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Abstract

Monte Carlo methods are widely employed for high-dimensional integration and its application

to structural reliability analysis. These methods utilize random sampling to estimate inte-

grals/volumes and failure probabilities, yet encounter significant computational challenges as

the number of dimensions/parameters increases. Traditional numerical quadrature approaches

su!er from slow convergence rates and exponential growth in computational cost, rendering

them ine”cient in high-dimensional spaces. Markov Chain Monte Carlo (MCMC) methods

exhibit O(n5) scaling for smooth, convex bodies but face convergence di”culties in non-convex

and non-smooth domains. Quasi-Monte Carlo methods provide enhanced convergence proper-

ties but may not be suited for geometries that are not n-orthotopes (cuboids in 3D).

The n-Sphere Monte Carlo (NSMC) method addresses these limitations through a fun-

damentally di!erent approach. NSMC employs one-dimensional line integrals along random

directions combined with a volume transformation. This methodology remains agnostic to

domain boundary shape and surface roughness while achieving favorable O(n3) scaling with

dimension n, when the distribution of extents of the domain is fixed. One can use the naive

NSMC method for reliability analysis, estimating failure probabilities by uniformly sampling

points within the domain’s extents and evaluating the limit state function g(x) at these sam-

pled points. This method is agnostic to the domain’s size and roughness, making it suitable for

estimating volumes of distributed failure regions in the domain with varied geometries. This

work presents two key contributions:

Adaptive o!set NSMC : that changes the origin of NSMC sampling based on identifica-

tion of clusters of failure samples in the domain. This clustering can be adaptively concentrate

samples around the failure region and reducing variance in the failure estimation.

Random Walk-NSMC Variants : We introduce NSMC variants based on a Deterministic

Walk and a Random Walk that leverage Markov chain principles enabling accurate estimation

of failure probabilities with significantly fewer samples, particularly in high-dimensional spaces

where traditional techniques become computationally prohibitive. Here the origin of the NSMC

sampling is shifted based on selected criterion among the samples as in the Markov Chain

ii



methods. While a walk in the origin of the NSMC sampling helps achieve a quicker convergence

to a stationary probability density of sampling, the original flexibility of NSMC in estimating

volumes using its simple formula i.e. of arbitrary disconnected failure regions is retained.
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Acronyms
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Chapter 1

Introduction

High-dimensional integration represents a fundamental computational challenge in reliability

analysis across multiple engineering domains. Traditional numerical integration methodologies

face significant barriers when operating in spaces ↭ 10 , a phenomenon widely recognized as the

“curse of dimensionality.” This computational bottleneck manifests as an exponential increase

in complexity with each additional dimension, rendering conventional deterministic quadrature

schemes computationally intractable for many practical engineering reliability assessments.

The reliability analysis of complex engineered systems often involves evaluation of failure

probabilities in the presence of multiple interacting variables and failure modes. As engineer-

ing systems become more sophisticated, the dimensionality of these problems continues to

increase, creating an urgent need for e”cient computational approaches capable of handling

high-dimensional spaces.

1.1 Motivation

In reliability engineering, the probability of failure is mathematically expressed as:

Pf =

∫

g(x)↑0

fX(x)dx (1.1)

where g(x) is the limit state function distinguishing failure from the safe domains of op-

eration, and fX(x) represents the joint probability density of random variables [8, 24]. This

integration problem represents a significant computational challenge, particularly in high dimen-

sions, as noted by Simonovits [27] in his early work on high-dimensional volume computation.

Standard Monte Carlo methods [2, 20], while dimension-agnostic for cubic and spherical ge-

ometries, converge at a rate of O(N→1/2) [25], making them impractical for rare failure events

with probabilities of 10→3 to 10→6 that are common in high-consequence systems.
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A critical challenge in practical reliability analysis is the high computational cost associated

with each sample i.e. evaluating the limit state function for the given set of parameters.

This demands the even a low probability of failure is identified and estimated using as few

samples in the domain as possible. In many engineering applications, each evaluation of g(x)

requires an expensive finite element analysis (FEA) [15, 28]. The computational complexity

of FEA-based reliability assessment is particularly prohibitive, with a single nonlinear FEA

evaluation potentially requiring hours of computation time. This complexity typically scales

as O(nω
e ) where ne is the number of finite elements and ϖ ranges from 1.5 to 3 depending

on the solver and problem characteristics [23]. For problems involving complex geometries,

material nonlinearities, or time-dependent behavior, this computational burden becomes even

more significant. Stochastic finite element methods [13] attempt to address the uncertainty

propagation systematically but often introduce additional computational overhead that scales

poorly with the number of random variables.

These computational demands make traditional Monte Carlo approaches with hundreds of

thousands of samples computationally prohibitive for FEA-based reliability assessment. This

necessitates the development of methods that can provide accurate failure probability estimates

with substantially fewer limit state function evaluations. Advanced sampling techniques like

importance sampling [3] and subset simulation [4, 5] attempt to improve e”ciency but struggle

in high dimensions due to sample sparsity. As documented by Tabandeh et al. [30] in their

comprehensive review, importance sampling approaches can dramatically reduce variance, but

constructing an e!ective importance sampling density becomes increasingly challenging as di-

mensionality increases. Similarly, while subset simulation methods [4] have proven e!ective for

many reliability problems, they may face challenges with complex failure domains in very high

dimensions. These limitations parallel the broader challenges in high-dimensional integration

identified by researchers in computational geometry [22, 11], where even approximating volumes

of simple convex bodies becomes computationally intractable beyond moderate dimensions.

Metamodeling approaches such as polynomial chaos expansions [29, 6] and Kriging sur-

rogates [12, 9, 26] reduce computational burden by approximating expensive simulations, yet

face their own dimensionality challenges in basis function growth and training data require-

ments. The curse of dimensionality a!ects these methods as well, with the number of basis

functions growing exponentially with dimension in traditional polynomial chaos expansions,

and the complexity of fitting accurate Kriging models increasing rapidly with dimension.

Recent computational advances in high-dimensional integration [17, 21] o!er promising new

approaches for reliability analysis. The n-Sphere Monte Carlo (NSMC) method introduced by

Isaac et al. [17] provides a new approach to high-dimensional integration that has been shown

2



to scale more favorably with dimension compared to traditional MCMC methods for arbitrary

geometries. Jawlekar et al. [18] further enhanced this approach through importance sampling

techniques, extending its applicability to problems with varying densities. The development

of e”cient and reliable high-dimensional integration techniques is critical for advancing the

state-of-the-art in engineering reliability assessment, particularly for complex engineered sys-

tems where failure regions may be highly non-convex and limit state function evaluations are

computationally expensive.

1.2 Related Work

The field of high-dimensional integration has seen some recent methodological advances through

the n-Sphere Monte Carlo (NSMC) method. Isaac et al. [17] introduced the approach, which

decomposes n-dimensional volumes into integrals of weighted n-sphere volumes. Their method

overcomes traditional limitations of Markov Chain Monte Carlo (MCMC) approaches [14],

particularly in handling boundary roughness and non-convexity. The authors demonstrated

that NSMC achieves better e”ciency than MCMC for dimensions n ↫ 100, with more favorable

scaling properties that may make it particularly suitable for reliability analysis problems.

Abhijeet Jawlekar et al. [18] enhanced the NSMC framework by incorporating importance

sampling, specifically addressing challenges in domains with varying and heavy-tailed distri-

butions. Their two-tiered sampling approach, combining inverse fR sampling with adaptive

Metropolis-Hastings algorithms, showed notable improvements over standard NSMC. This in-

tegration of importance sampling techniques with NSMCmethodology creates a powerful frame-

work that can be adapted to reliability analysis problems.

These developments in NSMCmethodology mirror broader advancements in high-dimensional

integration and volume computation [27, 22, 11]. The fundamental challenge of e”ciently sam-

pling high-dimensional spaces has been addressed through various algorithmic approaches, from

the polynomial-time approximation algorithms of Dyer et al. [11] to the hit-and-run mixing

techniques of Lovász [21]. These theoretical advances provide a rich foundation for developing

specialized methods for reliability analysis.

In the reliability analysis domain, Au and Beck [3, 4] made significant contributions with

their adaptive importance sampling schemes and subset simulation approach. Their work on

subset simulation [4], further developed with Wang [5], has become a cornerstone of modern

reliability analysis for small failure probabilities. Tabandeh et al. [30] provide a comprehensive

review of importance sampling methods for reliability analysis, categorizing them into analytical

optimization approaches and surrogate-based methods.

These developments in NSMC methodology, particularly the improvements in handling non-

3



convex domains and the integration of importance sampling, provide a strong avenue for reliabil-

ity analysis applications. Our proposed algorithmic enhancements, building on these advances,

show promise for more e”cient and accurate reliability assessments, especially in complex engi-

neering systems where failure regions may have challenging geometric properties. The improved

algorithm’s ability to handle higher dimensions while maintaining accuracy makes it particularly

suitable for modern reliability analysis challenges.

1.3 Contribution

This paper presents advancements in applying the n-Sphere Monte Carlo (NSMC) methodol-

ogy to reliability analysis problems using realistic toy examples. Our primary objective is to

reduce the computational complexity and sample requirements for high-dimensional reliability

assessments. We began by implementing a näıve NSMC approach to reliability analysis, which

demonstrated promising results but revealed opportunities for further optimization in handling

complex failure domains.

Our first algorithmic innovation, O!set-NSMC with clustering, enhances performance by

strategically decomposing the failure domain into distinct regions. This approach identifies

natural clusters within the failure points using unsupervised learning algorithms (K-means

or DB-Scan), then applies separate NSMC estimations centered at each cluster’s centroid.

By focusing computational resources on regions with high failure concentration, this method

achieves more e”cient exploration of the failure domain, particularly beneficial for problems

with disconnected or irregularly shaped failure regions. The final failure probability is computed

by combining results from these separate estimations, weighted appropriately by their respective

domain volumes.

Building on these insights, we developed two advanced sampling strategies that further

improve e”ciency: Deterministic-Walk-NSMC and Random-Walk-NSMC. The Deterministic-

Walk approach employs a systematic exploration strategy where the origins of the NSMC

sampling shift deterministically only to failure points, thereby concentrating samples in critical

regions while maintaining statistical rigor. In contrast, Random-Walk-NSMC introduces a prob-

abilistic transition mechanism between sampling centers based on the values of the limit state

functions evaluated at each sample point, creating an adaptive Markov process that naturally

gravitates toward regions with higher failure probability density. Our experimental evaluation

demonstrates that these algorithmic innovations lead to significant reductions in required sam-

ple size—often by orders of magnitude compared to conventional Monte Carlo methods—while

maintaining or improving estimation accuracy across a range of high-dimensional reliability

problems.
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1.4 Outline of the Report

The report is structured as follows:

• Chapter 2. Problem Formulation and n-Sphere Monte Carlo Methodology

This chapter establishes the mathematical foundations for reliability analysis and intro-

duces the n-Sphere Monte Carlo (NSMC) methodology as our proposed solution to high-

dimensional integration challenges. We define limit state functions and failure probability

estimation, then explain how NSMC decomposes n-dimensional volumes into integrals of

weighted n-sphere volumes. Building on work by Isaac, A., Jawlekar, A. & Venkatapathi,

M. [17], we demonstrate how this approach e”ciently handles non-convex failure do-

mains and overcomes limitations of traditional Monte Carlo methods in high-dimensional

reliability analysis.

• Chapter 3. Methodology: Novel Algorithms for Reliability Assessment

We present our methodological contributions with three novel algorithms: Cluster-Based

NSMC for handling disconnected failure regions, Deterministic-Walk-NSMC that strate-

gically shifts sampling centers to failure points, and Random-Walk-NSMC with a prob-

abilistic transition mechanism based on limit state function values. For each algorithm,

we provide theoretical foundations and implementation strategies.

• Chapter 4. Experimental Results

In this chapter, we evaluate our proposed algorithms on benchmark reliability problems

with varying dimensions and failure domain geometries. We conduct a comparative anal-

ysis among the di!erent NSMC variants we developed: Naive NSMC, O!set NSMC,

Deterministic Walk NSMC, and Random Walk NSMC. Our experiments quantify the

progressive improvements in accuracy, sample e”ciency, and convergence behavior across

di!erent dimensional ranges. We demonstrate how each algorithmic enhancement ad-

dresses specific limitations of its predecessors, with particular focus on performance in

high-dimensional spaces and the ability to detect rare failure events. The results validate

our theoretical predictions regarding dimensional scaling and computational e”ciency.

• Chapter 5. Conclusion & Future Work

Finally, we summarize our contributions to reliability analysis through NSMC enhance-

ments and discuss their significance. We identify limitations of current approaches and

outline promising research directions, including extensions to higher dimensions, inte-

gration with meta-modeling techniques, and applications to time-dependent reliability

analysis.
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Chapter 2

Preliminaries

2.1 Reliability Analysis Fundamentals

Reliability analysis is fundamentally concerned with estimating the probability of failure in

complex engineering systems [24]. This involves calculating the probability that a system will

fail to perform its intended function under specified conditions over a defined period [8]. The

failure event is typically defined through a limit state function g(x), where x represents the

vector of random variables characterizing the system.

2.1.1 Problem Formulation

2.1.1.1 Response Function

Let us consider a system where failure is characterized by the exceedance of a critical response

variable Y over a threshold ϱ. The response variable is determined by:

Y = g(X) (2.1)

where X = [X1, . . . , Xn] represents the input random variables with joint probability density

function f(x).

2.1.1.2 Failure Probability Definition

The failure probability is formally defined as :

P (F ) = P (Y > ϱ) =

∫

F

f(x)dx (2.2)

6



where F represents the failure region:

F = {x : g(x) > ϱ} (2.3)

2.1.2 Equivalent Formulations

The above formulation can be equivalently expressed in terms of a limit state function [24]. If

we define a limit state function G(x) = ϱ → g(x), then failure occurs when G(x) ↑ 0. This

gives us the traditional reliability analysis formulation:

P (F ) = P (G(x) ↑ 0) =

∫

G(x)↑0

f(x)dx (2.4)

2.1.3 Computation of Failure Probability

The failure probability integral is typically analytically intractable for complex systems with

non-linear response functions and correlated random variables. Therefore, various numerical

methods are employed:

1. Monte Carlo Simulation (MCS) [25, 20]: Generates random samples from f(x) and

estimates the failure probability as:

P (F ) ↓ 1

N

N∑

i=1

I[g(xi) > ϱ] (2.5)

where I[·] is the indicator function and N is the number of samples.

2. FORM/SORM [16, 7]: First/Second Order Reliability Methods approximate the failure

boundary with linear or quadratic surfaces after transforming to standard normal space.

3. Importance Sampling [3]: Improves e”ciency by sampling from a distribution that

focuses on the failure region:

P (F ) =

∫

F

f(x)

h(x)
h(x)dx ↓ 1

N

N∑

i=1

I[g(xi) > ϱ]
f(xi)

h(xi)
(2.6)

where h(x) is an importance sampling density. As reviewed by Tabandeh et al. [30], the

e!ectiveness of importance sampling depends critically on the choice of the importance

sampling density.

7



4. Subset Simulation [4, 5]: Decomposes the failure probability into a product of larger

conditional probabilities that can be estimated more e”ciently using Markov Chain Monte

Carlo sampling techniques:

P (F ) = P (F1)
m→1∏

i=1

P (Fi+1|Fi) (2.7)

where F1 ↔ F2 ↔ . . . ↔ Fm = F is a sequence of nested failure events.

2.2 Monte Carlo Integration Method

The Monte Carlo integration method provides a probabilistic approach to volume estimation

and integration [2, 25]. This section presents the theoretical foundation and implementation

methodology.

2.2.1 Theoretical Framework

Consider a bounded region # ↗ Rd enclosed within a hypercube of side length a. The Monte

Carlo method estimates the volume through the following steps [25, 20]:

1. Domain Bounding: The region # is enclosed within a n-dimensional hypercube [→a, a]n

where:

Vhypercube = (2a)n (2.8)

2. Uniform Sampling: Generate N independent random points {xi}Ni=1 distributed accord-

ing to:

xi ↘ Uniform([→a, a]n) (2.9)

3. Volume Estimation: The volume is estimated through the ratio:

A =
Number of points in #

Total number of points
≃ a

n (2.10)

2.3 The Curse of Dimensionality

The volume ratio between an n-dimensional unit sphere and its circumscribing unit hypercube

provides crucial insight into sampling e”ciency [27]:

Vsphere

Vcube
=

ς
n/2

$(n2 + 1)
(2.11)
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For large dimensions n, this ratio approximates to [27, 11]:

Vsphere

Vcube
↓ 2→n (2.12)

The implications include [27, 22]:

• Exponential growth in required sample points

• Rapidly decreasing sampling e”ciency

• High proportion of wasted samples

• Computational overhead scaling with 2n

2.4 n-Sphere Monte Carlo Integration

2.4.1 Problem Formulation

Consider a function h defined over an arbitrary domain characterized by an extent density

function [17]. The objective is to estimate the integral of h over this domain, with volume

estimation representing the special case where h = 1 throughout the domain.

2.4.2 Spherical Coordinate Integration

In spherical coordinates, with r representing the radial coordinate and dŜ denoting the surface

element of the unit sphere, the integral takes the form [17, 18]:

I =

∮

Sn→1

∫ R(Ŝ)

0

r
n→1

h(rŜ) dr dŜ (2.13)

For any given direction Ŝ, the partial integral i(Ŝ) is defined as:

i(Ŝ) =

∫ R(Ŝ)

0

r
n→1

h(rŜ) dr (2.14)

2.4.3 Integral over Arbitrary Domain

The complete integral over the arbitrary domain can be expressed in terms of the partial integral

i(Ŝ) [17]:

I =

∮

Sn→1

i(Ŝ) dŜ = snE[i(Ŝ)] (2.15)
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For the special case where h(rŜ) = 1, the volume computation becomes [17, 18]:

V =
sn

n

∫ Rmax

Rmin

r
n
fR(r) dr = vnE[Rn] (2.16)

where the volume coe”cients vd are given by [17]:

vn =

(
2, ς,

4

3
ς, ...,

ς
n/2

$(n2 + 1)

)
(2.17)

2.5 Comparison of Computational Methods for High-

Dimensional Integration

Before examining specific algorithmic innovations, it is important to understand the compu-

tational scaling properties of various integration methods when applied to reliability analysis.

The e”ciency of these methods varies significantly with dimensionality, domain characteristics,

and the nature of the integrand function [27, 5, 22].

Traditional analytical methods, while dimension-independent, are severely restricted to sim-

ple domains and integrands with closed-form solutions [1, 19]. Conventional numerical in-

tegration techniques face exponential computational growth with increasing dimensions—the

fundamental manifestation of the curse of dimensionality [27]. Several specialized approaches

have emerged to address these challenges, each with its own computational characteristics and

domain applicability [22, 11, 5].

Table 2.1 summarizes the computational scaling properties of di!erent integration meth-

ods, highlighting their domain restrictions and dimensional scaling behavior. This comparison

reveals why specialized approaches like the n-Sphere Monte Carlo method are particularly

promising for high-dimensional reliability analysis [17, 18].
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Table 2.1: Comparison of Computational Scaling for High-Dimensional Integration Methods

Estimation
Method

Domain/Integral Ap-
plicability

Computational Com-
plexity

Analytical Integra-
tion

Closed-form expression
of integral and standard
domain

Dimension-independent

Numerical Quadra-
ture [19]

Any domain with defined
boundaries

Exponential with dimension

Monte Carlo Inte-
gration [25]

Any domain with proba-
bility density

O(N) computation with er-
ror O(N→1/2)

Markov Chain
Monte Carlo [14]

Smooth convex domains O(n5) mixing time for con-
vex bodies [11]

Quasi-Monte Carlo
[20]

Low e!ective dimension-
ality in cubical domain

O(N) computation with er-
ror O(N→1)

Adaptive n-Sphere
Monte Carlo [17]

Fixed extent density do-
mains

O(n3) with enhanced sam-
pling strategies

Subset Simulation
[5]

Rare event simulation O(n4) with increasing com-
plexity in high dimensions
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Chapter 3

Methodology: Algorithms for

Reliability Analysis

Building upon the foundation established in the introduction chapter, we know high-dimensional

integration or volume estimation remains a central challenge in computational reliability anal-

ysis. The theoretical complexity of volume computation [27, 11] directly impacts failure prob-

ability estimation, particularly when combined with computationally intensive finite element

simulations that scale as O(nω
e ) [23].

While traditional reliability methods have evolved from basic Monte Carlo sampling to more

sophisticated techniques including subset simulation [4] and importance sampling [30], they

continue to face e”ciency challenges in high-dimensional spaces. The recently developed n-

Sphere Monte Carlo (NSMC) method [17] o!ers improved dimensional scaling by decomposing

integration into radial and angular components, providing the foundation for our proposed

algorithms specifically tailored for reliability analysis.

Our work extends these approaches to address the computational challenges of high-dimensional

reliability problems, particularly those involving expensive limit state function evaluations, by

strategically focusing computational resources on critical regions of the probability space.

3.1 Naive NSMC for Reliability Analysis

The naive implementation of NSMC for reliability analysis provides a foundation for estimat-

ing failure probabilities in high-dimensional spaces. It leverages the fundamental principle of

decomposing volume integrals into weighted spherical coordinates to enhance computational

e”ciency over traditional Monte Carlo methods.
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The reliability analysis problem requires estimation of the failure probability Pf :

Pf =

∫

g(x)↑ε

fX(x)dx (3.1)

where g(x) is the limit state function, ϱ is the failure threshold, and fX(x) is the joint probability

density function.

3.1.1 Volume-Based Formulation

The NSMC framework reformulates this as a volume estimation problem by partitioning the

reliability space into failure domains (#f ) and safe (#s) domains:

#f = {x : g(x) ↑ ϱ}, #s = {x : g(x) > ϱ} (3.2)

Using the spherical coordinate framework from Section 2.4, the failure volume becomes:

Vf = vnE[Rn · Ig(RŜ)↑ε] (3.3)

where Ig(RŜ)↑ε is the indicator function for the failure domain.

The failure probability is estimated as the volume ratio:

P̂f =
Vf

Vf + Vs
(3.4)

where both volumes are computed through radial sampling with the indicator function deter-

mining failure versus safe contributions.The fundamental insight is that, rather than directly

sampling the failure probability, the NSMC method estimates the relative volumes of failure

and safe regions, from which the failure probability naturally emerges as the ratio of these

volumes.

3.1.2 Implementation Strategy

The algorithm 1 proceeds as follows :

1. Initialize the sampling center at a predefined origin c0 (initial center point)

2. Sample a unit random direction and extent along that direction

3. Sample a point xi on this extent with uniform distribution

4. Based on the point’s classification:
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• If failure (g(xi) ↑ ϱ): Add sampled extent to failure collection

• If non-failure (g(xi) > ϱ): Add sampled extent to non-failure collection

5. Iteratively update failure and non-failure extent collections until convergence

6. Calculate failure probability as the ratio of average volumes:

P̂f =
V̄f

V̄f + V̄s
(3.5)

where P̂f is the estimated failure probability, V̄f is the average failure volume, V̄s is the

average non-failure volume .

Figure 3.1: Naive-NSMC for reliability analysis

The theoretical foundation of this approach draws on the spherical decomposition of integrals

explored by computational geometers [1, 19], but tailored specifically for reliability analysis

applications.
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3.2 O!set NSMC with Clustering

The O!set NSMC with Clustering algorithm enhances the naive approach by adaptively identi-

fying and leveraging the geometric structure of the failure domain. By clustering failure points

and performing targeted sampling within each cluster, this method significantly improves e”-

ciency for problems with complex or disconnected failure regions. The detailed implementation

of this algorithm is presented in Algorithm 2.

The O!set NSMC with Clustering algorithm introduces two key approaches:

1. Clustering based O!sets: Instead of sampling the entire domain from a single origin,

we sample clusters centered at strategic o!set points, focusing sampling e!orts where

failure regions are more likely to exist.

2. Weighted clustering: Each cluster’s centroid is calculated using weights based on the

limit state function g(x) values for more accurate centroid estimation, positioning cen-

troids closer to failure boundaries for more e”cient sampling.

3.2.1 Implementation Strategy

The O!set-NSMC algorithm proceeds through the following steps, as detailed in Algorithm 2:

1. Perform an initial sampling phase to identify potential failure points using naive NSMC

2. Apply clustering algorithms (here K-means) to group failure point

3. For each identified cluster:

• Set the cluster centroid as the new sampling origin

• Perform NSMC by sampling the extents from this origin as detailed in 6

• Compute the local failure probability estimate

4. Combine results from all clusters, weighted by their relative volumes as detailed in 3, to

obtain the global failure probability
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Figure 3.2: Visualization of the Cluster-Based NSMC algorithm. Left: Initial configuration
with uniform cluster distribution. Right: Restructured clusters with concentrated sampling in
the identified failure region, demonstrating the algorithm’s adaptive clustering strategy.

Figure 3.2 shows how the Cluster-Based NSMC algorithm works. At first, clusters are spread

evenly around a central point. When the algorithm finds failure regions, it moves clusters to

focus sampling around these areas, making exploration of complex spaces more e”cient.

The weighted centroid method improves sampling by using limit state function values within

each cluster. For each cluster i, the centroid location is calculated as:

centroidi =

∑Ni

k=1 wk,i · xk∑Ni

k=1 wk,i

(3.6)

where wk,i = h(g(xk)) gives more weight to points closer to the failure boundary. Specifically,

we use a weighting function that increases as |g(xk) → ϱ| decreases, giving maximum weight

to points precisely at the failure boundary (g(x) = ϱ). This ensures that the cluster centroids

naturally migrate toward failure region boundaries, improving the algorithm’s e”ciency in

locating and characterizing these critical regions.

This weighted method is better than simple averaging because it places cluster centers

in better positions for sampling. Computing resources are shared equally among clusters.

This approach helps the algorithm focus on the most important parts of the parameter space,

especially the boundaries between failure and safe regions.
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3.3 Deterministic-Walk NSMC

The Deterministic-Walk NSMC algorithm, formalized in Algorithm 4, introduces a deterministic

exploration strategy that concentrates samples in the failure region. The sampling center is

shifted based on the classification of sampled points:

1. If a point is classified as failure, the sampling center shifts to this point

2. If a point is classified as non-failure, the sampling center remains unchanged

This creates a deterministic walk that gravitates toward and explores the failure region.

Figure 3.3: Visualization of the Deterministic-Walk-NSMC

3.3.1 Implementation Strategy

The algorithm proceeds as follows:

1. Initialize the sampling center at a predefined origin c0 (initial center point)

2. Sample a unit random direction and extent along that direction

3. Sample a point xi on this extent with uniform distribution and evaluate the limit state

function
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4. Based on the point’s classification:

• If failure: Add to failure extent collection and use as new center

• If non-failure: Add to non-failure collection and retain the current center

5. Iteratively update failure and non-failure extent collections

6. Compute the failure probability estimates the ratio of average volumes

18



3.4 Random-Walk NSMC

The Random-Walk NSMC algorithm, presented in Algorithm 5, incorporates a random walk

in the domain based on the values of a limit state function that is assumed to be smoothly

varying. This creates an adaptive Markov process that naturally gravitates toward regions with

higher failure probability density.

3.4.1 Algorithm Formulation

The probability of shifting to a new sampling point depends on the comparison between the

limit state function values at the current and potential new points. Let g(xi) represent a smooth

limit state function value at the current center and g(xj) the value at a newly sampled point.

The probability of shifting the sampling centre is governed by the following rules:

1. If g(xj) < ϱ: Always move to the new point xj (automatically accept points in the failure

region)

2. Else if g(xj) > g(xi): Always stay at the current point xi (reject moves to points with

higher limit state function values)

3. Else if random(0, 1) >
(
1→ g(xj)

g(xi)

)
: Move to the new point xj (probabilistic acceptance)

4. Else: Stay at the current point xi (probabilistic rejection)

This random walk ensures that the chain preferentially explores regions where g(x) < ϱ (the

failure region) while still allowing su”cient exploration of the state space. The conditional ac-

ceptance probability in rule 3 decreases as g(xj) approaches g(xi), ensuring a smooth transition

behavior near the failure boundary.

3.4.2 Implementation Strategy

The algorithm implementation proceeds as follows:

1. Initialize the sampling center at a predefined origin c0 (initial center point)

2. Sample a unit random direction and extent along that direction

3. Sample a point xi on this extent with uniform distribution and evaluate the limit state

function

4. Estimate the probability of shifting the sampling center to the next potential point using

random walk rules formulated in 3.4.1
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5. Classify and store the sampled extents based on their limit state function value

6. Iteratively update failure and non-failure extent collections until su”cient samples are

collected

7. Compute the failure probability estimates the ratio of average volumes

Figure 3.4: Visualization of the Random-Walk-NSMC

The probabilistic transition mechanism based on limit state function values creates an

adaptive sampling strategy that outperforms both the naive NSMC and deterministic-walk

approaches for many problem types. For the sampling of extent from an o!set center, we

developed an e”cient algorithm detailed in Algorithm 6.
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Chapter 4

Experimental Results

In this section, we present a comprehensive evaluation of the proposed n-Sphere Monte Carlo

(NSMC) algorithms for reliability estimation. First, we describe the benchmark reliability toy

problems used in our experiments. Then, we analyze the performance of each variant of our

algorithm individually. Finally, we provide a comparative analysis with summarized tables and

graphs highlighting key performance of algorithms

4.1 Benchmark Problems

To evaluate our algorithms, we utilized a set of benchmark problems that allow us to assess algo-

rithm performance under di!erent conditions systematically. Our set of toy problems consisted

of:

1. Spherical Failure Regions: We implemented spherical failure domains with various

radii and origins to test the algorithms’ ability to identify and estimate the volumes of

the failure regions. These problems provide a controlled setting where analytical solutions

are available for validation.

2. Single and Multiple Failure Regions: To evaluate the algorithms’ performance with

varying failure domains, we tested both:

• Single failure region cases, with a spherical failure domain centered at various o!set

positions

• Multiple failure region cases, with two or more non-overlapping spherical failure

domains positioned at di!erent locations in the parameter space
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3. Exponential Limit State Function: We employed the exponential function to repre-

sent a smoothly varying limit state function:

g(x) = 2(1→ 2→↓x→xc↓/r) (4.1)

where xc is the center of the failure region and r is the radius. This function provides a

smooth transition across the failure boundary, with the key properties:

• g(x) = 0 at the center of the failure region

• g(x) = 1 exactly at the failure boundary (at distance r from the center)

• g(x) > 1 in the safe region (outside the failure boundary)

We varied parameters of this function to create di!erent test cases, including adjusting

the radius r and the o!set position xc to evaluate algorithm performance under varying

conditions.

For the case of two failure regions, the limit state function becomes:

g(x) = 2

(
1→ 2→

↑x→xc1↑
r1 → 2→

↑x→xc2↑
r2

)
(4.2)

where xc1 and xc2 are the centers of the two failure regions, and r1, r2 are the corresponding

radii.

Figure 4.1: Varying Limit State Function Visualization
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For each problem type, we systematically varied the dimension from n = 2 to n = 20 to

assess dimensional scaling e!ects, with particular focus on performance in the critical range of

n = 10 to n = 20 where traditional methods typically begin to deteriorate. All experiments

were repeated multiple times to ensure statistical significance of the results. The use of these

benchmark problems allowed us to isolate and evaluate specific aspects of our algorithms,

including accuracy in failure probability estimation, computational e”ciency, and robustness

to di!erent failure region configurations.

4.2 Naive n-Sphere Monte Carlo

Our first proposed algorithm is the Naive n-Sphere Monte Carlo method, which leverages the

geometric properties of high-dimensional spaces. We conducted experiments with both single

and multiple failure regions to evaluate the algorithm’s performance across di!erent failure

domain configurations.

Figure 4.2: Failure rate vs. dimension for N = 104 samples for Naive n-Sphere Monte Carlo
for single and multiple failure regions.

Figure 4.2 validates our Basic n-Sphere Monte Carlo implementation by showing that es-

timated failure rates match theoretical predictions and remain consistent across single and
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multiple failure domains. The algorithm correctly follows the expected exponential decline in

failure rates with increasing dimensions. However, beyond dimension 11, estimates diverge from

theoretical values due to insu”cient samples (104) for capturing rare events that reach 10→12

probability at dimension 20.

Figure 4.3: Convergence of Naive n-Sphere Monte Carlo for single failure region (left) and
multiple failure regions (right) at o!set = 0.3 with varying sample sizes.

Figure 4.3 demonstrates convergence behavior as sample sizes increase from N = 102 to

N = 105. Both single and multiple failure region scenarios show similar convergence patterns,

confirming the algorithm’s robustness to failure region geometry. The diagonal alignment indi-

cates good correlation between estimated and actual failure rates across probabilities ranging

from 0.01% to 10%.

These results confirm that our implementation correctly captures high-dimensional relia-

bility properties regardless of failure domain complexity. However, performance degrades be-

yond certain dimensional thresholds with fixed sample sizes, motivating our Enhanced n-Sphere

Monte Carlo algorithms with clustering.
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4.3 O!set n-Sphere Monte Carlo with Clustering

Figure 4.4: shows the performance of the O!set n-Sphere Monte Carlo algorithm compared
to theoretical failure rates and the naive n-Sphere Monte Carlo method for both single and
multiple failure regions.

For dimensions up to 10, the O!set n-Sphere Monte Carlo algorithm follows the theoretical

failure rate closely and performs much better than the Naive n-Sphere Monte Carlo approach.

However, the algorithm fails to extend our ability to estimate failure probabilities in higher

dimensions at the given computational cost, facing the fundamental limitation of insu”cient

samples to capture extremely rare events in high-dimensional spaces. The results are consistent

for both single and multiple failure regions, demonstrating the algorithm’s robustness across

di!erent failure region types.

4.3.1 Variance Reduction through Weighted Clustering

A key advantage of the O!set Cluster n-Sphere Monte Carlo approach is the reduction in

estimation variance through weighted clustering.

Table 4.1: Variance comparison between naive and weighted clustering for centroid estimation
(n=10)

Method Average Variance Reduction

Naive Clustering 0.02378 –
Weighted Clustering 0.01780 25.15%

The results in Table 4.1 demonstrate that weighted clustering significantly reduces the
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variance in centroid estimation by approximately 25% for problems of dimension n = 10. This

reduction in estimation variance translates directly to more stable and accurate identification of

failure region boundaries, which is critical for reliable probability estimates in high-dimensional

spaces. The improvement confirms that incorporating g(x) values in the weighting function for

centroid calculation leads to more consistent cluster positioning around critical regions.

4.4 Deterministic Walk n-Sphere Monte Carlo

This approach incorporates a deterministic random walk in the n-Sphere Monte Carlo, resulting

in improved accuracy with the same number of samples as compared to naive NSMC.

Figure 4.5: Failure rate vs. dimension for N = 105 samples for DW-NSMC failure rate (red).

Figure 4.5 presents a comparative analysis of the Deterministic Walk n-Sphere Monte Carlo

algorithm against theoretical failure rates and our previous n-Sphere Monte Carlo variants.

For dimensions between 2 and 10, the Deterministic Walk n-Sphere Monte Carlo algorithm

consistently tracks closer to the theoretical failure rate than the Naive n-Sphere Monte Carlo.

This demonstrates that the deterministic walk approach provides improved accuracy compared

to the naive implementation in this dimensional range.

However, like the other variants, the Deterministic Walk n-Sphere Monte Carlo fails to

estimate failure probabilities in high dimensions for the given number of samples. While the

O!set and deterministic walk approach o!ers improved accuracy over the naive approach, it
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does not extend our ability to handle high-dimensional reliability problems e!ectively with our

computational constraints. This limitation motivates the development of our next algorithm to

handle high-dimensional reliability problems e!ectively.

4.5 Random Walk n-Sphere Monte Carlo with Smoothly

Varying g(x)

Figure 4.6: Failure rate vs. dimension for N = 105 samples for RW-NSMC failure rate with
varying g(x) (green).

The Random Walk n-Sphere Monte Carlo algorithm demonstrates similar accuracy as the De-

terministic Walk n-Sphere Monte Carlo in moderate dimensions while achieving a significant

breakthrough in high-dimensional spaces. At dimension 20, where the theoretical failure rate

approaches 2.35 ≃ 10→12, this algorithm maintains accuracy within the threshold while other

methods completely fail due to insu”cient samples.

Traditional approaches would require billions of samples to detect such rare events, making

them computationally infeasible. This method reaches the same accuracy with much fewer

samples, making high-dimensional reliability analysis more practical and cost-e!ective.
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4.6 Comparative Analysis of All Algorithms

To provide a comprehensive overview of our algorithm development, we conducted a detailed

comparison of all n-Sphere Monte Carlo variants across di!erent dimensions at N = 105. This

analysis quantifies the improvements achieved through our progressive enhancements to the

basic algorithm.

Table 4.2 presents a quantitative comparison of the probabilities of failure estimated across

di!erent methods and dimensions. The values demonstrate how algorithmic enhancements

improve the ability to detect rare events in higher dimensions.

Table 4.2: Failure probability estimates across NSMC variants

Dimension Theoretical Naive NSMC O!set-NSMC DWNSMC RWNSMC

2 19.63 37.78 19.80 27.45 27.87
3 6.54 24.54 6.57 10.25 10.43
5 0.51 11.87 0.51 0.92 0.95
10 2.43≃ 10→4 2.35 2.33≃ 10→4 7.43≃ 10→4 5.15≃ 10→4

15 3.55≃ 10→8 – – – 11.3≃ 10→8

20 2.35≃ 10→12 – – – 3.28≃ 10→12

1. Naive n-Sphere MC: Performance rapidly deteriorates with increasing dimensions,

showing exponential error growth at dimension 8 and complete failure beyond moderate

dimensions due to insu”cient sampling of rare events.

2. O!set n-Sphere MC with clustering: Achieves exceptional accuracy in low dimen-

sions with less than 1% error in dimensions 2-5, maintaining e!ectiveness up to dimension

10 through targeted sampling near failure boundaries.

3. Deterministic Walk n-Sphere MC: Employs strategic sampling to improve perfor-

mance in intermediate dimensions compared to the naive approach, though still limited

by fundamental sampling constraints in high-dimensional spaces.

4. Random Walk n-Sphere MC: Represents a breakthrough in high-dimensional relia-

bility analysis, extending reliable estimation capabilities to dimension 20 and enabling

accurate detection of ultra-rare events with significantly improved computational e”-

ciency.

28



Figure 4.7: presents the failure rate estimates at N = 105 samples for all methods compared to
theoretical values across dimensions 2-20.

This comparative analysis demonstrates the advancements achieved through the proposed

algorithms, with each enhancement addressing specific limitations of previous approaches and

extending the practical dimensional limits of reliability analysis.
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4.6.1 CV Convergence Analysis

Figure 4.8 demonstrates the dual-stage stopping criterion employed in the reliability estimation

algorithm. Figure 4.8(a) tracks the evolution of failure probability estimates relative to the

analytical solution, while Figure 4.8(b) monitors the coe”cient of variation (CV) computed

over a sliding window of 100 samples.

(a) Relative Error convergence (b) CV convergence

Figure 4.8: Dual-stage convergence analysis for reliability estimation

We conducted this analysis for n = 20 and observed the following convergence pattern.

Stage 1 (relative error within 5% threshold) was achieved at N = 336 samples, while Stage

2 (stable CV below 5% threshold) required an additional 145 samples, reaching convergence

at N = 481 samples. This sequential convergence behavior is typical for rare event problems,

where statistical stability consistently requires more samples than initial accuracy, ensuring

reliable termination before algorithm completion.

This sequential approach—first ensuring estimation accuracy, then confirming statistical

stability—provides a robust termination mechanism for rare event simulations. The dual-stage

method prevents premature termination by monitoring both estimation accuracy and result

consistency, ensuring adequate failure event observation while preventing false convergence due

to random variations in small sample sizes.
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Chapter 5

Conclusion and Future Work

5.1 Research Highlights

This research addressed fundamental challenges in high-dimensional reliability analysis by ap-

plying n-Sphere Monte Carlo algorithm to realistic toy examples. Our experimental validation

demonstrates significant advantages :

1. Superior Dimensional Scaling and Sample E”ciency: The proposed algorithms

demonstrate substantially improved computational performance as problem dimensions

increase, even for estimation of low failure probabilities, representing a significant im-

provement over existing methods. This translates to requiring up to 10,000 times fewer

samples than conventional approaches while maintaining comparable accuracy in high

dimensions. For example, methods accurately estimate failure probabilities as low as

10→14 in dimensions up to 20, where traditional methods completely fail. The Random

Walk NSMC method maintained excellent tracking of the theoretical failure rates across

the entire dimensional range, potentially enabling reliability verification for safety-critical

aerospace, nuclear, and medical systems.

2. Robust Geometric Adaptability: The algorithms demonstrated consistent perfor-

mance across diverse failure region configurations, including single and multiple failure

regions, spherical and non-spherical domains, and varying geometric parameters. This

addresses the reality of engineering systems with multiple simultaneous failure mecha-

nisms.

31



5.2 Future Work

Application to complex engineering systems across various domains, including structural, me-

chanical, and safety-critical systems, would demonstrate practical value through comprehensive

case studies. This would involve testing the methods on actual engineering problems and their

limit state functions with corresponding geometric constraints, and input parameters such as

material properties and loading conditions to validate the e!ectiveness of the proposed ap-

proach.

While RWNSMC demonstrates promising scalability, a formal proof of convergence to the

true failure probability is currently unavailable. Future work may involve incorporating addi-

tional normalization or sample reweighting techniques to ensure theoretical convergence guar-

antees.
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Appendix: Algorithms

Algorithm 1 n-Sphere Monte Carlo for Reliability Analysis using Volumes

Require: N - Number of samples; g(x) - Limit state function; n - Dimension; Rmax - Maximum
sampling radius

Ensure: Failure probability estimate pf

1: Vf ⇐ 0 φ Initialize failure volume
2: Vt ⇐ 0 φ Initialize total volume
3: for i = 1 to N do
4: ŝi ⇐ random unit direction vector in Rn

5: ri ⇐ random extent in [0, Rmax] φ Sample extent
6: xi ⇐ riŝi φ Convert to Cartesian coordinates
7: gi ⇐ g(xi) φ Evaluate limit state function
8: if gi ↑ 1 then φ Check failure condition
9: Vf ⇐ Vf + vn(ri)n φ Update failure volume
10: end if
11: Vt ⇐ Vt + vn(ri)n φ Update total volume
12: end for
13: pf ⇐ Vf

Vtotal
φ Compute Failure probability

14: return pf
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Algorithm 2 O!set n-Sphere Monte Carlo with K-means Clustering

Require: N - Number of samples; g(x) - Limit state function; n - Dimension; k - Number of
clusters; Rmax - Maximum sampling radius

Ensure: Failure probability estimate pf

1: Xf ⇐ ⇒ φ Initialize failure points set
2: Vf ⇐ 0 φ Initialize failure volume
3: Vt ⇐ 0 φ Initialize total volume
4: for i = 1 to Ninitial do
5: ŝi ⇐ random unit direction vector in Rn

6: ri ⇐ random extent in [0, Rmax] φ Sample extent
7: xi ⇐ riŝi φ Convert to Cartesian coordinates
8: gi ⇐ g(xi) φ Evaluate limit state function
9: if gi ↑ 1 then φ Classify failure points
10: Xf ⇐ Xf ⇑ {xi}
11: end if
12: end for
13: {c1, ..., ck} ⇐ KMeans(Xf , k) φ K-means clustering
14: for each centroid cj do
15: Vf,j ⇐ NSMC(Nj, g, cj) φ Estimate failure volume at each centroid
16: end for
17: Vf ⇐

∑k
j=1 Vf,j φ Sum all failure volumes

18: Vtotal ⇐ Volume of sampling domain φ Total domain volume
19: pf ⇐ Vf

Vtotal
φ Compute Failure probability

20: return pf
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Algorithm 3 n-Sphere Monte Carlo with g(x)-Weighted Centroid Estimation

Require: N - Number of samples; g(x) - Limit state function; n - Dimension; k - Number of
clusters; Rmax - Maximum sampling radius

Ensure: Failure probability estimate pf

1: X ⇐ ⇒ φ Initialize sample points set
2: G ⇐ ⇒ φ Initialize g-values set
3: for i = 1 to Ninitial do
4: ŝi ⇐ random unit direction vector in Rn

5: ri ⇐ random extent in [0, Rmax] φ Sample extent
6: xi ⇐ riŝi φ Convert to Cartesian coordinates
7: gi ⇐ g(xi) φ Evaluate limit state function
8: X ⇐ X ⇑ {xi}
9: G ⇐ G ⇑ {gi}
10: end for
11: Xf ⇐ {xi ⇓ X | gi ↑ 1} φ Identify failure points
12: if |Xf | < k then
13: k ⇐ |Xf | φ Adjust cluster count if needed
14: end if
15: Partition Xf into k initial clusters {C1, . . . , Ck}
16: for iter = 1 to max iterations do
17: for j = 1 to k do
18: Wj ⇐ ⇒ φ Weights for points in cluster j
19: for each xi ⇓ Cj with corresponding gi do
20: wi ⇐ exp(→|gi → 1|) φ Weight based on proximity to boundary
21: Wj ⇐ Wj ⇑ {wi}
22: end for

23: cj ⇐
∑

i↓Cj
wi·xi

∑
i↓Cj

wi
φ Weighted centroid

24: end for
25: Reassign points to closest centroids to form new clusters
26: end for
27: for each centroid cj do
28: Vf,j ⇐ NSMC(Nj, g, cj) φ Estimate failure volume at each centroid
29: end for
30: Vf ⇐

∑k
j=1 Vf,j φ Sum all failure volumes

31: Vtotal ⇐ Volume of sampling domain φ Total domain volume
32: pf ⇐ Vf

Vtotal
φ Compute Failure probability

33: return pf
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Algorithm 4 Deterministic-Walk n-Sphere Monte Carlo

Require: N - Number of samples; g(x) - Limit state function; n - Dimension; x0 - Initial
center

Ensure: Failure probability estimate pf

1: Vf ⇐ 0 φ Initialize failure volume
2: Vt ⇐ 0 φ Initialize total volume
3: c ⇐ x0 φ Initialize current center
4: F ⇐ ⇒ φ Failure extents collection
5: S ⇐ ⇒ φ Non-failure extents collection
6: for i = 1 to N do
7: ŝi ⇐ random unit direction vector in Rn

8: ri ⇐ random extent in [0, Rmax]
9: xi ⇐ c+ riŝi φ Sample point
10: gi ⇐ g(xi) φ Evaluate limit state function
11: if gi ↑ 1 then φ Classified as failure (g(x) ↑ 1)
12: F ⇐ F ⇑ {ri} φ Add to failure extents
13: c ⇐ xi φ Update center to current point
14: else φ Classified as non-failure (g(x) > 1)
15: S ⇐ S ⇑ {ri} φ Add to non-failure extents
16: c ⇐ c φ Retain current center
17: end if
18: Vf ⇐ Vf + vn(ri)n · 1gi↑1 φ Update failure volume
19: Vt ⇐ Vt + vn(ri)n φ Update total volume
20: end for
21: pf ⇐ Vf/Vt φ Compute failure probability
22: return pf
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Algorithm 5 Random-Walk n-Sphere Monte Carlo

Require: N - Number of samples; g(x) - Limit state function; n - Dimension; x0 - Initial
center

Ensure: Failure probability estimate pf

1: Vf ⇐ 0 φ Initialize failure volume
2: Vt ⇐ 0 φ Initialize total volume
3: c ⇐ x0 φ Initialize current center
4: gc ⇐ g(c) φ Evaluate limit state function at initial center
5: F ⇐ ⇒ φ Failure extents collection
6: S ⇐ ⇒ φ Non-failure extents collection
7: for i = 1 to N do
8: ŝi ⇐ random unit direction vector in Rn

9: ri ⇐ random extent in [0, Rmax]
10: xi ⇐ c+ riŝi φ Sample point
11: gi ⇐ g(xi) φ Evaluate limit state function
12: if gi ↑ 1 then φ Rule 1: Point in failure region
13: c ⇐ xi; gc ⇐ gi φ Always move to failure points
14: F ⇐ F ⇑ {ri} φ Add to failure extents
15: Vf ⇐ Vf + vnr

n
i φ Update failure volume

16: else if gi ↑ gc then φ Rule 2 & 3: Probabilistic decision for lower g(x)
17: pj ⇐ 1→ gi

gc
φ Calculate transition probability

18: uj ⇐ random number from [0, 1]
19: if uj < pj then φ Probabilistic acceptance
20: c ⇐ xi; gc ⇐ gi φ Move center
21: end if
22: S ⇐ S ⇑ {ri} φ Add to non-failure extents
23: else φ Rule 4: Higher g(x) value than current
24: S ⇐ S ⇑ {ri} φ Add to non-failure extents, no move
25: end if
26: Vt ⇐ Vt + vnr

n
i φ Update total volume

27: end for
28: pf ⇐ Vf/Vt φ Compute failure probability
29: return pf
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Algorithm 6 Extent Estimation from O!set Centre

Require: x - Starting point in Rn; ŝ - Unit direction vector in Rn; L - Cuboid edge lengths
Ensure: Sampled point xs and extent distance rs

1: if L is scalar then
2: L ⇐ L · 1n φ Convert scalar to vector
3: end if
4: h ⇐ L/2 φ Calculate half-lengths of cuboid edges
5: D ⇐ ⇒ φ Initialize collection of potential intersection distances
6: for i = 1 to n do φ For each dimension
7: if ŝ[i] = 0 then
8: continue φ Skip if ray is parallel to this dimension’s faces
9: end if
10: dneg ⇐ →h[i]→x[i]

ŝ[i] φ Distance to negative boundary

11: dpos ⇐ h[i]→x[i]
ŝ[i] φ Distance to positive boundary

12: if ŝ[i] > 0 then
13: D ⇐ D ⇑ {dpos} φ Add distance to positive face
14: else
15: D ⇐ D ⇑ {dneg} φ Add distance to negative face
16: end if
17: end for
18: rmax ⇐ min{d ⇓ D : d > 0} φ Find first boundary intersection distance
19: if D = ⇒ or ⊋d ⇓ D : d > 0 then
20: rmax ⇐ ⇔ φ Default if no boundary intersection
21: end if
22: rs ⇐ random number from [0, rmax] φ Sample random extent before boundary
23: xs ⇐ x+ rs · ŝ φ sampled point
24: return xs, rs
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Algorithm 7 Two-Stage CV-Based Monte Carlo Convergence

Require: %N - Sample increment per iteration; ↼rel - Relative error threshold (Stage 1); ↼CV

- CV threshold (Stage 2); Nmax - Maximum samples; w - Window size
Ensure: Total samples Nconv and converged probability p̂f,conv

1: Compute theoretical failure probability pth

2: N ⇐ 0 φ Initialize total sample count
3: W ⇐ ⇒ φ Initialize sliding window for probability estimates
4: F ⇐ ⇒ φ Initialize cumulative failure extents
5: S ⇐ ⇒ φ Initialize cumulative non-failure extents
6: stage1 ⇐ false φ Flag for Stage 1 completion
7: converged ⇐ false φ Initialize convergence flag
8: while N < Nmax and not converged do
9: N ⇐ N +%N φ Increment total sample count
10: Generate %N new samples; update F and S

11: p̂f ⇐ calculate failure probability(F, S, N)
12: if not stage1 then
13: erel ⇐ |p̂f → pth|/pth φ Calculate relative error
14: if erel ↑ ↼rel then
15: stage1 ⇐ true φ Stage 1 achieved
16: Record N1 ⇐ N and p̂f,1 ⇐ p̂f

17: end if
18: else
19: W ⇐ W ⇑ {p̂f} φ Add new estimate to window
20: if |W| > w then
21: Remove oldest estimate from W φ Maintain window size w

22: end if
23: if |W| = w then
24: p̄f ⇐ 1

w

∑
p↔W p φ Window mean

25: s ⇐
√

1
w→1

∑
p↔W(p→ p̄f )2 φ Window standard deviation

26: if p̄f ↖= 0 then
27: CV ⇐ s/p̄f φ Calculate coe”cient of variation
28: else
29: CV ⇐ ⇔ φ Handle zero-mean case
30: end if
31: erel ⇐ |p̂f → pth|/pth φ Calculate relative error
32: if CV ↑ ↼CV and erel ↑ ↼rel then
33: converged ⇐ true φ Both CV and relative error thresholds met
34: Nconv ⇐ N φ Store convergence sample count
35: p̂f,conv ⇐ p̂f φ Store converged probability
36: end if
37: end if
38: end if
39: end while
40: return Nconv, p̂f,conv
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