magnitudes of the scattering constants an and bn as an
enhanced ripple structure. This can be explained by the
interference of the core and shell modes, which is similar to
the cases of the Fano effects in high-index and metallic
homogeneous spheres, as we discuss below.

While an and bn denote the normal modes for the scattered
field, fn, gn, vn, wn represent the transverse electric (TE) and
magnetic (TM) modes of the shell region and cn, dn the core
region respectively (refer to equations (5)–(12)). The distribution
of all the mode coefficients in terms of their magnitude and
phase are provided in the supplementary information. The
overlaps of the TE and TM mode number 1 of the core–shell are

plotted in figures 5(a) and (b) respectively. Note that cn, fn and vn
are the complementary mode coefficients that are coupled to the
spectra of bn by the boundary conditions (see appendix). Spe-
cifically, cn represents both the incoming and outgoing TM
waves in the core, fn represents the incoming waves while vn
represents the outgoing TM waves of the shell. The other set dn,
gn and wn are similarly related to the spectra of an and TE
modes. These four constants along with the driving incident field
can be represented by five phasors of the electric modes (or
magnetic modes in the case of cn, fn, vn and bn) of the three
regions, for any mode number n. This contrasts with only a total
of three phasors for each mode number of a homogeneous
particle. When a TE resonance of the core (dn) overlaps with the
resonance of a TE mode of the shell (either outgoing or
incoming waves represented by wn or gn), a sharp change in
response of the other mode of the shell occurs. This is accom-
panied by a large spectral change in response of the scattering
from the particle in terms of TE scattering constant an. This
behavior adds to what would otherwise be typical ripple spectra
of a homogeneous sphere.

To illustrate this effect, figures 5(a) and (b) plot the spectra
of the modes of core and shell, followed by figure 5(c).
Figure 5(c) provides scattering constant a1 that would be
expected for a homogeneous sphere of an effective refractive

Figure 4. (a–d) Normalized distribution of magnitude of spherical mode coefficients (E an n* , E bn n* ) for 360 nm (on the left side) and
600 nm (on the right side) diameter particles of 0.5 shell ratio, as a function of free-space wavelength, where En

n

n n

2 1
1

= +
+( )

. The magnitude of

other mode coefficients b d g w, , ,n n n n and higher modes of an and fn (for n = 7 to 12) are plotted separately in the supplementary material for
clarity.
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index by volume for the given core–shell sphere. The scattering
constant a1 is also plotted with an overlay of the spectral
strength of interference among TE modes of the core and shell.
It is apparent that the spectra of the TE mode number 1 are
significantly enriched by the interference of the core and shell
modes. Note that the peak interference occurs in a spectral
region around the overlapping resonance peaks of the core and
shell. The full extinction spectra of the effective index homo-
geneous spheres are provided in the supplementary information
(figure S2 a–c), and the peak–valley ratio in the spectra of this
homogeneous sphere is enhanced by a factor of more than 2 in
the core–shell sphere. A similar effect and a marginally smaller
factor of enhancement is exhibited by a hollow titania shell of
the same dimensions (figure S2 (d–f) in the supplementary
material). In lossy conducting particles the resonances in modes
of different numbers n are indeed coupled by currents, which
makes other interference effects between different mode num-
bers possible, and is not discussed further here.

A significant point is that in the typical Fano interaction
between electric and/or magnetic modes of a homogeneous
high-index and metallic sphere, a constant background (inci-
dent wave) appears either as a complete forward or a complete
backward scattering, between resonances in the spectrum. A
similar maximization of the backscattering component in the
extinction at λ∼460 nm is noteworthy for the 600 nm particle
(refer to equation (4) in the analytical model for an explanation
of backscattering efficiency). Backscattering efficiency are
plotted in figures 6(a) and (b) for two different particles dis-
cussed in detail. Backscattering can be complete for point-like
dipoles and thus equal the total scattering cross-section [25];
here even a large core–shell structure would exhibit this lim-
iting behavior for incident photons of particular energy.

To summarize, the interference resonances of homogeneous
dielectric spheres simply understood as the interference of for-
ward-scattered and incident light becomes a richer phenomenon
in nanoshells. The large overlap between the complementary TE
and TMmodes of shell and core regions, possible in all-dielectric
particles, provides an alternate avenue for achieving useful
optical properties in nanoscale materials without the absorption
accompanying plasmonic nanostructures or high-index materials.

Appendix A. Coefficients of spherical mode
expansions

Continuing from section 2, the vector spherical harmonics
using various normal modes M N, are given by [21]
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Figure 5. (a) Spectra of TM1 modes of the core and shell for
the 600 nm diameter particle of 0.5 shell ratio, as a function of
free-space wavelength. Note that these coefficients were scaled
by En

n

n n
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which is 3/2 for n=1. (b) Spectra of TE1 modes

of core and shell for the 600 nm diameter particle of 0.5 shell ratio.
Note that these coefficients were scaled by En

n

n n

2 1
1

= +
+( )

which is

3/2 for n=1. (c) Interference of core–shell modes and effect
on TE1 scattering coefficient a1: comparison with a homogeneous
sphere of the same effective refractive index. Amplitude of the
core–shell interference is calculated using the energy imbalance
across the shell boundaries by the incoherent sum g1 1

2+ -∣( ∣ ∣
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2
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ω is the angular fre-
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respectively; 0l is the wavelength in vacuum, m1 and

m2 are the refractive indices of the core and shell relative to
the surrounding medium; μ, 1m and 2m are the permeabilities
of surrounding medium, core, shell respectively; and an, bn,
cn, dn, fn, gn, vn, wn are the spherical mode coefficients. After
applying the boundary conditions for a sphere with inner

radius a and outer radius b,
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we get the following equations in coefficients an, bn, cn, dn, fn,
gn, vn, wn [22].
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These boundary conditions and final solutions for mode
coefficients an, bn are well known [21] and coefficients cn, dn,
fn, gn, vn, wn can be similarly derived using the above
boundary conditions.

Let Dx
m x

m x
n

n

2

2
=

y

y

¢ ( )
( )

Dy
m y

m y
n

n

2

2
=

y

y

¢ ( )
( )

c
m D v m x m v m x

m m x m D m x
23n

x n n n n

n x n

1 2 1 2

1 1 2 1

c c

y y
=

- ¢

¢ -

( ) ( )
( ) ( )

( )

d
w m m x m D w m x

m D m x m m x
24n

n n x n n

x n n

1 2 1 2

1 1 2 1

c c

y y
=

¢ -

- ¢
( ) ( )

( ) ( )
( )

f
v m y m y m b y

m y
25n

n n n n n

n

2 2 2

2

c y x
y

=
+ -( ) ( ) ( )

( )
( )

g
w m x d m x

m x
26n

n n n n

n

2 1

2

c y
y

=
+( ) ( )

( )
( )

v
b y y D m b y D m y

m y D m y

27

n
n n n y n n y n

n y n

2 2

2 2

x y x y

c c
=

¢ - ¢ - +
¢ -

( ) ( ) ( ) ( )
( ) ( )

( )

w
a m y D y D a y m y

m y D m y

28

n
n n y n y n n n

n y n

2 2

2 2

x y x y

c c
=

¢ + - - ¢

¢ -

( ) ( ) ( ) ( )
( ) ( )

( )

where μ is assumed to be constant for the materials and
x=ka, y=kb. Riccati–Bessel functions are given as

yn nc r r r= -( ) ( ), jn ny r r r=( ) ( ) and hn n
1x r r r=( ) ( )( ) .

nc r¢ ( ), ny r¢ ( ), nx r¢ ( ) represent the differentials of the same
with respect to the argument in the parenthesis. Here, jn r( ) is
defined as jn2

1
2

p
r + , where jn 1

2+ is the Bessel function of the

first kind. yn r( ) is defined as yn2
1
2

p
r + , where yn 1

2+ is the

Bessel function of the second kind and hn
1 r( )( ) is known

Figure 6. (a) Extinction and backscattering efficiency spectra of the
360 nm diameter particle of 0.5 shell ratio. (b) Extinction and
backscattering efficiency spectra of the 600 nm diameter particle of
0.5 shell ratio.
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as the spherical Hankel function, which is defined as
j iyn nr r+( ) ( ). The numerical evaluations of cross-sections
using the above Lorenz–Mie formalism [21, 35, 36] were also
verified and complemented by numerical volume integral
methods such as discrete dipole approximation [37]. All the
simulations were performed with water, as an ambient med-
ium of permittivity 1.77. These results of internal polarization
are also used in elucidating the physics in the previous
section.

Appendix B. Phase–magnitude relationship of
scattering coefficients for dielectric particles

From equations (1) and (2), equality of the following series in
the scattering coefficients results for any dielectric sphere
with an arbitrary number of layers

n a b n a b2 1 2 1 .

29
n

n n
n

n n
1 1

2 2å å+ + = + +
=

¥

=

¥

( ) ( ) ( )(∣ ∣ ∣ ∣ )

( )

For the above to hold true in generality for all dielectric
properties and dimensions of particles, each coefficient should
independently satisfy the above relation, resulting in

a a 30n n
2 =( ) ∣ ∣ ( )

showing that

a cos 31n nq=∣ ∣ ( )

and

a cos
i

2
sin 2 32n n n

2 q q= + ( )

where nq is the phase of an (and the above relations are
equally applicable to bn as well). This reemphasizes the
known physical conclusions that a 1n ∣ ∣ . Secondly, the
phase of oscillation of the polarized particle relative to an
incident plane wave is 0  q p, as the period of the above
circular trace is only π. Note that the trace of scattering
coefficients an and bn in the complex plane is given by a circle
with a center at (0.5, 0i) and a radius 0.5, for any mode n of
any dielectric particle (given by equation (32)). This relation
can be exploited for fast evaluation of scattering from di-
electric particles with a distribution in the refractive index or
the dimensions, an exercise that may be shown elsewhere.
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