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Abstract

Gene expression analysis plays a crucial role in understanding cellular functions and regulatory

mechanisms. However, the high-dimensional nature of gene expression data, coupled with

noise and complex temporal dynamics, may pose significant challenges. Traditional distance

metrics such as Euclidean distance, or correlation metrics suited for linear relationships, often

fail to capture biologically meaningful relationships where gene expression data exhibit high

curvature. We propose methods to measure distances between noisy data points (or states) in

high dimensions where the expected temporal evolution of the data is reasonably known. This

approach uses a parametric curve given by a large set of polynomials representing the varying

levels of expression of each gene with time. The distances both along and orthogonal to this

highly curved expected path of evolution are shown to be applicable to gene expression data

where the direct Euclidean distance to the known states is largely meaningless for inferences.

We used the well established transcriptome of Drosophila melanogaster to study the utility of

the proposed methods. Our experiments in inverting the time stamps of a given expression

show reasonable resolution in the inference. We also show that additional scaling of distances

using the polynomial fitting errors improves the (validation) performance within datasets, but

it degrades the inference across datasets with varying measurement techniques. Note that the

fitting errors largely capture measurement uncertainties in a dataset and cannot be translated to

di!erent measurement techniques for improvements in inference. Additionally, we have studied

the use of the dynamics of the evolution i.e. the first and second derivatives of the trajectory

to improve the robustness of the inferences, and this is a direction of future work.
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Acronyms

Table 1: Key Acronyms used in the Report

Acronym Expansion
CUR Column-U-Row decomposition
GBA Guilt-by-Association
GEO Gene Expression Omnibus
ICA Independent Component Analysis
modENCODE Model Organism Encyclopedia of DNA Elements
NCBI National Center for Biotechnology Information
PCA Principal Component Analysis
RNA-seq RNA sequencing
MSE Mean Squared Error
RMSE Root Mean Square Error
RPKM Reads Per Kilobase of transcript per Million mapped reads
scRNA-seq Single-cell RNA sequencing
SVD Singular Value Decomposition
TDA Topological Data Analysis
TI Trajectory Inference
TPM Transcripts Per Million
WGCNA Weighted Gene Co-expression Network Analysis
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Chapter 1

Introduction

Understanding gene expression dynamics is fundamental to uncovering the regulatory mech-

anisms driving biological processes. High-throughput technologies like microarrays and RNA

sequencing have generated large-scale gene expression datasets, enabling unprecedented biolog-

ical insights. However, the high-dimensionality and noise inherent in such data pose significant

computational challenges, particularly in extracting biologically meaningful patterns from com-

plex, nonlinear interactions [4].

Traditional approaches such as clustering, network-based models, and dimensionality reduc-

tion have been widely used to identify co-expression patterns. While useful, these methods

often assume linear relationships or predefined similarity metrics, limiting their ability to cap-

ture the intricate dynamics of gene regulation [1].

With the rise of single-cell transcriptomics, trajectory inference (TI) methods have emerged

as powerful tools to model dynamic biological processes such as cell di!erentiation. These

methods infer pseudotemporal orderings from static gene expression snapshots, reconstructing

cell-state transitions without requiring explicit time-series data [5]. By doing so, TI generalizes

clustering into topological maps that capture developmental continua.

To better handle the structural complexity in gene expression data, recent work has also ex-

plored topological and geometric frameworks. Topological Data Analysis (TDA), especially

persistent homology, allows the detection of subtle global patterns and shape-based features

that are often lost in traditional analyses [3]. Complementing this, dynamic modeling ap-

proaches—like di!erential equations—have shown success in describing gene trajectories over

developmental time [6].
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Time-series transcriptomic studies have further emphasized the importance of capturing co-

herent temporal patterns across genes. These datasets o!er insights into dynamic regulatory

programs but introduce challenges in clustering and alignment due to noise, delays, and variable

timing across genes [7]. This complexity has motivated the need for frameworks that incorpo-

rate the temporal structure of expression data more explicitly.

Finally, curve-fitting methods based on linear and nonlinear regression are frequently employed

in biological systems to capture trends from noisy data [8]. Collectively, these approaches signal

a shift toward mathematically grounded frameworks that can model biological complexity more

faithfully.

1.1 Motivation

The rapid advancements in high-throughput sequencing, microarrays, and mass spectrometry

have ushered in the era of ’omics’ sciences, enabling large-scale and parallel measurements

of biological features. These technologies provide unprecedented opportunities to explore cel-

lular functions and underlying regulatory networks [9]. However, the analysis of such high-

dimensional data presents a multitude of computational challenges, necessitating the develop-

ment of novel and robust analytical techniques [10].

Gene expression data exemplify the ”four Vs” of big data:

1. Volume: Large-scale generation of gene expression data across time points and condi-

tions.

2. Velocity: Increasing demands for real-time or rapid data processing.

3. Variability: Heterogeneous origins of biological data, including di!erent tissues, cell

types, or experimental conditions.

4. Veracity: Issues with noise, missing values, and biological variability that a!ect data

reliability [4].

Specifically, gene expression analysis faces the following computational hurdles:

• Curse of Dimensionality: Thousands of genes measured across a relatively small num-

ber of samples make pattern recognition di”cult with conventional metrics [10].

• Non-linearity & Complexity: Gene regulation involves intricate, non-linear interac-

tions across multiple levels of biological hierarchy [4].
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• Causality vs. Correlation: Observed correlations between gene expressions may not

represent causal relationships [10].

• Noise: Experimental noise and biological variability can obscure meaningful signals [4].

• Scalability: Existing models often fail to scale e”ciently with increasing dimensional-

ity [9].

Furthermore, time-series gene expression data adds complexity by embedding temporal depen-

dencies that many traditional methods overlook. This motivates the development of mathemat-

ical frameworks that can preserve temporal coherence while modeling the underlying biological

structure [7].

Given the complexity and scale of modern biological data, there is a critical need for mathemat-

ical frameworks that can e!ectively handle high-dimensionality while preserving biologically

meaningful insights. Traditional approaches—such as vector algebra, clustering, and dimen-

sionality reduction—often oversimplify the nonlinear and intricate nature of gene regulation.

Motivated by these challenges, our work introduces a novel mathematical framework that inte-

grates topological and geometric principles to better represent the structure of gene expression

data, with an ongoing e!ort to establish a principled theoretical basis for its biological relevance.

1.2 Related Work

Several strategies have been proposed for the analysis of high-dimensional gene expression data.

Classical techniques like vector algebra, k-means and hierarchical clustering group genes [1]

with similar profiles, while dimensionality reduction methods such as SVD, PCA [10, 11], and

ICA [12] help visualize complex data. Co-expression networks constructed with graph the-

ory [13], such as WGCNA [14], provide modular insights but often lack temporal awareness.

To address this, trajectory inference (TI) methods have gained traction, particularly with

the advent of single-cell technologies. These methods infer developmental or di!erentiation

pathways by estimating pseudotime from static gene expression snapshots. Tools like Mono-

cle, Slingshot, and Palantir reconstruct cell-state transitions using clustering, graph traversal,

and probabilistic modeling [5], enabling high-resolution insights into developmental trajectories.

Time-series expression studies further demand methods that explicitly model regulatory dy-

namics over time. Traditional clustering approaches typically ignore temporal information,
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leading to biologically implausible groupings. Approaches such as point-wise distance metrics,

model-based clustering, and symbolic transformation methods have been proposed to address

this, but they face challenges in robustness and integration of biological priors [7].

Topological approaches, particularly persistent homology, have been applied to gene expres-

sion data to uncover shape-level features—such as loops and voids—that relate to biological

transitions [3]. In parallel, dynamic modeling using di!erential equations has been used to

track gene expression through developmental stages, such as in Drosophila melanogaster [6].

These models provide biologically grounded, interpretable representations of gene regulation

dynamics.

Despite these advances, most existing methods either lack a principled geometric interpre-

tation or fail to incorporate domain-specific developmental priors. Our work builds upon these

foundations by integrating topological, geometric, and trajectory-based reasoning into a unified

mathematical framework.

1.3 Contribution

In this study, we propose a mathematically grounded and computationally e”cient framework

that integrates topological and geometric principles to analyze high-dimensional gene expres-

sion data. Specifically, we introduce a method to measure distances between noisy data points

in gene expression space, leveraging the known developmental trajectory as a prior as shown

in Figure 1.1. This approach combines polynomial curve fitting, high-dimensional geometry,

and topological insights to infer the proximity of new states (or samples) to the underlying

biological trajectory.

Traditional distance metrics often fail to capture the complex geometry and high curvature

inherent in developmental gene expression trajectories. Our framework addresses this by defin-

ing distances relative to the modeled trajectory, thereby incorporating geometric and temporal

context into the analysis. This helps distinguish biologically meaningful proximity from super-

ficial numerical similarity in high-dimensional space.

Using the developmental transcriptome of Drosophila melanogaster as a model system, we

demonstrate how encoding the curvature of gene expression dynamics enables more accurate

assessment of a sample’s relation to developmental stages, o!ering a new perspective on inter-

preting transcriptomic variation through a geometric lens.
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This method is particularly suited for small datasets with good temporal resolution and bio-

logical understanding. We hypothesize that the developmental cycle evolves in a coiled fashion

in the high-dimensional gene space. Various metrics can be extracted and analyzed from this

trajectory, such as:

• Determining the relative position of a test point t along the developmental trajectory

between states i and j.

• Measuring the deviation of an outlier point k from the inferred gene expression curve.

• Estimating the rate of change for a given point t to reach k.

1.4 Outline of the Report

The report is structured as follows:

• Chapter 2. Literature Survey

This chapter presents a comprehensive review of existing literature, focusing on computa-

tional and mathematical approaches used for analyzing high-dimensional gene expression

data. It also discusses the associated challenges and highlights the gaps that motivate

the proposed methodology.

• Chapter 3. Methodology

This chapter describes the proposed methodology in detail, including dataset descrip-

tion, data preprocessing, curve fitting in high-dimensional space, polynomial coe”cient

extraction, and the computation of topological distances.

• Chapter 4. Experimental Results

This chapter presents the experimental setup, dataset characteristics, evaluation metrics,

and the results obtained using the proposed framework.

• Chapter 5. Conclusion and Future Work

The final chapter summarizes the key contributions of the thesis, discusses its limitations,

and outlines potential directions for future research.
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Figure 1.1: Schematic representation of the proposed trajectory-based inferential analysis of
gene expression.
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Chapter 2

Literature Review

2.1 Biological Data, Time-Series Gene Expression, and

Their Challenges

Advancements in high-throughput experimental platforms have revolutionized biological data

acquisition, particularly in transcriptomics. Techniques such as DNA microarrays, bulk RNA

sequencing (RNA-seq), and more recently, single-cell RNA sequencing (scRNA-seq), allow for

genome-wide quantification of gene expression across a variety of conditions and time points.

These sequencing technologies have not only expanded the scale of data generation but have

also enabled more refined temporal and spatial resolution in transcriptomic profiling [15].

As a result, modern biological datasets are characterized by the “four Vs” of big data: Vol-

ume (high gene counts and sample sizes), Velocity (rapid data generation and analysis),

Variability (diverse sample sources and biological replicates), and Veracity (measurement

noise, missing data, and experimental inconsistencies) [4, 9].

Within this landscape, time-series gene expression data—such as profiles measured across de-

velopmental stages or in response to perturbations—o!er critical insights into the dynamic

regulatory mechanisms of biological systems. These datasets enable tracking of transcriptional

changes over time and have been instrumental in studying processes like immune response,

embryonic development, circadian rhythms, and disease progression [7].

Unlike static datasets, time-series data exhibit temporal structure and dependencies. This

calls for analytical techniques that can capture not only the magnitude but also the directional-
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ity, smoothness, and progression of expression changes. Identifying coordinated patterns among

genes over time can reveal underlying regulatory modules and transcriptional control systems.

Analyzing biological time-series data presents numerous challenges, both computational and

biological. One of the primary di”culties lies in the unsupervised nature of clustering methods.

These techniques aim to group genes with similar expression profiles, but similarity in the input

space does not always imply functional or regulatory similarity. Consequently, the e!ectiveness

of a clustering algorithm should not be judged solely by internal metrics, but by its ability to

yield biologically interpretable groupings—such as genes co-regulated by common transcription

factors or involved in the same pathway [7]. In the absence of standardized validation frame-

works, comparing clustering outcomes across studies remains inconsistent.

A second challenge arises from the high dimensionality and sparse sampling of transcriptomic

datasets. Typically, thousands of genes are profiled across only a limited number of samples or

time points, leading to a disproportion between features and observations. This imbalance in-

creases the likelihood of spurious correlations and hinders statistical power. While incorporating

prior biological knowledge—such as gene ontology or pathway information—can help refine the

analysis, it risks biasing the results and constraining the discovery of novel regulatory patterns.

Additionally, most traditional clustering methods treat time points as independent, failing to

capture the temporal dependencies intrinsic to biological processes. In time-series data, it is

not just the magnitude of gene expression that matters, but also the trajectory, direction, and

timing of changes. Methods that ignore these dynamics are poorly suited for identifying genes

that are co-regulated over time or involved in time-dependent biological responses [7].

Experimental design poses its own set of challenges. Selecting an appropriate sampling rate is

critical—undersampling can lead to missed transient events, while oversampling is often imprac-

tical due to cost or feasibility [16]. Moreover, synchronization of biological samples, especially

in cyclic systems like the cell cycle, tends to degrade over time, complicating downstream anal-

ysis. Accurately identifying and adjusting for desynchronization is essential for maintaining

biological interpretability.

From a data quality perspective, issues such as missing values, non-uniform time intervals,

and biological noise can significantly degrade the reliability of inferences. Traditional interpo-

lation and imputation techniques often struggle under these conditions, particularly when data

are sparse or noisy. Furthermore, aligning gene expression profiles across experiments with
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di!erent temporal resolutions or phase shifts adds another layer of complexity.

At the pattern recognition level, algorithms like k-means or self-organizing maps assume that

each time point is independent, making them ill-suited for modeling temporally correlated gene

expression. This limitation reduces their ability to extract meaningful dynamic patterns, espe-

cially when dealing with short or noisy time series.

On a broader systems level, inferring gene regulatory networks from time-series data is a non-

trivial task. It often requires integrating additional data types—such as chromatin binding,

knock-out screens, or protein–DNA interaction datasets—to improve accuracy. While advanced

models like dynamic Bayesian networks and spline-based regression o!er promise, they are typ-

ically constrained to small-scale datasets due to computational complexity and limited sample

sizes [16].

Finally, commonly used similarity and distance metrics, such as Euclidean distance or Pearson

correlation, assume linearity and uniform variance—assumptions that are frequently violated

in high-dimensional, nonlinear biological data. These limitations reduce their e!ectiveness in

capturing the true structure and dynamics of gene expression patterns, especially when genes

exhibit time-shifted or nonlinear responses[17].

Despite these challenges, time-series expression datasets remain indispensable for decoding

transcriptional dynamics. Their e!ective analysis calls for computational strategies that are

not only scalable and robust but also capable of capturing the temporal and geometric struc-

ture inherent in biological data.

2.2 Traditional Methods for Gene Expression Inference

Vector algebra has emerged as a powerful computational framework for analyzing genome-

wide gene expression data. Given the high-dimensional nature of these datasets, vector-based

methods o!er a geometrically intuitive and computationally e”cient approach to representing

transcription profiles [1].

In this framework, gene expression is represented in a high-dimensional vector space, where

each gene corresponds to a coordinate axis, and each experiment or condition is treated as

a point (or vector) in that space. Similarities between gene expression profiles can be mea-

sured using vector operations such as angles and magnitudes. Notably, the cosine of the angle
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between two expression vectors serves as a similarity measure equivalent to Pearson correlation.

Figure 2.1 illustrates this concept: Part (a) shows two transcription profiles across three genes.

In part (b), experiments are used as axes and genes as data points—an approach that helps

identify variation across experiments but su!ers from scalability as the number of experiments

increases. Part (c) reverses the roles, using genes as axes and experiments as vectors. This

formulation preserves dimensional consistency and enables more tractable geometric interpre-

tations as the number of genes increases.

Overall, vector algebra provides a mathematically grounded approach for identifying expression

similarities and serves as a foundation for clustering, classification, and projection techniques.

However, as dimensionality increases, computational complexity and interpretability become

limiting factors, motivating the development of more scalable alternatives.

The high-dimensional nature of gene expression data poses challenges in extracting meaningful

patterns due to noise, redundancy, and computational complexity. Singular Value Decomposi-

tion (SVD) has emerged as a powerful dimensionality reduction technique for processing and

modeling genome-wide expression data[10].

SVD transforms the original gene expression matrix into a lower-dimensional space composed of

eigengenes and eigenarrays, which are unique orthonormal representations of genes and samples,

respectively[10]. SVD decomposes a given matrix A → Rm→n into three matrices:

A = U#V T (2.1)

where:

• U → Rm→m is an orthogonal matrix containing the left singular vectors,

• # → Rm→n is a diagonal matrix containing the singular values in decreasing order, and

• V → Rn→n is an orthogonal matrix containing the right singular vectors.

This decomposition helps in:

Singular Value Decomposition (SVD) provides several advantages in processing gene expression

data. By filtering out eigengenes that primarily capture experimental noise or artifacts, SVD

enhances data quality and reliability, making the analysis more robust. Additionally, it facili-

tates feature extraction by identifying dominant eigengenes, which allows for a better biological
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Figure 2.1: Vector-based representation of gene expression data [1].
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interpretation of gene regulatory mechanisms. Moreover, SVD contributes to data compression

by reducing the number of dimensions, thereby preserving essential biological variation while

eliminating redundancy, which is crucial for handling the large-scale genomic datasets e”ciently.

One key advantage of SVD is its ability to classify genes and arrays based on their expres-

sion dynamics rather than just overall similarity. Sorting the data by eigengenes provides a

global view of gene regulation and cellular states, enabling insights into biological pathways

and disease mechanisms.

While Singular Value Decomposition (SVD) is widely used for reducing the dimensionality

of gene expression data, its reliance on linear combinations of all data points results in singular

vectors that are often di”cult to interpret biologically as singular vectors may not always cor-

respond to real biological profiles, potentially leading to artificial or misleading outcomes[1].

In contrast CUR matrix decomposition provides a low-rank approximation that is explicitly

expressed in terms of a small number of actual columns and rows from the original dataset [18].

CUR decomposition represents a matrix A as:

A ↑ CUR (2.2)

where:

• C consists of a subset of actual columns from A,

• R consists of a subset of actual rows from A, and

• U is a small matrix that captures interactions between selected rows and columns.

Unlike SVD, which produces abstract singular vectors, CUR retains actual data elements, mak-

ing it inherently more interpretable and biologically meaningful. The selection of columns and

rows is guided by statistical leverage scores, which identify features that exert a disproportion-

ately large influence on the best low-rank fit [18].

Despite their advantages, both SVD and CUR decompositions have inherent limitations when

applied to high-dimensional biological data. One major concern is the loss of information, as

dimensionality reduction, while removing redundancy, may also discard weak but biologically

relevant signals. Additionally, scalability issues arise since genome-scale datasets demand sig-

nificant computational resources for decomposition and reconstruction. Another limitation is
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the linear approximation assumption in SVD, which may fail to capture the complex nonlinear

regulatory networks governing gene expression. In the case of CUR decomposition, its e!ective-

ness depends on the method used to select columns and rows, making it susceptible to selection

bias, where poor selection strategies can lead to suboptimal representations.

Clustering methods are widely used for identifying co-expressed gene groups in gene expression

data. Traditional approaches like hierarchical clustering, k-means clustering, and self-organizing

maps (SOMs) categorize genes into distinct clusters based on similarity metrics. However, these

methods often assume that each gene belongs to only one cluster, which is a limitation, as many

genes participate in multiple biological pathways. To address this, biclustering methods have

been developed to identify subsets of genes that co-express across specific subsets of conditions,

allowing for overlapping clusters and more biologically meaningful results[12].Clusters formed

by such methods may also lack biological relevance, which reduces interpretability. Addition-

ally, grouping data points solely by co-location in vector space can oversimplify the diversity of

biological functions, potentially missing subtle yet crucial distinctions.

Co-expression networks are widely used to explore gene function, regulatory interactions, and

disease associations by analyzing coordinated expression patterns across multiple samples.

These networks are constructed by calculating pairwise correlations between gene expression

profiles; genes with similar expression trends are connected as nodes, with edges representing

the strength of their co-expression relationships.

As illustrated in Figure 2.2, the construction of co-expression networks begins with a correlation

matrix capturing all gene-gene relationships. Network visualization and clustering techniques

are then employed to identify distinct modules—groups of genes that exhibit strong internal

co-expression. These modules can be analyzed to uncover regulatory hubs, assess pathway

enrichment, and identify candidate genes through a guilt-by-association (GBA) strategy [2].

Di!erential co-expression analysis further enables the detection of modules that respond di!er-

ently across biological conditions, o!ering insights into context-specific regulatory dynamics.

One of the main advantages of co-expression networks lies in their ability to identify func-

tional gene modules—groups of co-regulated genes that likely participate in related biological

processes. Unlike simple clustering, this framework can highlight context-dependent relation-

ships and previously uncharacterized genes that may play crucial roles in specific pathways.

However, co-expression networks have limitations. They typically infer correlation, not cau-
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Figure 2.2: Workflow of co-expression network analysis [2]. Pairwise gene correlations are
computed, clustered into modules, and analyzed for regulatory significance or functional en-
richment.

sation—making it di”cult to distinguish regulatory genes from those they regulate. Moreover,

most implementations assume static co-expression, failing to capture dynamic changes over

time, such as those observed in developmental or stimulus-responsive transcriptomes.

2.3 Trajectory Based Gene Inference Methods

Topological Data Analysis (TDA) is emerging as a powerful technique for analyzing high-

dimensional biological data, including gene expression profiles. In this study, TDA was em-

ployed to improve phenotype prediction, particularly in distinguishing healthy individuals from

those with Parkinson’s disease[3].

The approach involves transforming gene expression data into topological signatures using

persistent homology. Instead of directly applying machine learning models, gene expression

matrices were first converted into weighted point clouds. These point clouds were then pro-

cessed using TDA techniques to extract persistent homology features as shown in Fig. 2.3,

which capture the intrinsic shape of the data. By integrating these topological summaries

into machine learning models like support vector machines (SVM), random forests, and neu-

ral networks, the study demonstrated improved disease classification compared to traditional
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Figure 2.3: Workflow of Topological Data Analysis (TDA)[3]

methods[3].

A key finding was that distance correlation—which captures both linear and nonlinear associa-

tions between gene expressions—provided a more informative structure than standard correla-

tion measures. This highlights the ability of TDA to uncover subtle patterns that may be missed

by conventional statistical techniques. Additionally, persistence landscapes were used to gen-

erate feature representations that enhanced model performance in phenotype classification[3].

Overall, this study confirms that TDA can e!ectively enhance phenotype prediction by captur-

ing the complex, high-dimensional relationships inherent in gene expression data. The method-

ology is applicable not only to Parkinson’s disease, but can be extended to other biological

domains. Curve fitting has long been employed in biological and agricultural sciences to model

processes such as growth, environmental responses, and biochemical kinetics. These models

help translate complex biological phenomena into mathematical representations by identifying

underlying patterns in experimental data. In this framework, linear and nonlinear regression

techniques are used to fit parametric functions to observed measurements, enabling predic-

tions, characterization of system dynamics, and evaluation of rate changes over time. By

adjusting model parameters to minimize the discrepancy between predicted and actual ob-

servations—typically via least squares optimization—researchers can simulate realistic system
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behaviors under varying conditions. The interpretability and versatility of these fitted models

make them especially valuable for understanding dynamic systems, even when data are noisy

or sparse [8]. This foundational principle continues to inform newer approaches to modeling

gene expression dynamics across developmental trajectories and cellular di!erentiation paths.

Traditional dimensionality reduction methods assume gene expression data lie in flat Euclidean

space. However, Zhou and Sharpee [19] showed that while local gene expression patterns may

appear Euclidean, their global structure is better captured by hyperbolic geometry. Analyzing

datasets across various tissues and species, they found that gene expression forms hierarchical

structures, with the depth of hierarchy reflected in the radius of the hyperbolic space. Em-

bryonic cells exhibited shallow hierarchies, while specialized brain cells displayed deeper, more

complex structures. As more genes were considered, hyperbolic signatures became more ap-

parent. These findings suggest that gene expression is organized in a low-dimensional, tree-like

space, and incorporating hyperbolic models allows for a more accurate representation of bio-

logical relationships and regulatory hierarchies.

Haye et al. (2009) proposed a top-down framework to model the temporal evolution of Drosophila

gene expression using DNA microarray time series [6]. They clustered over 4000 genes into 17

groups with similar temporal profiles and applied linear di!erential equations to model in-

teractions among these clusters. Remarkably, the system reproduced experimental data with

high precision, and parameter reduction validated the hypothesis of sparse regulatory net-

works—each cluster connected to only a few others. In a follow-up study, Haye et al. (2012)

extended this framework using robust nonlinear di!erential models [20]. These models incor-

porated biologically motivated constraints such as robustness and temporal stability. While

linear models reproduced the data e”ciently, they failed to generalize over longer time frames.

In contrast, nonlinear models, particularly those with exponential terms, achieved accurate

fits, robustness to perturbations, and biological realism. Together, these works highlight the

importance of dynamical systems approaches for modeling developmental gene expression.

Trajectory inference (TI) methods have evolved into a central tool for decoding cellular dy-

namics from single-cell omics data. Deconinck et al. [5] reviewed the rapid expansion of this

field, highlighting a shift from early clustering and graph-based approaches toward probabilis-

tic models that incorporate uncertainties and multi-modal data. These advancements allow

the integration of RNA velocity, time-series measurements, and epigenomic features, enabling

more accurate and context-aware trajectory reconstruction. Additionally, TI has expanded
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beyond cell ordering to include downstream analyses like di!erential expression testing, tra-

jectory alignment across conditions, and dynamic gene regulatory network (GRN) inference.

The study also emphasized challenges such as benchmarking, trajectory validation, and the

circularity of using the same data for both trajectory and statistical inference. Moving forward,

the field is expected to embrace multimodal integration and uncertainty modeling, o!ering a

more comprehensive view of cellular state transitions in development, disease, and regeneration.

Building upon these recent advances, our work aims to develop a novel, geometry-aware ap-

proach for analyzing time-series transcriptomic data. By leveraging the structure of high-

dimensional gene expression trajectories, we seek to improve biological interpretability and

capture temporal progression more e!ectively. Our methodology is designed to address current

challenges in scalability, trajectory resolution, and regulatory inference, particularly in com-

plex developmental datasets such as those of Drosophila melanogaster. We discuss this in more

detail in Chapter 3.
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Chapter 3

Methodology

3.1 Dataset Selection and Description

In this study, we develop a framework to analyze gene expression distances in high-dimensional

space by incorporating topological and geometric insights. Traditional methods, such as Eu-

clidean distance, often fail to capture meaningful relationships in biological datasets, particu-

larly when gene expression trajectories exhibit high curvature and complex temporal patterns.

To address this, we utilize the developmental transcriptome of Drosophila melanogaster as a

model system to better understand the structure of gene expression data and propose an im-

proved method for measuring distances between noisy states.

Our methodology begins with selecting a high-resolution, unbiased dataset from the mod-

ENCODE project, which provides a detailed view of gene expression across developmental

stages. We then demonstrate that gene expression trajectories in high-dimensional space follow

a curved, non-Euclidean structure, making conventional distance measures inadequate. To ex-

tract biologically meaningful relationships, we construct co-expression networks and analyze the

distances between stage-specific networks to capture the curvature of gene expression changes.

Drosophila melanogaster is a key non-mammalian model in biological research, contributing

to major discoveries such as the identification of chromosomes as carriers of genetic information

and the role of genes in development. It also shares a significant proportion of its genetic content

with humans, making it a valuable translational model for studying human development [21].

A critical dataset for this study is the developmental transcriptome of Drosophila melanogaster,

comprehensively profiled by Graveley et al. as part of the modENCODE project [21]. This
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dataset provides a high-resolution temporal map of gene expression across 30 distinct devel-

opmental stages, including: 12 embryonic stages (0–24h embryo at 2-hour intervals), 6 larval

stages, 6 pupal stages, and 3 male and 3 female adult stages.

To generate this dataset, high-throughput sequencing technologies were employed, including: Il-

lumina Genome Analyzer IIx (75-bp reads), Applied Biosystems SOLiD platform (50-bp reads),

and Roche 454 platform (250-bp reads). Gene expression levels were normalized using Reads

Per Kilobase of transcript per Million mapped reads (RPKM) to ensure comparability across

samples.

This dataset was chosen due to its fine-grained temporal resolution, enabling a detailed in-

vestigation of high-dimensional gene expression trajectories. Furthermore, its unbiased gene

selection allows for a more fundamental approach to addressing challenges related to biological

curvature and high dimensionality in gene expression data. To begin the analysis, non-coding

genes were removed, resulting in a final list of approximately 13,639 genes.

To further refine the analysis, we apply Principal Component Analysis (PCA) and study the

projections of developmental stages onto the first two principal components, identifying signifi-

cant patterns in gene expression variation. Finally, we develop a high-dimensional smooth curve

fitting approach to accurately model the developmental cycle of Drosophila melanogaster. This

fitted curve serves as a benchmark for measuring distances from new test data points in the same

high-dimensional space, enabling a more precise analysis of temporal gene expression evolution.

Two test datasets were also selected to validate stage prediction using the fitted curve. Since

the expression values were reported in di!erent units (RPKM), they were converted to TPM

for consistency and comparability across sequencing platforms. The conversion was performed

using the following formulas:

RPKM (Reads Per Kilobase of transcript per Million mapped reads): RPKM normal-

izes read counts by both the length of the gene and the total number of reads in the experiment.

It is computed as:

RPKMi =
Ci

Li ↓ N
106

=
Ci ↓ 109

Li ↓N

where:
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• Ci = Number of reads mapped to gene i

• Li = Length of gene i in base pairs

• N = Total number of mapped reads in the experiment

TPM (Transcripts Per Million): TPM also normalizes for gene length and sequencing

depth but di!ers from RPKM in the order of operations, making TPM values more comparable

across samples. It is calculated as:

TPMi =
Ci
Li∑N

j=1
Cj

Lj

↓ 106

Alternatively, TPM can be derived directly from RPKM values:

TPMi =
RPKMi∑N
j=1 RPKMj

↓ 106

where the denominator sums over all genes in the sample.

The two test datasets used in this study were:

1. Becker et al. (2018) [22]: This dataset comprises a combined transcriptome and

proteome time-series collected at 14 distinct stages of Drosophila embryonic development.

Although a moderate correlation was observed between mRNA expression and protein

levels (ω = 0.54), mathematical modeling of translation and degradation processes was

able to explain 84% of the protein expression dynamics based on mRNA measurements.

This enabled the categorization of proteins into four regulatory groups. Additionally,

the study provided a detailed analysis of genes regulated post-transcriptionally, including

insights into the role of the RNA-binding protein Hrb98DE (GSE121160).

2. Daines et al. (2011) [23]: This study generated a broad transcriptomic profile using

RNA-seq data from 10 di!erent developmental stages, although with a lower temporal

resolution. It included 142.2 million uniquely mapped paired-end reads (64–100 bp), se-

quenced using the Illumina GA II platform. The sequencing yielded a depth of 3563↓
and successfully covered more than 95% of FlyBase-annotated genes, along with 90% of

known splice junctions. The analysis also led to updates in 30% of FlyBase gene models,

incorporating novel exons, alternative splicing patterns, and extended untranslated re-

gions. In total, 319 new transcripts were identified, and alternative splicing was detected

in 31% of genes, surpassing earlier estimates (GSE24324).
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RNA-seq o!ers several advantages over microarrays, such as increased sensitivity, wider dy-

namic range, and the ability to detect novel isoforms and splicing events. These features made

the datasets ideal candidates for comparison in our curve-fitting and distance inference frame-

work. These datasets were used to calculate distances from multiple time points along the fitted

high-dimensional curve, and the shortest distance was selected as the inferred developmental

time. Di!erent distance metrics were also employed, as described in subsequent sections.

3.2 Curvature of the Data

Euclidean Distances

The gene expression data for each of the 30 developmental stages was represented as a set of

30 vectors, each of dimension 13639↓ 1. The Euclidean distance between each pair of stages i

and j was computed as:

dij =

√√√√
13639∑

k=1

(xik ↔ xjk)2 (3.1)

where xik and xjk denote the expression levels of gene k in stages i and j, respectively.

To ensure comparability across stages, these distances were normalized with respect to the

L2-norm of the first stage (i = 1) as follows:

d
norm
ij =

dij

↗x1↗2
(3.2)

where

↗x1↗2 =

√√√√
13639∑

k=1

x
2
1k (3.3)

represents the Euclidean norm of the first stage’s expression vector. This normalization ensures

that all distances are expressed relative to the initial stage, allowing for a consistent comparison

across developmental transitions.

Next, the gene expression vectors were further normalized to a range of [0,1] to eliminate

scale di!erences across genes. This was achieved by dividing each gene’s expression level by its

maximum value across all stages:
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x
scaled
ik =

xik

maxi xik
(3.4)

where xscaled
ik represents the normalized expression of gene k at stage i. After this transformation,

the Euclidean distances were recalculated using the normalized vectors, following the same

procedure as before:

d
scaled
ij =

↗xscaled
i ↔ x

scaled
j ↗2

↗xscaled
1 ↗2

(3.5)

This additional normalization step ensures that distances are robust to di!erences in gene

expression magnitude and focus solely on relative changes across developmental stages.

Co-expression Analysis

For each developmental stage, a co-expression matrix was generated using the outer product of

the corresponding normalised gene expression vector. Given an expression vector xi for stage

i, the co-expression matrix was computed as:

Mi = xix
T
i (3.6)

where Mi represents the co-expression matrix for stage i. To quantify di!erences between

developmental stages, the Frobenius norm of the di!erence between co-expression matrices of

each stage was computed:

Dij = ↗Mi ↔Mj↗F (3.7)

where Dij denotes the Frobenius norm of the di!erence between the co-expression matrices of

stages i and j.

To ensure comparability across stages, these di!erences were normalized with respect to the

first stage (i = 1) using:

D
norm
ij =

Dij

↗M1↗F
(3.8)

This normalization allows for a consistent measure of co-expression changes over time, relative

to the initial developmental stage.
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Dimensionality reduction

To analyze patterns in gene expression across developmental stages, Principal Component Anal-

ysis (PCA) was applied to the covariance matrix of the gene expression data. Given the expres-

sion matrix A with columns representing gene expression vectors across stages, the covariance

matrix was computed as:

C = AA
T ↔ µµ

T (3.9)

where: A is the 13639↓ 30 matrix containing gene expression vectors for all 30 developmental

stages and µ is the mean expression vector, computed as:

µ =
1

30

30∑

i=1

Ai (3.10)

PCA was performed on C to extract its principal components, and the first two principal

components were selected. The 30 expression vectors were then projected onto these two

components to obtain a low-dimensional representation:

Z = P
T
2 A (3.11)

where: P2 is the matrix containing the first two principal components and Z is the projected

data matrix in the 2D principal component space.

Finally, the projected points were visualized to identify any significant patterns in the de-

velopmental trajectory. This step allows for the detection of underlying structure in the gene

expression data and provides insights into the temporal progression of gene regulation.

3.3 High-Dimensional Smooth Curve Fitting

To model the developmental trajectory in a 13,639-dimensional space, we fitted 13,639 inde-

pendent polynomial curves—each corresponding to a single gene’s expression trajectory over

developmental time. The degree of each polynomial was allowed to vary from 5 to 8, or until

the root mean square error (RMSE) dropped below 0.08, i.e., allowing a maximum of 8% error,

whichever occurred first. The coe”cients obtained from these polynomial fits define the shape

of the curve for each gene.
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Algorithm 1 Adaptive Polynomial Curve Fitting for Gene Expression Trajectories

1: Input: Gene expression matrix X with genes as rows and stages as columns, stage-to-time

mapping T , initial degree d0, maximum degree dmax, RMSE threshold ε = 0.08, stages to

omit Somit

2: Initialize list all coefficients to store coe”cients and errors for all polynomial fits

3: Initialize list best coefficients to store the best polynomial fit per gene

4: for each gene gi in dataset do

5: Remove stages Somit from gi’s expression vector

6: Let y ↘ expression values at retained stages

7: Let t ↘ corresponding time points from T

8: Initialize d ↘ d0, rmse ↘ ≃, best rmse ↘ ≃
9: while rmse > ε and d ⇐ dmax do

10: Fit polynomial pd(t) of degree d to (t, y)

11: Compute ŷ = pd(t)

12: Compute mse = 1
n

∑
(y ↔ ŷ)2, rmse =

⇒
mse

13: Store degree-d coe”cients and RMSE in all coefficients

14: if rmse < best rmse then

15: Save current pd coe”cients as best fit

16: Update best rmse ↘ rmse

17: end if

18: d ↘ d+ 1

19: end while

20: Append best fit for gi to best coefficients

21: end for

22: Output: all coefficients and best coefficients saved as CSVs

The fitting process was implemented as outlined in Algorithm 1, which adaptively selects the

optimal polynomial degree for each gene based on the RMSE constraint. The high-dimensional

developmental trajectory is then represented as:

D(t) = [x1(t), x2(t), . . . , x13639(t)] (3.12)

where D(t) denotes the trajectory in 13,639-dimensional space, and xk(t) represents the poly-

nomial function fitted for gene k over developmental time t.
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This high-dimensional curve is expected to be highly curved or coiled, capturing the intri-

cate gene expression dynamics across the developmental stages of Drosophila melanogaster. It

serves as a reference trajectory for comparing gene expression states and for measuring dis-

tances from new data points in the same high-dimensional space.

The full developmental cycle dataset of Drosophila melanogaster was also used to validate the

robustness of the fitted curve by selectively omitting certain stages during curve fitting. Specif-

ically, the stages mE mRNA em4-6hr, mE mRNA em12-14hr, mE mRNA em20-22hr, mE mRNA L2,

mE mRNA L3 PS7-9, and mE mRNA P9-10 were excluded from the fitting process. These stages

were then used as test points to evaluate how accurately their developmental time could be

recovered (i.e., inverted) using the fitted curve as a reference.

A similar procedure was applied to the embryogenesis test dataset, where the time points

03h, 12h, and 18h were omitted during the curve fitting and subsequently predicted using the

constructed trajectory.

These experiments were designed to validate the capability of the fitted high-dimensional curve

to accurately represent the developmental trajectory and to infer missing or unknown time

points based on minimal distances in the gene expression space.

3.4 Stage Inversion

After fitting high-dimensional gene expression trajectories, we aimed to infer the developmen-

tal stage of unlabelled or intermediate samples. This was performed on both the Full Cycle

and Embryogenesis datasets. Additionally, we evaluated the feasibility of cross-dataset stage

inference by using the Full Cycle trajectory as a reference for assigning developmental stages

to samples in the Embryogenesis dataset and vice versa.

To facilitate this, we first constructed a finely sampled version of the trajectory by interpo-

lating additional points between each pair of known timepoints. Specifically, for each segment

between adjacent original stages, we introduced 10 evenly spaced intermediate points along the

fitted curve and calculated the expression at each interpolated timepoint as shown in Algorithm

2 using the coe”cients calculated using Algorithm 1. This produced a denser and smoother

representation of the trajectory, enabling more precise distance-based mapping of test samples.
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Algorithm 2 Interpolated Timepoint Expression Calculation

1: Input: Mapping of developmental stages to time in hours Tmap, dividing factor d (default

= 10), maximum degree dmax, coe”cient matrix C from Algorithm 1

2: Output: Dense timepoint expression matrix E

3: Initialize empty list timepoints list

4: Let S ↘ list of stages sorted by Tmap

5: for each consecutive stage pair (si, si+1) in S do

6: tstart ↘ Tmap[si]

7: tend ↘ Tmap[si+1]

8: Generate d evenly spaced timepoints between tstart and tend using:

9: tpoints ↘ linspace(tstart, tend, d, endpoint=False)

10: Round each timepoint to 3 decimal places and append to timepoints list

11: end for

12: Power Matrix Computation:

13: Let P be a matrix with rows indexed by timepoints and columns representing x
0 to x

dmax

14: for each timepoint t in timepoints list do

15: Construct row vector: [t0, t1, . . . , tdmax ]

16: Append row to matrix P

17: end for

18: Expression Computation:

19: Let C be the coe”cient matrix (genes ↓ degrees), with columns x0 to x
dmax

20: Transpose C to get C↑ of shape (degrees ↓ genes)

21: Compute expression matrix: E ↘ P ·C↑

22: Save E as CSV file

23: Save timepoint-wise expression vectors by transposing E and saving each row separately in

the designated timepoint vector folder

24: Return: E

Let p̂k denote an interpolated point on the curve and p̂0 represent a test sample whose stage

is to be inferred. We used the following two distance-based methods to determine the point on

the curve that is closest to the test sample, and thereby assign it a corresponding stage.
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Distance without Removing Projections

In the simplest case, we defined the relative vector between the test sample and each interpolated

point on the curve as:

R̂ = p̂k ↔ p̂0

We then computed the Euclidean norm of R̂ for all interpolated points and selected the one

with the smallest norm as the closest match. The corresponding timepoint of this interpolated

point was assigned to the test sample as described in Algorithm 3

Algorithm 3 Computation of Distance and Scaled Distance Matrices

1: Input: Coe”cient matrix C, expression vector folder Fe, timepoint vector folder Ft, stage

list S, stage-hour map H, timepoint list T , output subfolder f

2: Filter stages: S ↘ {s → S | s → H}
3: Initialize matrices D → R|S|→|T | and Ds → R|S|→|T |

4: Replace zero entries in C[Best RMSE] with 10↓8

5: Compute weights: wi ↘ 1
Best RMSEi

⇑i
6: Compute normalization factor: Z ↘

⇒
n/

√∑
i w

2
i

7: for each stage index i and stage name s in S do

8: Load expression vector x ↘ Read(Fe/stage (i+ 1).csv)

9: for each timepoint index j and time t in T do

10: Load timepoint vector y ↘ Read(Ft/timepoint t.csv)

11: Compute distance: D[i, j] ↘ ↗x↔ y↗2
12: Compute scaled distance: Ds[i, j] ↘ ↔(x↓y)↗w↔2

Z

13: end for

14: end for

15: Save D and Ds to CSVs

16: Return: D, Ds

Local Clustering Refinement: However, this method can be sensitive to local curvature

and non-uniform point density along the trajectory, potentially resulting in inconsistent stage

estimates. To improve robustness, we implemented a local clustering strategy. For each test

sample, we selected the 10 closest interpolated points based on initial Euclidean distance. We

then computed their mean timepoint and standard deviation. Points lying more than two

standard deviations away from the mean were iteratively removed, and the statistics were

recomputed at each step. This process continued until the set stabilized, and the final mean of
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the pruned set was taken as the inferred developmental stage as described in 4. This helped

suppress the influence of outlier projections and improved the continuity of stage assignments.

Algorithm 4 Local Clustering Refinement for Stage Estimation

1: Input: Test sample x, interpolated timepoints T = {t1, t2, . . . , tn} with associated expres-

sion vectors {e(ti)}, number of neighbors k = 10

2: Compute Euclidean distances d(x, e(ti)) for all ti → T

3: Let Nx ↘ timepoints of k closest neighbors to x based on d(x, e(ti))

4: Extract time values {tj} from Nx

5: Initialize µ ↘ mean({tj}), ϑ ↘ std({tj})
6: repeat

7: Prune set: Nx ↘ {tj → Nx | |tj ↔ µ| ⇐ 2ϑ}
8: Update: µ ↘ mean(Nx), ϑ ↘ std(Nx)

9: until no changes in Nx

10: Output: Refined developmental stage estimate t̂x ↘ µ

Distance with Removing Projections

To further account for the geometric structure of the trajectory, we extended the distance

calculation by explicitly removing the components of the relative vector that aligned with the

tangent and curvature directions of the trajectory as given in Algorithm 6 along with the evolu-

tion dynamics thresholding described in Section 3.4. This approach helped focus on deviations

orthogonal to the local flow of the trajectory, which are more indicative of biological divergence

rather than natural temporal progression.

Formally, the adjusted relative vector was computed as:

R̂ = (p̂k ↔ p̂0) ·
(
I↔ 1

↗û↗2 ûû
↑ ↔ 1

↗â↗2 ââ
↑
)

where û = dp̂k

dt is the tangent vector representing the first derivative of the curve, and â = dû
dt is

the acceleration vector representing the second derivative. The derivatives were calculated at

each timepoint using Algorithm 5 and have been further used in Algorithm 6. This formulation

e!ectively projects the relative vector onto the space orthogonal to the trajectory’s direction

and curvature at that point, discounting variations that are natural to time progression.

28



Algorithm 5 Computation of First and Second Derivative Coe”cients and Values

1: Input: Polynomial coe”cient matrix C (columns 0–4 contain metadata), timepoints list

T = [t1, t2, . . . , tn], folder name f , normalization flag, unit label

2: for each gene row r in C do

3: Extract metadata m ↘ r[0:5], coe”cients c ↘ r[5 :]

4: Form polynomial P (x) ↘ Polynomial(c)

5: Compute first derivative P
↘(x) ↘ P.deriv(1)

6: Compute second derivative P
↘↘(x) ↘ P.deriv(2)

7: Store [m, coe”cients of P ↘(x)] in first derivative matrix

8: Store [m, coe”cients of P ↘↘(x)] in second derivative matrix

9: end for

10: Convert both matrices to DataFrames with dynamic column names, fill missing values with

0, and save as CSV files in folder f

11: Convert timepoints T to NumPy array Tarray ↘ np.array(T )

12: Evaluate first derivatives: For each coe”cient vector c in first derivative DataFrame,

compute Polynomial(c)(Tarray) and stack into matrix V1

13: Evaluate second derivatives: For each coe”cient vector c in second derivative

DataFrame, compute Polynomial(c)(Tarray) and stack into matrix V2

14: Concatenate metadata with V1 and V2, then save as CSV files in folder f

15: Return: DataFrames of first and second derivative coe”cients and their evaluated values.

Also, derivatives are saved for each timepoint as vectors in CSV.
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Algorithm 6 Computation of Distance and Scaled Distance Matrices with Derivative Projec-
tion and Thresholding

1: Input: Coe”cient matrix C, expression vector folder Fe, timepoint vector folder Ft, first

derivative folder Fv, second derivative folder Fa, uncertainty dataframe U , stage list S,

stage-hour map H, timepoint list T , output subfolder f

2: Filter stages: S ↘ {s → S | s → H}
3: Initialize matrices D,Ds → R|S|→|T | {Distance and Scaled Distance}
4: Replace zero entries in C[Best RMSE] with 10↓8

5: Compute weights: wi ↘ 1
Best RMSEi

6: Compute normalization factor: Z ↘
√

(n)/
√∑

i w
2
i where n denotes the total number of

genes

7: for each stage index i and stage name s in S do

8: Load expression vector x ↘ Read(Fe/stage (i+ 1).csv)

9: for each timepoint index j and time t in T do

10: Load timepoint vector y ↘ Read(Ft/timepoint t.csv)

11: Load first derivative vector v ↘ Read(Fv/timepoint t.csv)

12: Load second derivative vector a ↘ Read(Fa/timepoint t.csv)

13: ϖ ↘ x↔ y

14: ↗v↗2 ↘ v · v, ↗a↗2 ↘ a · a
15: r̂v ↘ (v·ω)

↔v↔2 · v if ↗v↗2 ⇓= 0

16: r̂a ↘ (a·ω)
↔a↔2 · a if ↗a↗2 ⇓= 0

17: rhat ↘ r̂v + r̂a

18: Residual vector: r ↘ ϖ ↔ rhat

19: Compute $t ↘ t↔ tprev

20: Compute uncertainty threshold s ↘
∥∥v ·$t+ 1

2a ·$t
2
∥∥
2

21: r
↘ ↘ max(0, ↗rhat↗ ↔ s)

22: Distance: D[i, j] ↘
√

↗r↗2 + r↘2

23: Scaled Distance: Ds[i, j] ↘
√

(↗r ⇔ w↗/Z)2 + r↘2

24: end for

25: end for

26: Save D and Ds to CSVs

27: Return: D, Ds

As before, the clustering-based refinement was applied to these distances as well, ensuring stable

and noise-resilient assignments.
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Rescaling Distance Based on Curve-Fitting Errors

The fitting process for gene expression trajectories introduces gene-specific errors due to bio-

logical discontinuities and technical noise. To account for these, we implemented a rescaling of

the relative distances based on the reliability of each gene’s fit.

Let xi be the mean squared curve fitting error (MSE) for gene i, across all timepoints. We

computed the root mean squared error (RMSE) to obtain expression-level error magnitudes:

zi =
⇒
xi

Step 1: Weighting the Distance Vector. We rescaled each component Ri of the relative

vector R̂ by the inverse RMSE of the corresponding gene:

R̂
↘
i =

Ri

zi
= wiRi, where wi =

1

zi

This step reduced the influence of poorly fitted genes on the overall distance computation.

Step 2: Normalizing the Weighted Distance. To ensure comparability across genes

and samples, the weighted vector was normalized by a factor that preserved the ϱ2 magnitude

relative to the number of genes:

d̂ =

⇒
n√

w
2
1 + w

2
2 + · · ·+ w2

n

· R̂↘

Here, n denotes the total number of genes. The final rescaled distance was then given by:

d = ↗d̂↗2

This formulation ensured that contributions from each gene were proportionally adjusted based

on their individual curve-fitting accuracy. By incorporating gene-specific fitting errors into

the distance computation, the stage inference became more robust to noise and variability

in expression measurements. This rescaling strategy was uniformly applied to both distance

estimation methods — with and without the removal of directional projections — to maintain

consistency across analyses.
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Thresholding for Clock Uncertainty in Evolution

Biological systems may experience variability in internal timing, leading to sample-specific

phase shifts in developmental processes. These shifts, while biologically meaningful, may dis-

tort distance-based stage estimation. To mitigate this, we implemented a thresholding strategy

to ignore minor temporal shifts within an acceptable uncertainty margin.

We began by isolating the component of the relative vector that lay in the 2D subspace defined

by the tangent and acceleration directions at p̂k:

r̂ = (p̂k ↔ p̂0) ·
(

1

↗û↗2 ûû
↑ +

1

↗â↗2 ââ
↑
)

This component represents deviations along the natural progression of the trajectory and is less

informative for detecting genuine o!-trajectory movement.

We then defined a temporal uncertainty threshold based on local motion along the trajectory:

s =

∥∥∥∥û$tk +
1

2
â$t

2
k

∥∥∥∥
2

where $tk = tk ↔ tk↓1 is the local time interval between interpolated points.

Let R̂ denote the orthogonal component of the relative vector (already rescaled as above),

and r̂ the projection within the tangent–acceleration plane. If the magnitude of r̂ lies within

the threshold s, we treat it as negligible and zero it out. Otherwise, we subtract s and retain

the residual:

r
↘ = max {0, (↗r̂↗2 ↔ s)}

Final Corrected Distance. The complete corrected distance from p̂0 to p̂k was then com-

puted as:

Distance =
⇒
d2 + r↘2

This formulation combines error-weighted orthogonal deviations with a thresholded projection

residual to yield a biologically informed and noise-tolerant estimate of developmental proximity.
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Chapter 4

Experimental Results

The high-throughput sequencing data used in this study was obtained from FlyBase, accessi-

ble at https://flybase.org, and processed using Python 3.11.7 along with libraries such as

pandas, numpy, matplotlib, and others.

The two test datasets were downloaded from the NCBI Gene Expression Omnibus (GEO)

database, available at https://www.ncbi.nlm.nih.gov/geo/, with accession IDs: GSE121160

and GSE24324. The preprocessing pipeline was designed to extract only the developmental

transcriptome, retaining coding genes while excluding non-coding genes.

All experiments and analyses were carried out in accordance with the methodology described

in Chapter 3.

4.1 Curvature of the Data

Euclidean Distance

First, the Euclidean distance between developmental stages was computed using unnormalized

gene expression vectors. To visualize the variation in distances across stages, a heatmap was

generated, as shown in Fig. 4.3. It is observed that the distances between stages remain rela-

tively uniform, rather than following a smooth progression. This suggests that every stage is

approximately equidistant from every other stage, rather than forming a continuous trajectory

in gene expression space.

Additionally, the distance curve in Fig. 4.1 and Fig. 4.2 further supports this observation.

The lack of a gradual increase or decrease in distances across stages indicates that developmen-

tal transitions do not follow a strictly linear or smooth trajectory. Instead, the trajectory of

development appears to be inherently curved in the high-dimensional space of gene expression.
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Figure 4.1: Distance of a selected stage(15) from other developmental stages using unnormalized
gene expression vectors.

Figure 4.2: Distance of a selected stage(23) from other developmental stages using unnormalized
gene expression vectors.
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Figure 4.3: Heatmap of Euclidean distances between developmental stages using unnormalized
gene expression vectors.
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Figure 4.4: Distance of a selected stage(15) from other developmental stages using normalized
gene expression vectors.

To further analyze the structure of developmental transitions, we used normalized gene ex-

pression vectors, as shown in Fig. 4.6. Normalization reduces scale-dependent variations while

preserving the overall structure of stage-wise distances. The heatmap reveals that early em-

bryonic stages (0-12 hr) still show relatively uniform distances, but later developmental tran-

sitions—particularly those associated with larval-to-adult transitions—exhibit larger variations.

Figures 4.4 and 4.5 reinforce that while some nearby stages remain relatively close, transi-

tions between major developmental phases show sharp discontinuities. This suggests that gene

expression dynamics do not follow a strictly linear trajectory but instead exhibit phase shifts

at critical stages.

Co-expression Analysis

To further investigate the structure of developmental transitions, we computed the outer prod-

uct of normalized gene expression vectors. This analysis helps in understanding co-expression

patterns across developmental stages. As shown in Fig. 4.8, the results are largely consistent

with those obtained from the Euclidean distance matrices of normalized vectors, reinforcing the

presence of curvature in gene expression space.
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Figure 4.5: Distance of a selected stage(23) from other developmental stages using normalized
gene expression vectors.

The co-expression distance curve (Fig. 4.7) again highlights that while some stages exhibit

lower distances, major developmental transitions show discontinuities. This suggests that gene

interactions undergo nonlinear changes over time, which cannot be fully captured by simple

linear distance metrics.

Dimensionality Reduction

Principal Component Analysis (PCA) was applied to reduce the dimensionality of the gene

expression dataset while preserving as much variance as possible. The goal was to project the

high-dimensional data onto a lower-dimensional space for better visualization and analysis.

Fig.4.9 presents the PCA projection of di!erent developmental stages in the maximum variance

2D space. Each point corresponds to a stage in the dataset, with colors indicating the stage

number. The distribution of stages in the projected space does not exhibit clear clustering or in-

terpretable patterns. The PCA projection shows a widely dispersed pattern with no discernible

clusters corresponding to biological stages suggesting that the first two principal components

may not fully capture a structured separation of developmental stages.

Possible reasons for this include the presence of nonlinear relationships that PCA cannot cap-
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Figure 4.6: Heatmap of Euclidean distances between developmental stages using normalized
gene expression vectors.
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Figure 4.7: Distance of a selected stage(15) from other developmental stages using co-expression
matrices.

ture, key biological variations residing in higher-order components, or inherent variability in

gene expression across stages. Despite its linear nature, PCA provides a useful first approxi-

mation for visualizing global structure and variance in the dataset.

To determine the optimal number of principal components to retain, we analyzed the explained

variance ratio, as shown in Fig.4.10. The first principal component captures approximately 60%

of the variance, while subsequent components contribute decreasing amounts. The scree plot

guided the selection of an appropriate number of principal components that balance variance

retention with dimensionality reduction.

All the above experiments suggest a highly curved trajectory of the developmental cycle of

Drosophila melanogaster in a high-dimensional space. This highlights the need for new trajectory-

based methods that account for such curvature. Both test datasets were also evaluated and

exhibited similar patterns, revealing highly curved trajectories, as detailed in Appendix.

4.2 High-Dimensional Smooth Curve Fitting

To model the developmental trajectory in a 13,639-dimensional space, we fitted 13,639 inde-

pendent polynomial curves—each corresponding to a single gene’s expression trajectory over

developmental time as shown in Fig. 4.11. The degree of each polynomial was allowed to vary

from 5 to 8, or until the root mean square error (RMSE) dropped below 0.08, which corresponds
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Figure 4.8: Heatmap of co-expression patterns obtained from the outer product of normalized
gene expression vectors.
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Figure 4.9: PCA projection of di!erent developmental stages for the full cycle dataset in the
maximum variance 2D space.

Figure 4.10: Explained variance ratio of principal components in PCA for the full cycle dataset.
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to a maximum allowable deviation of 8% from actual expression levels, whichever occurred first.

The coe”cients obtained from these polynomial fits define the shape of the curve for each gene.

The high-dimensional developmental trajectory is then represented as:

D(t) = [x1(t), x2(t), . . . , x13639(t)] (4.1)

where D(t) denotes the trajectory in 13,639-dimensional space, and xk(t) represents the poly-

nomial function fitted for gene k over developmental time t.

This high-dimensional curve is expected to be highly curved or coiled, capturing the intri-

cate gene expression dynamics across the developmental stages of Drosophila melanogaster. It

serves as a reference trajectory for comparing gene expression states and for measuring dis-

tances from new data points in the same high-dimensional space.

The full developmental cycle dataset ofDrosophila melanogaster was also used to validate the ro-

bustness of the fitted curve by selectively omitting certain stages during curve fitting as shown in

Fig. 4.12. Specifically, the stages mE mRNA em4-6hr, mE mRNA em12-14hr, mE mRNA em20-22hr,

mE mRNA L2,mE mRNA L3 PS7-9, and mE mRNA P9-10 were excluded from the fitting process.

These stages were then used as test points to evaluate how accurately their developmental

time could be recovered (i.e., inverted) using the fitted curve as a reference. This simulates

how the model generalizes to unseen developmental stages and tests its ability to infer temporal

positioning from expression data alone.

A similar procedure was applied to the embryogenesis test dataset, where the time points 03h,

12h, and 18h were omitted during the curve fitting as shown in Fig. 4.13 and subsequently

predicted using the constructed trajectory.

These experiments were designed to validate the capability of the fitted high-dimensional curve

to accurately represent the developmental trajectory and to infer missing or unknown time

points based on minimal distances in the gene expression space.

4.3 Stage Inversion Results

This section presents the evaluation of stage inversion performance across di!erent datasets

and inversion techniques. Mean Percentage Error (MPE) was used as the primary metric to

assess the accuracy of inferred timepoints under four methods:

The eight evaluated methods fall into four core categories:
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Figure 4.11: Polynomial curve fitting for gene Argk1 (FBgn0000045) for full cycle dataset by
omitting certain stages

Figure 4.12: Polynomial curve fitting for gene Argk1 (FBgn00000116) for full cycle dataset by
omitting certain stages
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Figure 4.13: Polynomial curve fitting for gene a (FBgn0000008) for embryogenesis dataset by
omitting certain stages

1. Shortest Distance from Curve

2. Clustered Distance from Curve

3. Shortest Distance with Projection

4. Clustered Distance with Projection

Each of the above was further tested in both unscaled and RMSE-scaled variants.

Full Cycle: Missing Stage Inversion

In the case of missing stages within the Full Cycle dataset (Fig. 4.14), RMSE-scaled meth-

ods—particularly the unclustered variant—achieved the lowest mean percentage error (MPE).

This demonstrates the advantage of incorporating gene-wise variability in distance computa-

tions. While clustering is typically e!ective in reducing noise, it slightly increased errors in this

case, especially when combined with RMSE scaling—possibly due to amplified variance after

rescaling. Interestingly, removing derivative components before distance computation did not

significantly increase error, indicating robustness of the core signal. However, methods com-

bining projection and RMSE scaling showed very high relative error and are thus omitted from

the plot.
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Figure 4.14: Mean Percentage Error comparison across inversion techniques for missing stages
in the Full Cycle dataset.

Table 4.1 presents the predicted timepoints using the best-performing method—RMSE-scaled

shortest distance—and compares them to actual stage time mappings. Note: The follow-

ing stages were excluded from the curve fitting process and are highlighted in light gray:

mE mRNA em4-6hr, mE mRNA em12-14hr, mE mRNA em20-22hr, mE mRNA L2, mE mRNA L3 PS7-9,

and mE mRNA P9-10.

Embryo: Missing Stage Inversion

In the case of missing stages within the Embryogenesis dataset (Fig. 4.15), RMSE-scaled meth-

ods—particularly the unclustered variant—again achieved the lowest mean percentage error

(MPE). This reinforces the advantage of incorporating gene-wise variability when computing

distances in high-dimensional expression space. Notably, clustering without scaling resulted in

significantly higher error, suggesting that while curvature alignment is important, it must be

tempered by normalization to avoid being dominated by genes with larger variances.

As in the Full Cycle scenario, removing derivative components prior to inversion did not sub-

stantially degrade performance, indicating the robustness of the core expression signal. Also, as

in the Full Cycle dataset, projection-based methods combined with RMSE scaling consistently

underperformed and were therefore excluded from the comparison.
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Figure 4.15: Mean Percentage Error comparison for missing stage inversion in the Embryoge-
nesis dataset.

Table 4.2 presents the predicted timepoints using the best-performing method—RMSE-scaled

shortest distance—and compares them to actual stage time mappings. Note: The following

stages were excluded from the curve fitting process and are highlighted in light gray: 03h, 12h,

and 18h.

Embryo–Full Cycle Inter-Dataset Inversion

To evaluate cross-dataset temporal alignment, we performed inter-dataset inversion by using

Embryogenesis as the query and Full Cycle as the reference dataset. A pronounced contrast in

performance was observed across di!erent distance metrics, particularly highlighting the limi-

tations of RMSE-scaled distances. These scaled metrics consistently underperformed, revealing

that gene-wise RMSE normalization fails to generalize e!ectively when applied across datasets

originating from distinct sequencing platforms or experimental conditions. The normalization

introduces disproportionate weighting of gene expression dimensions, leading to reduced inver-

sion accuracy and poor temporal mapping.

In contrast, the unscaled-clustered distance metric yielded notably better results. By retain-

ing the original expression scale while incorporating gene-wise structural relationships, this

approach achieved more accurate and robust alignment between datasets. This indicates that
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preserving absolute expression levels, rather than enforcing uniform scaling, is critical for main-

taining biological signal consistency across heterogeneous data sources.

To assess the influence of RNA-seq quantification schemes, we conducted inversion analysis

using both TPM and RPKM normalization. As shown in Figures 4.16 and 4.17, the mean per-

centage error (MPE) profiles under both normalization methods were highly comparable, with

only minor di!erences observed. This consistency is further reflected in the predicted time-

points listed in Tables 4.3 and 4.4, where the inversion trajectories closely follow the expected

developmental timeline across stages. For example, under TPM normalization (Table 4.3), the

predicted time for the 10h stage is 8.0, while for RPKM (Table 4.4), it is 8.6, both showing

tight agreement with the actual value. These results suggest that inter-dataset inversion perfor-

mance is largely robust to the choice of normalization strategy and that biologically meaningful

mappings can be preserved across commonly used quantification approaches.

Figure 4.16: Mean Percentage Error comparison for inter-dataset inversion from Embryogenesis
to Full Cycle reference (TPM).
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Figure 4.17: Mean Percentage Error comparison for inter-dataset inversion from Embryogenesis
to Full Cycle reference (RPKM).

GSE24324–Full Cycle Inter-Dataset Inversion

For the GSE24324 dataset (Fig. 4.18), which shares sequencing equipment and preprocessing

protocols with the Full Cycle dataset, all inversion methods yield comparable performance.

This consistency indicates that when experimental conditions are matched, normalization us-

ing gene-wise RMSE does not introduce significant distortion. In such settings, all distance

metrics—whether normalized or unnormalized—perform similarly, as evidenced by the compa-

rable Mean Percentage Error (MPE) trends in both TPM (Fig. 4.18) and RPKM (Fig. 4.19)

scales. The timepoint mappings derived from minimum distance values for each developmental

stage are presented in Tables 4.5 and 4.6.
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Figure 4.18: Mean Percentage Error comparison for inter-dataset inversion from GSE24324 to
Full Cycle reference (TPM).

Figure 4.19: Mean Percentage Error comparison for inter-dataset inversion from GSE24324 to
Full Cycle reference (RPKM).
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Stage Actual Time Mapping
Predicted Timepoint

(RMSE Scaled
Distance)

mE mRNA em0-2hr 1 1.0
mE mRNA em2-4hr 3 3.0
mE mRNA em4-6hr 5 5.2
mE mRNA em6-8hr 7 6.8
mE mRNA em8-10hr 9 7.8
mE mRNA em10-12hr 11 10.4
mE mRNA em12-14hr 13 11.8
mE mRNA em14-16hr 15 15.4
mE mRNA em16-18hr 17 18.4
mE mRNA em18-20hr 19 23.0
mE mRNA em20-22hr 21 25.5
mE mRNA em22-24hr 23 25.5
mE mRNA L1 48 50.4
mE mRNA L2 72 75.6
mE mRNA L3 12hr 84 80.4
mE mRNA L3 PS1-2 96 98.4
mE mRNA L3 PS3-6 108 110.4
mE mRNA L3 PS7-9 132 186.0
mE mRNA WPP 192 186.0
mE mRNA P5 216 213.6
mE mRNA P6 240 240.0
mE mRNA P8 288 283.2
mE mRNA P9-10 348 318.0
mE mRNA P15 360 355.2
mE mRNA AdF Ecl 1days 384 384.0
mE mRNA AdF Ecl 5days 480 384.0

Table 4.1: Actual vs. predicted timepoints using RMSE-scaled shortest distance for Intra-Stage
Inversion (Full Cycle Dataset). Stages excluded from curve fitting are shaded.
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Stage Actual Time Mapping
Predicted Timepoint

(RMSE Scaled
Distance)

00h 0 0.0
01h 1 0.9
02h 2 2.0
03h 3 3.6
04h 4 4.2
05h 5 5.0
06h 6 6.0
08h 8 7.8
10h 10 10.0
12h 12 10.0
14h 14 14.0
16h 16 16.0
18h 18 15.6
20h 20 19.8

Table 4.2: Actual vs. predicted timepoints using RMSE-scaled shortest distance for Intra-Stage
Inversion (Embryogenesis Dataset). Stages excluded from curve fitting are shaded.

Stage Actual Time Mapping Predicted Timepoint (Unscaled Clustered Distance)
00h 0 3.2
01h 1 2.8
02h 2 3.8
03h 3 4.8
04h 4 5.0
05h 5 5.4
06h 6 6.2
08h 8 6.6
10h 10 8.0
12h 12 9.2
14h 14 12.6
16h 16 15.8
18h 18 15.4
20h 20 22.4

Table 4.3: Predicted timepoints using Unscaled Clustered Distance for Embryo to Full Cycle
inter-dataset inversion (TPM).
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Stage Actual Time Mapping Predicted Timepoint (Unscaled Clustered Distance)
00h 0 3.2
01h 1 2.6
02h 2 3.8
03h 3 5.2
04h 4 5.4
05h 5 5.8
06h 6 6.6
08h 8 6.6
10h 10 8.6
12h 12 10.2
14h 14 13.4
16h 16 16.8
18h 18 16.0
20h 20 28.0

Table 4.4: Predicted timepoints using Unscaled Clustered Distance for Embryo to Full Cycle
inter-dataset inversion (RPKM).

Stage Actual Time Mapping Predicted Timepoint (RMSE Scaled Distance)
E2-4hr 4 1.6
E2-16hr 9 5.6
E2-16hr100 9 18.6
E2-16hr avg 9 11.0
E14-16hr 16 20.2
Larva 72 74.4
L3i 96 132.0
L3i100 96 108.0
L3i avg 96 120.0
Pupa1 144 342.0
P3d 168 273.6
Pupa2 186 348.0
MA3d 240 336.0
FA3d 240 384.0
A17d 408 381.6

Table 4.5: Predicted timepoints using RMSE Scaled Distance for GSE24324 to Full Cycle inter-
dataset inversion (TPM).
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Stage Actual Time Mapping Predicted Timepoint (RMSE Scaled Distance)
E2-4hr 4 1.4
E2-16hr 9 5.6
E2-16hr100 9 18.2
E2-16hr avg 9 10.8
E14-16hr 16 19.8
Larva 72 75.6
L3i 96 132.0
L3i100 96 110.4
L3i avg 96 120.0
Pupa1 144 336.0
P3d 168 278.4
Pupa2 186 348.0
MA3d 240 336.0
FA3d 240 384.0
A17d 408 381.6

Table 4.6: Predicted timepoints using RMSE Scaled Distance for GSE24324 to Full Cycle inter-
dataset inversion (RPKM).
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Chapter 5

Conclusion and Future Work

Gene expression trajectories, particularly during the developmental stages ofDrosophila melanogaster,

exhibit high curvature in high-dimensional space. As a result, traditional similarity measures

like Euclidean distance between states become ine!ective and often misleading. In this work, we

addressed this issue by leveraging known temporal trajectories of gene expression and analyzing

distances with respect to the expected parametric curve fitted for each gene.

Conclusion

Our experiments demonstrate several key findings:

• Intra-dataset inversion (Full Cycle, Embryo): When predicting developmental time

stamps within the same dataset, additional scaling of distances using the polynomial

fitting errors improves the (validation) performance within datasets, but it degrades the

inference across datasets with varying measurement techniques. This is likely because the

measurement errors potentially captured by the deviation from the smooth trajectory, are

consistently captured only within the same experimental setting.

• Inter-dataset inversion (Embryo ↖ Full Cycle): When attempting inversion across

datasets originating from di!erent sequencing platforms, normalization based on the poly-

nomial fitting errors proved to ine!ective. The underlying gene-wise error distributions in

the measurement of expressions vary considerably with techniques and instruments used

and hence cannot be translated across datasets.

• Inter-dataset inversion (GSE24324 ↖ Full Cycle): In this case, the use of sim-

ilar sequencing technologies resulted in reasonably consistent error distributions across
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datasets. Consequently, both normalized and un-normalized distances performed compa-

rably.

• Derivative-based distance with projection removal and thresholding: To better

capture biologically relevant deviations from the expected gene expression trajectory, we

removed components of the relative vector along the directions of velocity and acceleration

(first and second derivatives) of the trajectory. This ensured that the calculated distances

significantly ignore deviations due to any variations in the biological clocks of the process.

This method demonstrated performance comparable to simpler metrics, while o!ering

a more nuanced and interpretable approach, and holds promise for further refinement.

However, when combined with the RMSE-scaling approach, its performance declined, for

reasons that remain unclear and warrant further investigation.

• Expression normalization units (RPKM vs TPM): The choice of expression nor-

malization—RPKM versus TPM—did not produce significant di!erences in results for our

inversion tasks. This suggests that the proposed methods are robust to such preprocessing

choices, at least within the datasets (validations) considered.

These observations underscore the importance of dataset compatibility, normalization tech-

niques, and the geometric nature of gene expression trajectories in choosing appropriate distance

metrics for developmental stage prediction. This work needs further improvements, experimen-

tation, and broader tests of inference across datasets and conditions.

Future Work

The work presented here opens up multiple avenues for further exploration and refinement.

Below are a few specific directions along which the work can be extended.

1. Improved distance methodologies: More robust distance metrics can be developed

that better incorporate local curvature and dynamics of evolution, noise characteristics,

and other biological constraints.

2. Dimensionality reduction and gene selection: Clustering genes based on co-expression

patterns, functional similarity, or temporal synchrony may help reduce noise and improve

trajectory modeling. Alternatively, gene selection can be guided by statistical properties

— such as selecting genes with higher order moments across time points, even without

prior knowledge of the biological significance of a gene.
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3. Dataset expansion: Incorporating more transcriptome datasets from di!erent experi-

mental conditions and sequencing platforms will test the generalizability of the proposed

methods.

4. Cross-organism analysis: Applying this framework to developmental data from other

model organisms may reveal conserved or divergent expression dynamics.

5. Functional gene classification: Clustering genes based on known biological functions

or pathways could allow for pathway-specific trajectory modeling and analysis.

6. Abnormality detection: Extending the method to detect anomalies or disease-related

deviations from expected trajectories could have significant applications in biomedical

research.

7. Understanding RMSE-scaling interactions: Investigating why RMSE-scaling de-

grades performance when combined with derivative-based distance could shed light on

interactions between normalization and trajectory geometry.
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Appendix

Curvature of the Embryogenesis Dataset

To validate the curved nature of developmental gene expression trajectories in the Embryoge-

nesis dataset (GSE121160), we repeated the same curvature analyses used for the Full Cycle

dataset.

Euclidean Distance (Unnormalized)

We first computed the Euclidean distances between embryonic stages using raw, unnormalized

gene expression vectors. As shown in Fig. 5.1, the distance profiles appear mostly flat, with

only minor variations in distances from selected stages to others. The corresponding heatmap

(Fig. 5.2) confirms this trend—distances across developmental time are largely uniform and do

not exhibit a clear temporal progression.

Euclidean Distance (Normalized)

We repeated the analysis using normalized gene expression vectors. As seen in Fig. 5.3, the dis-

tance curves continue to show relatively flat behavior. However, slight di!erentiation appears

toward later stages, reflecting minor shifts in expression trends.

The heatmap in Fig. 5.4 shows more structured variation in distances, especially between early

and late embryonic stages. Nevertheless, the overall trend remains consistent with the hypoth-

esis that the trajectory is highly curved in gene expression space rather than linearly separable.

Co-expression Analysis

To explore stage-wise co-expression dynamics, we computed the outer product of normalized

gene expression vectors across all embryonic stages. This yielded co-expression matrices that

reflect gene–gene interactions at each stage.

Fig. 5.5 illustrates the co-expression distance curve from a selected stage. The curve shows
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Figure 5.1: Distance of a selected stage (9) from other embryonic stages using unnormalized
gene expression vectors.

that while neighboring stages maintain strong similarity, discontinuities appear at certain tran-

sitions, indicating nonlinear expression shifts.

The heatmap in Fig. 5.6 visualizes global co-expression patterns and further supports the curved

nature of the transcriptomic trajectory, as abrupt changes in co-expression similarity align with

known developmental transitions.

Dimensionality Reduction

Principal Component Analysis (PCA) was applied to project the high-dimensional gene expres-

sion data into a 2D plane to assess global structure and variance.

As shown in Fig. 5.7, the PCA plot for embryonic stages lacks distinct clustering, with stages

scattered broadly. This dispersion supports the hypothesis that developmental transitions are

not linearly separable and instead follow a complex, curved trajectory.

To quantify the variance captured by each component, the explained variance ratio was plotted

in Fig. 5.8. The first component explains a large portion of the variance, but subsequent com-

ponents rapidly decline, indicating that meaningful biological variation may be spread across

58



Figure 5.2: Heatmap of Euclidean distances between embryonic stages using unnormalized gene
expression vectors.
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Figure 5.3: Distance of a selected stage (9) from other embryonic stages using normalized gene
expression vectors.

many dimensions.

Figure 5.7: PCA projection of embryonic stages in the maximum variance 2D space for the
Embryogenesis dataset.
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Figure 5.4: Heatmap of Euclidean distances between embryonic stages using normalized gene
expression vectors.
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Figure 5.5: Distance of a selected embryonic stage (9) from other stages using co-expression
matrices.

Figure 5.8: Explained variance ratio (EVR) of principal components from PCA on the Em-
bryogenesis dataset.

Together, these findings provide strong evidence that the embryonic developmental trajectory

of Drosophila melanogaster is similarly curved in gene expression space, justifying the use of
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Figure 5.6: Heatmap of co-expression patterns from the outer product of normalized gene
expression vectors in the Embryogenesis dataset.
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trajectory-based inference methods as proposed in this work.

Curvature of the GSE24324 Dataset

To further validate the generalizability of our curvature-based trajectory hypothesis, we ap-

plied the same suite of analyses to the GSE24324 dataset, which represents another indepen-

dent developmental transcriptomic profile of Drosophila melanogaster. These evaluations assess

whether the geometric characteristics observed in the Full Cycle and Embryogenesis datasets

persist in other developmental datasets.

Euclidean Distance (Unnormalized)

The Euclidean distances between developmental stages were first computed using unnormalized

gene expression vectors. The resulting curves (e.g., Fig. 5.9) show that the distances remain

relatively uniform across stages, lacking clear trends of temporal progression.

This is further confirmed in the heatmap shown in Fig. 5.10, where distances between stages

are broadly consistent, without exhibiting gradients or continuity. This uniformity in raw dis-

tance patterns again points to the inadequacy of linear distance measures in capturing temporal

relationships within gene expression space.

Figure 5.9: Euclidean distances from a selected stage (9) to other stages using unnormalized
gene expression vectors in the GSE24324 dataset.
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Figure 5.10: Heatmap of Euclidean distances using unnormalized gene expression profiles in
the GSE24324 dataset.

Euclidean Distance (Normalized)

Upon normalization of expression vectors, we observed more distinct trends, particularly in

later stages where transcriptional shifts are biologically more pronounced. Fig. 5.11 illustrates

the stage-wise distances from a representative sample.

While early stages still cluster closely, the heatmap in Fig. 5.12 begins to show variation across
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time, indicating that certain phases of development involve sharper transitions. These transi-

tions, however, still deviate from linear patterns—implying a curved embedding in gene space.

Figure 5.11: Distance from a selected stage (9) to other stages using normalized gene expression
vectors.
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Figure 5.12: Heatmap of normalized Euclidean distances across stages in the GSE24324 dataset.

Co-expression Analysis

To probe deeper into gene–gene regulatory coordination, we computed co-expression matrices

by evaluating the outer product of normalized expression vectors. This analysis helps identify

transitions in transcriptional coordination that aren’t easily captured by direct distance mea-

sures.

As shown in Fig. 5.13, co-expression distances show irregular but noticeable deviations, with
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specific stages showing jumps in gene interaction patterns. The heatmap in Fig. 5.14 dis-

plays such variations, confirming phase-wise nonlinearity in gene coordination as development

progresses.

Figure 5.13: Co-expression distance curve from a selected stage (9) to other stages in the
GSE24324 dataset.
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Figure 5.14: Heatmap of co-expression similarity across stages in the GSE24324 dataset.

Dimensionality Reduction

We also conducted PCA to visualize the structure of developmental transitions in reduced di-

mensions. As seen in Fig. 5.15, the 2D projection reveals a dispersed trajectory without distinct

stage clusters, reinforcing the nonlinearity of transitions.

Fig. 5.16 shows the explained variance ratio for each principal component. While the first

few components retain most of the variance, the rapid decay of variance suggests that sig-
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nificant information is encoded in higher dimensions—further a”rming the high-dimensional

complexity of developmental gene expression.

Figure 5.15: PCA projection of developmental stages in the GSE24324 dataset (2D space).

Figure 5.16: Explained variance ratio of principal components from PCA on GSE24324.
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In summary, the GSE24324 dataset mirrors the curvature patterns found in the Full Cycle

and Embryogenesis datasets. These consistent findings across three distinct datasets solidify

our claim that developmental gene expression evolves along a complex, nonlinear trajectory in

high-dimensional space.
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