
Evaluating roots of polynomials generated by a
three-term recurrence: General solutions for

eigenvalue problems of chain and lattice models

Hariprasad M. and Murugesan Venkatapathi
Indian Institute of Science, Bangalore, India

mhariprasadkansur@gmail.com, murugesh@iisc.ac.in

Abstract. We first show the existence and nature of convergence to a limit-
ing set of roots for polynomials in a three-term recurrence of the form pn+1(z) =
Qk(z)pn(z) + γpn−1(z) as n → ∞, where the coefficient Qk(z) is a kth degree
polynomial, and z, γ are C1. We extend these results into relations approximat-
ing roots of such polynomials for finite n. General solutions for the evaluation are
motivated by large computational efforts and errors in direct numerical methods.
Later, we also apply this solution to the eigenvalue problems represented by tridi-
agonal matrices with a periodicity k in its entries. Generality in k and complex
entries of the matrix in this solution provides an efficient numerical method for
evaluation of spectra of chains and other lattice models.

Keywords. polynomial recurrence relations; limiting roots; complex roots; periodic sys-
tems; chain models; k-Toeplitz matrices.

Consider the polynomials in a three-term recurrence of the form

pn+1(z) = Qk(z)pn(z) + γpn−1(z) (1)

where coefficient Qk(z) is a kth degree polynomial and z, γ are C1. This recur-
rence is of general interest, with widely used special cases such as the Chebyshev
polynomials where Q1 = 2z, γ = −1 and z is R1. In the first section, we establish
relations for the limiting set of roots of polynomials as n → ∞, and other useful
approximations of these roots for finite n. Limiting roots of polynomials generated
by a general three-term recurrence was recently studied by other approaches [13]
where the effect of initial conditions po and p1 had to be analyzed separately. Our
analysis here includes initial conditions, the different rates of convergence to the
limiting set, approximations for finite n and their errors. These approximations
are motivated by both large errors and the large computational efforts required
in direct numerical methods applied to eigenvalue problems or the corresponding
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Figure 1: Example of numerical errors : A polynomial with purely real roots that is gen-
erated by the 3-term recurrence with Qk = z3 − 3.5z, γ = −1, p1 = z3 − 1.5z, p0 = 1;
here k=3 and for n=100 we have 300 roots. Computing effort using the proposed Cheby-
shev approximation is O(nk2), cost of corresponding Chebyshev-Taylor approximation is
O(nk3), and numerical evaluation using MATLAB as eigenvalues of a matrix isO(n2k2).
Scale of Y axis is enlarged to resolve the erroneous imaginary parts.

root-finding problems. Large errors due to the accumulation of digital round-offs
are common when some roots are close to zero, as often is the case when modeling
natural and man-made systems (see figure 1 for an example). In the second part of
the paper, we show the significance of these results for eigenvalue problems that
represent any chain of periodicity k ≥ 1, and other lattice models. Note that roots
of these polynomials can also represent eigenvalues of tridiagonal matrices with
k-periodicity in their entries. A few examples are presented as a demonstration of
the theorems.
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1 Existence of a limiting set and the nature of convergence
of roots

To show that roots of these polynomials have a limiting set as n→∞, it is
sufficient to show that there exists a corresponding n-eigenvalue problem with a
limiting distribution. In the context of this work, it is also important for nk roots
of the polynomial to have a simple relation with these n eigenvalues. This would
allow us to study its convergence and apply it effectively for approximations in the
case of finite n. Here polynomials pn(z) are of degree nk and can be expanded
as determinant of the following n× n matrix, using po(z) = 1 without loss of
generality.



p1(z) i
√
γ 0 0 0 0 0 0

i
√
γ Qk(z) i

√
γ 0 0 0 0 0

0 i
√
γ Qk(z) i

√
γ 0 0 0 0

0 0 i
√
γ Qk(z) i

√
γ 0 0 0

0
... · · · . . . . . . . . . · · · 0

0 0 0 0 0 i
√
γ Qk(z) i

√
γ

0 0 0 0 0 0 i
√
γ Qk(z)


n×n

(2)

Let ζ = p1(z)−Qk(z)√
γ . By factoring out

√
γ, the nk roots of pn(z) can be

reformulated as the solutions of λ = −Qk(z)√
γ where λ is an eigenvalue of the n×n

matrix 

ζ −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0

0
... · · · . . . . . . . . . · · · 0

0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0


n×n

(3)

Let Ln(ζ, λ) be the characteristic polynomial for the above matrix and Tn(λ) be
the characteristic polynomial for a skew symmetric matrix

0 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0

0
... · · · . . . . . . . . . · · · 0

0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0


n×n

(4)
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Then we have

Ln(ζ, λ) = (ζ − λ)Tn−1 + Tn−2 (5)

Ln(ζ, λ) = ζTn−1 + (−λ)Tn−1 + Tn−2 (6)

Ln(ζ, λ) = ζTn−1 + Tn (7)

In the above, we have used recurrence relations for the characteristic polynomials
of Tn(λ) given by[

Tn
Tn−1

]
=
[
−λ 1
1 0

] [
Tn−1
Tn−2

]
=
[
−λ 1
1 0

]n [
1
0

]
(8)

From equations (7) and (8), we also have

Ln(ζ, λ) =
[
1 ζ

] [−λ 1
1 0

]n [
1
0

]
(9)

For the matrix

[
−λ 1
1 0

]
, let t± = −λ±

√
λ2+4

2 be the eigenvalues and hence λ =
1
t+
− t+). Since t+t− = −1, we also know t− = −1

t+
. Let the matrix in equation

(9) have a determinant D, and by using its diagonal decomposition we rewrite it as

Ln(ζ, λ)D =

[
1 ζ

]  t+√
1+|t+|2

t−√
1+|t−|2

1√
1+|t+|2

1√
1+|t−|2

[tn+ 0
0 tn−

] 1√
1+|t−|2

− t−√
1+|t−|2

−1√
1+|t+|2

t+√
1+|t+|2

[1
0

]

Ln(ζ, λ)D =
[

t++ζ√
1+|t+|2

t−+ζ√
1+|t−|2

] [tn+ 0
0 (−1)n

tn+

] 1√
1+|t−|2

1√
1+|t+|2

 (10)

Since D 6= 0, when Ln(ζ, λ) = 0 we have

[
tn+

t++ζ√
1+|t+|2

(−1)n

tn+

t−+ζ√
1+|t−|2

]  1√
1+|t−|2

1√
1+|t+|2

 = 0 (11)

This gives us the following relation for zeros of Ln(ζ, λ) that solve the required
eigenvalue problem in equation (3)

tn+(t+ + ζ) + (−1)n

tn+
(−1
t+

+ ζ) = 0 (12)

t2n+2
+ + ζt2n+1

+ + (−1)n(ζt+ − 1) = 0 (13)
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In equation (13) the absolute value of product of all zeros is one. By applying
Landau’s inequality 1, product of the zeros with absolute values greater than one is
<
√

2 + 2|ζ|2. Note that ζ is bounded in the region of interest. So as n increases
the absolute value of zeros approaches one, and so does the fraction of such zeros.
This establishes the existence of a limiting spectrum for Ln(ζ, λ).

Convergence to the limiting set

The convergence of zeros of Ln(ζ, λ) can be obtained using Rouche’s theorem. If
we are able to find an R such that

|ap|Rp > |a0|+ |a1|R+ · · ·+ |ap−1|Rp−1 + |ap+1|Rp+1 + · · · |an|Rn

then there are exactly p zeros of the polynomial which have magnitude less than
R. Let us denote |ζ| by y. In equation (13) we are concerned with the polynomial
R2n+2 + yR2n+1 + yR+ 1. So for a value of R = R1, let

R2n+2
1 > yR2n+1

1 + yR1 + 1. (14)

Now by dividing the equation above by R2n+2
1 we get,

1 > y
1

R2n+1
1

+ y
1
R1

+ 1
R2n+2

1
(15)

This implies if R1 is the upper bound for magnitude of 2n + 2 zeros of Ln(ζ, λ),
then from equation (15) 1

R1
is the lower bound for the magnitude of all its zeros.

Similarly if R2 is the upper bound for magnitude of 2n+1 zeros, then 1
R2

is an up-
per bound for magnitude of one zero. We divide the analysis into |ζ| < 1, |ζ| = 1
and |ζ| > 1, and consider these three cases separately.

1. When |ζ| = y < 1, lets assume 1 + cy
n be the upper bound R, and find c.

R2n+2 > yR2n+1 + yR+ 1 (16)

(R− y)R2n+1 > yR+ 1 (17)(
1 + cy

n
− y

)(
1 + cy

n

)2n+1
> y

(
1 + cy

n

)
+ 1 (18)

Note that
(
1 + cy

n

)2n+1
> 1 + 2cy and

(
1 + cy

n − y
)
> 1 − y. Also,(

1 + cy
n

)
< 2 for some n > cy. Forcing the lower bound of the L.H.S

to be greater than the upper bound of R.H.S, we get a lower bound on c as
follows.

1Absolute value of the product of all zeros with an absolute value greater than one is ≤√∑n

i=0 |ai|2
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(1− y)(1 + 2cy) > 2y + 1 (19)

1 + (2c− 1)y − 2cy2 > 2y + 1 (20)

2c(1− y) > 3 (21)

c >
3

2(1− y) (22)

This implies for some δ > 0, this upper bound for magnitude of all zeros
given by R1 = 1 + 3y+δ

2(1−y)n asymptotically approaches one. From the pre-

vious arguments 1
R1

> 1 − 3y+δ
2(1−y)n is a lower bound for magnitude of all

zeros, and this asymptotically approaches one as well.

2. When |ζ| = y = 1, we assume 1 + α is the upper bound for magnitude
of 2n + 2 zeros, and derive a lower bound for α in the following manner,
starting with equation (17) again.

(1 + α)2n+1(1 + α− 1) > 1 + 1 + α (23)

(1 + (2n+ 1)α)α > 2 + α (24)

α2 >
2

2n+ 1 (25)

α >

√
2

2n+ 1 (26)

Thus an upper bound for magnitude of all the zeros is 1 + c
√

2
2n+1 with

any c > 1, and lower bound for the magnitudes is 1 − c
√

2
2n+1 , and these

asymptotically approach one as well.

3. When |ζ| = y > 1, consider

yR2n+1 > R2n+2 + yR+ 1
R2n+1(y −R) > 1 + yR

Assuming R = 1 + cy
n , we get

(
1 + cy

n

)2n+1 (
y −

(
1 + cy

n

))
> 1 + y

(
1 + cy

n

)
(27)

Note that
(
1 + cy

n

)2n+1
> 1 + 2cy and also

(
1 + cy

n

)
< 2 for some n > cy.

Forcing the lower bound of the L.H.S to be greater than the upperbound of
R.H.S, we get a lower bound on c as follows.
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(1 + 2cy)(y − 1− cy

n
) > 1 + 2y (28)

Since (y−1
2 ) is a sufficient lower bound for (y−1− cy

n ) in the case of limiting
large n

(1 + 2cy)(y − 1)
2 > 1 + 2y (29)

2cy > 3y + 3
y − 1 (30)

2cy > 6y
y − 1 (31)

c >
3

y − 1 (32)

R2 = 1 + 3y+δ
(y−1)n is the upperbound for magnitude of 2n + 1 zeros, and

1
R2

> 1− 3y+δ
(y−1)n is an upper bound for magnitude of one zero. This implies

except two zeros, all other zeros asymptotically converge to one. Consider
(13) which can be rearranged to

t+ ζ = (−1)n−1(ζt− 1)
t2n+1 (33)

Since |ζ| > 1 we have

lim
n→∞

lim
t→−ζ

1
t2n+1 = 0

Hence−ζ is one of the limiting zeros of Ln(ζ, λ). A similar limit of t+ → 1
ζ

for large limiting n in (33) shows us that 1
ζ is the other zero which does

not converge to the unit circle. These two zeros of Ln(ζ, λ) also provide
a condition for the limiting spectrum of a tridiagonal k-Toeplitz matrix; in
addition to all the other limiting eigenvalues of Ln(ζ, λ) that converge to the
unit circle as shown before.

From the above three cases we have the limiting zeros of Ln(ζ, λ) as unit circle
t+ = eiθ. Given λ = 1

t+
− t+, we get the condition Qk(z)√

γ = −λ = 2i sin θ for
the limiting set, which corresponds to continuous curves. But in case of |ζ| >
1, we have two zeros of Ln(ζ, λ) that do not converge to the unit circle. These
two zeros provide the same additional eigenvalue problem −Qk(z)√

γ = ζ − 1
ζ =

p(z)√
γ −

√
γ

p(z) . Here p(z) is a polynomial of degree utmost k given by p1(z)−Qk(z).
This solution represents up to a maximum of 2k points that may lie outside the
continuous curves.
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Theorem 1. The limiting roots of polynomials in the three-term recurrence relation
pn+1(z) = Qk(z)pn(z) + γpn−1(z) with z, γ in C1, is a subset of {z : Qk(z) =
2i√γ sin θ} ∪ {z : Qk(z) = γ

p(z) − p(z)}, where p(z) = p1(z)−Qk(z).

The proof is from the previous analysis.
We denote the set C = {z : Qk(z) = 2i√γ sin θ} and the set P = {z :

Qk(z) = γ
p(z) − p(z)}, so that C ∪ P contains the limiting set. The set C is

continuous and can be viewed as the curve Qk(z) = L in three dimension (R3),
with real and imaginary part of z being X,Y axis and L being the Z axis (see
section 2.3 for graphic examples).

corollary 1. For the continuous set C, we have following three cases when γ is
real.

• When γ is purely real and positive, then Qk(z) = 2
√
|γ|i sin θ ; and line L

is a purely imaginary interval {−2
√
|γ|i, 2

√
|γ|i}.

• When γ = 0, the spectrum reduces to 2k distinct points independent of
dimension N .

• When γ is purely real and negative, then Qk = −2
√
|γ| sin θ and L is a

purely real interval {−2
√
|γ|, 2

√
|γ|}.

corollary 2. The limiting roots of the polynomials in a three-term recurrence of
the form pn+1(z) = Qk(z)pn(z) + γpn−1(z) with z, γ in C1, are dense on the
continuous set C.

For the rigorous proof of this statement we refer the reader to another work
[13] which makes use of Ismail’s q-Discriminants along with theorems from other
works [11]. There can be several notions of a limiting set [9].
Here, using equation (7) i.e. Ln(ζ, λ) = ζTn−1 + Tn, we provide a reasonable
argument for the above. Let λ(n)

i for i = 1, 2, . . . be the roots of Tn and λ(n−1)
i be

the roots of Tn−1. We know Tn−1(λ(n)
i ) = cos(n−1

n [π2 (2i + 1)])→ 0 as n → ∞.
Thus for all i we have from equation (7), as n→∞

L(ζ, λ(n)
i ) = ζTn−1(λ(n)

i )→ 0 (34)

Note that the roots of Tn are dense on its support in its limiting case, and so the
zeros of L have to be dense as well.

1.1 Finite-n approximations

Equation (34) justifies approximating zeros of Ln(ζ, λ) by the roots of Tn
for finite large n. As the roots of Tn are distributed on the imaginary line just as
the real roots of Chebyshev polynomials of second kind, we call this a Chebyshev
approximation. The nk roots are the solution of z in the following equation, where
λi with i = 1, 2 . . . n are the roots of Tn.
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Qk(z) = −√γλi (35)

With the limiting behavior of zeros in equation (34), one can also further ex-
pand equation (7) by a Taylor series approximation which is denoted as Chebyshev-
Taylor approximation in this work. Let λi and λj be the roots of Tn and Tn−1
respectively that are closest to each other.

Then the zero of Ln(ζ, λ) can be approximated using a first order Taylor ap-
proximation as the following. Given Tn(λi) = Tn−1(λj) = 0,

Ln(ζ, λ) = Tn + ζTn−1 (36)

0 ≈ (λ− λi)T ′n(λi) + ζ(λ− λj)T ′n−1(λj) (37)

λ ≈
λiT

′
n(λi) + ζλjT

′
n−1(λj)

T ′n(λi) + ζT ′n−1(λj)
(38)

So the roots of pn are approximated by solving for z′ in the equation

Qk(z′) = −√γλ ≈ −√γ
λiT

′
n(λi) + ζλjT

′
n−1(λj)

T ′n(λi) + ζT ′n−1(λj)
(39)

For each Chebyshev-Taylor approximation of eigenvalue, we use roots of Tn and
Tn−1. We compute the k solutions of z using equation (35) and a λi. We improve
this Chebyshev approximation of a root by evaluating ζ(z), followed by solving
equation (39) for z′. We finally identify the solution closest to z among the k
solutions of z′, as the improved approximation. This approach, in principle, can
be further extended into an iterative procedure or an higher-order approximation
if required. Further, knowing ζ(z) and n, we can use the previous analysis of
convergence to bound the error in the Chebyshev approximation. Note that ζ values
away from 1 indicates a faster rate of convergence as 1

n to the limiting case. When

|ζ(z)| ∼ 1, the error in λi used in equation (35) is ≤
√

2
2n+1 . In other cases, the

error in λi is upper-bound by

|λ− λi| < ∆ (40)

where

∆ =


3|ζ|

2(1−|ζ|)n |ζ| < 1

3|ζ|
(|ζ|−1)n |ζ| > 1

(41)

This allows a numerical estimate of maximum error in each evaluated eigen-
value z (or z′) for a given Qk without much computational effort. Note that such
bounds on the error in each eigenvalue evaluated, is not possible in the case of a
direct numerical method.
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Figure 2: Approximation of roots in case of finite n, for the 3-term recurrence described
in section 2.2 as S7. Here k=7, n=20 results in 140 roots. Computing effort using a
Chebyshev approximation on limiting roots is O(nk2), cost of corresponding Chebyshev-
Taylor approximation is O(nk3), and numerical evaluations is O(n2k2).
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2 Evaluating spectra of chain and lattice models

The analyzed three-term recurrence is also satisfied by characteristic poly-
nomials of tridiagonal matrices with k-periodic entries on the three diagonals, and
of corresponding dimensions nk. Here initial condition p1 for the recurrence is
restricted and not independent of the polynomial Qk. If k is the natural num-
ber representing periodicity of entries, such matrices can be called tridiagonal k-
Toeplitz matrices. Roots of these characteristic polynomials represent the behavior
of man-made and natural systems which contain a large number of units arranged
periodically. Periodicity in natural and man-made systems have been of great in-
terest and resulted in corresponding theories of Bloch, Hill, Floquet, Lyapunov and
others. For example, Bloch’s theory of sinusoidal waves in a simple periodic poten-
tial (k=1, n→∞) has been widely applied; here real-valued spectra representing
basis waves of the system results from a periodic phase-condition applied on the
set of all possible waves. In this work, with variables in C and imaginary entries
that need not result in a Hermitian, we allow for both dissipative and generative
properties in the chain and thus conditions on both phase and amplitude define the
limiting complex roots.

Many problems in physics, economics, biology and engineering are modelled
using chains and lattices. In a chain each repeated unit can in-turn be composite,
and thus contain interconnected elements or elements of multiple types resulting in
a periodicity k > 1. There are classical chain models like Ising model, the struc-
tural model for graphene [6] and worm like chains in microbiology [12]. Such
chain models can be reduced to a system of equations represented by a tridiago-
nal matrix [10], [1], [8] with periodic entries. The tridiagonal matrix of interest
is Hermitian with real spectra in cases like some spring-mass systems, electrical
ladder networks and Markov chains. It can be non-Hermitian in the case of other
chain models in economics and physical systems that break certain reflection sym-
metries, behave non-locally, or do not entail conservation of energy [16], [2]. Lim-
iting cases of tridiagonal 2-Toeplitz and 3-Toeplitz matrices with real entries were
studied [5], and so were tridiagonal k-Toepltiz matrices similar to a real symmetric
matrix [1], all of which produce the above three-term polynomial recurrence for z,
γ in R1.

In most cases, a physical lattice in more than one dimension is well approxi-
mated using such chain models when complemented by laws such as conservation
of momentum. A chain with periodicity k > 1 is especially useful in modeling
a lattice of higher dimensions, which then is decomposed into a small set of such
chains based on the symmetry properties of the lattice, or using mean-field rep-
resentations. In the context of this work, one can solve for roots of polynomials
generated by a family of co-efficient polynomials Qk in the case of a lattice. Al-
ternately, we know the existence of a limiting set of roots even for a recurrence
with more than three terms [3], and thus the proposed approach can be extended
to a general lattice. In case of tridiagonal k-Toeplitz matrices, we also show in
the appendix that the continuous part of the limiting set of roots can alternately
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be derived using Widom’s conditional theorems for existence of limiting spectra
of block-Toeplitz operators [14], [15] and its recent extensions [4]. Whereas, the
analysis in previous sections also included nature of convergence and the up-to 2k
critical roots that depend on initial conditions of the recurrence, which may not
converge to this continuous set; evaluation of these critical roots are significant in
chain and lattice models.

In the next section 2.1, characteristic polynomials of tridiagonal k-Toeplitz ma-
trices are shown to satisfy the recurrence of interest. This is followed by a section
on some chain models and special k-Toeplitz matrices Sk, which serves as an ex-
ample for important such recurrence relations with variables in C. Finally, a few
numerical examples are used in section 2.3 to demonstrate the utility of theorems
and the generalized spectral relations of chains for variables in C. We begin with
characteristic polynomials of tridiagonal k-Toeplitz matrices; here tridiagonal ele-
ments in the first k rows repeat after k rows. They are of the form

Mk =



a1 x1 0 0 0 0 0 0 0
y1 a2 x2 0 0 0 0 0 0

0 y2
. . . . . . 0 0 0 0 0

0 0 . . . ak xk 0 0 0 0
0 0 0 yk a1 x1 0 0 0

0 0 0 0 y1
. . . . . . 0 0

0 0 0 0 0 . . . yk−1 ak xk
0 0 0 0 0 0 0 yk a1


With periodicity constraint (Mk)i,i = a(i mod k), (Mk)i,i+1 = x(i mod k) and
(Mk)i+1,i = y(i mod k). Here xj , yj and aj are complex numbers.

2.1 Three term recurrence of polynomials from a general tridiagonal
k-Toeplitz matrix

Our objective in this section is to get a three-term recurrence relation of char-
acteristic polynomial of matrixMk of dimension nk×nk, in terms of characteristic
polynomials of matrices of dimensions (n−1)k×(n−1)k and (n−2)k×(n−2)k.
We do this by expanding the determinant.

Characteristic equation of matrix Mk is given by the polynomial det(Mk −
λI) = 0 and let −λ = z.

Mk − λI =



z + a1 x1 0 0 0
y1 z + a2 x2 0 0
0 y2 z + a3 x3 0

0 0 y3
. . . . . .

0 0 0 . . . . . .


12



Let pn(z) denote the characteristic polynomial of matrixMk of dimension nk×
nk (n = 1, 2, · · · ) and qn(z) be the characteristic polynomial of the first principal
sub-matrix of Mk eliminating first row and first column, which is of dimension
nk−1×nk−1. Similarly let rn(z) be the characteristic polynomial of the second
principal sub-matrix obtained by eliminating first two rows and first two columns,
and xjyj = uj . Then we have,

pn = (z + a1)qn − u1rn. (42)

In the matrix form, we have[
pn(z)
qn(z)

]
=
[
z + a1 −u1

1 0

] [
qn(z)
rn(z)

]
(43)

This gives us[
pn(z)
qn(z)

]
=
[
z + a1 −u1

1 0

] [
z + a2 −u2

1 0

]
· · ·
[
z + ak −uk

1 0

] [
pn−1(z)
qn−1(z)

]
(44)

With the initial condition,[
p1(z)
q1(z)

]
=
[
z + a1 −u1

1 0

] [
z + a2 −u2

1 0

]
· · ·
[
z + ak−1 −uk−1

1 0

] [
z + ak

1

]
(45)

Note that when k = 1, q(z) and r(z) will reduce to pn−1(z) and pn−2(z) without
any loss of generality of the above. Similarly r(z) will reduce to pn−1(z) in the

case of k = 2. Let us denote U(i) =
[
z + ai −ui

1 0

]
. Also let Uk = Πk

i=1U(i).

Entries of Uk are polynomials in z, and for generality let us denote them as Uk =[
A(z) B(z)
C(z) D(z)

]
whereA(z), B(z), C(z) andD(z) are some polynomials of degree

utmost k. Therefore [
pn(z)
qn(z)

]
=
[
A(z) B(z)
C(z) D(z)

] [
pn−1(z)
qn−1(z)

]
(46)

Lemma 1. The characteristic polynomial of a tridiagonal k-Toeplitz matrix pn
satisfies the following recurrence relation, where k is the period and nk is the di-
mension of the matrix.

pn+1(z) = Qk(z)pn(z) + γpn−1(z) (47)

Here Qk(z) is a polynomial of degree k, and γ is in C1.
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Proof. From equation (46) we have,

pn(z) = A(z)pn−1(z) +B(z)qn−1(z) (48)

qn(z) = C(z)pn−1(z) +D(z)qn−1(z) (49)

Rearranging equation (48)

B(z)qn−1(z) = pn(z)−A(z)pn−1(z) (50)

Replacing n by n+ 1,

B(z)qn(z) = pn+1(z)−A(z)pn(z) (51)

Multiplying (49) by B(z)

B(z)qn(z) = B(z)C(z)pn−1(z) +B(z)D(z)qn−1(z) (52)

Substituting equation (51) in (52), we obtain a three term recurrence relation

pn+1(z)−A(z)pn(z) = B(z)C(z)pn−1(z) +D(z)(pn(z)−A(z)pn−1(z))

pn+1(z) = (A(z) +D(z))pn(z) + (B(z)C(z)−A(z)D(z))pn−1(z) (53)

pn+1(z) = trace(Uk)pn(z)− det(Uk)pn−1(z) (54)

This proves the theorem with Qk(z) = trace(Uk) and γ = −det(Uk).

corollary 3. Using Lemma-1 and determinants of the factors U we have

γ = −Πk
i=1ui

and
Qk = A(z) +D(z)

corollary 4. From the above and Lemma-1, we have three term recurrence in the
matrix form, [

pn+1(z)
pn(z)

]
=
[
Qk(z) γ

1 0

] [
pn(z)
pn−1(z)

]
(55)

Let Γ =
[
Qk(z) γ

1 0

]
. The eigenvalues of Γ are

r±(z) = Qk(z)±
√

(Qk(z))2 + 4γ
2 (56)

With the corresponding eigenvectors[
1 1
1

r+(z)
1

r−(z)

]
By relationship of the determinant to eigenvalues, we have r+(z) × r−(z) = −γ
for all z.

14



corollary 5. Suppose two tridiagonal k-Toeplitz matricesMk with entries xj , aj , yj
and M ′k with entries x′j , a

′
j , y
′
j have the relation aj = a′j and xjyj = x′jy

′
j ∀j then

this is a sufficient condition for both of them to have an identical limiting spectrum.
In case of k = 2, this is the necessary and sufficient condition.

Proof. From equation (54), it is sufficient to have the same product uj = xjyj to
have the sameQk(z) and γ. Theorem-1 establishes the same limiting spectra for all
such matrices. In case of k = 2, γ = u1u2 and trace(U) = u1+u2. This necessary
condition implies that given Qk(z) and γ, u1, u2 are uniquely determined in this
case.

2.2 A chain with complex spectra : Sk

In this section, we apply our results to characteristic polynomials of tridiag-
onal k-Toeplitz matrices Sk that represent a chain where Hermitian blocks (repre-
senting non-dissipative units) are joined by non-Hermitian blocks (representing a
source-sink pair). Such chains exhibit unique modes that span dissipative, transi-
tive and generative properties. We define tridiagonal k-Toeplitz matrices Sk, where
aj = a and xjyj = (−1)1+(j mod k). Here k is any odd number or 2. If k is any
even number other than 2, spectra of Sk is identical to that of S2 of corresponding
dimensions.

Examples:

S2 =



a i 0 0 0 0
−i a −1 0 0 0

0 1 a
. . . 0 0

0 0 . . . . . . . . . 0

0 0 0 . . . a −1
0 0 0 0 1 a



S3 =



a 1 0 0 0 0
1 a i

4 0 0 0
0 4i a 1 0 0

0 0 1 . . . . . . 0

0 0 0 . . . a 1
0 0 0 0 1 a


For Sk with N � k, where N be the dimension of matrix, eigenvalues are

plotted in figure 3. The corresponding values of k are 2, 3, 5, 7, 9, 11 and 13. We
discuss cases with a = 0 without loss of generality as any other constant just
induces a shift in the spectra by the value a. The following observations on spectra
of Sk will be later derived using theorem-1 stated in the first part of this paper.
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Figure 3: Eigenvalues plotted real vs imaginary part. N indicates the dimension of matrix
Sk.
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2.2.1 Observations and claims on Sk

1. All Sk ∈ Cn×n for a fixed k have same limiting spectrum.

2. Spectrum of Sk (plotted real versus imaginary part of eigenvalues of large
dimension Sk) for N � k converges to k distinct curves.

3. Let k be of the form 2m − 1 where m > 1 is a natural number. One of the
k curves traced by eigenvalues is along the imaginary axis if m is even, and
the eigenvalues trace a line on the real axis if m is odd.

Here dimension N of the matrix Sk is taken exactly as an integer multiple of
k. If it is not a multiple of k then r = N mod k number of eigenvalues may
lie outside the k curves traced in complex plane. Note that a general requirement
of symmetry in eigenvalues exists for matrices with alternating zero and non-zero
sub-diagonals; this is shown in the appendix.

2.2.2 Limiting spectra of Sk

In this section we use the procedure described in section 2.1 to explicitly
deriveQk and γ in the three-term recurrence relations of characteristic polynomials
of matrices Sk. This allows us to prove the properties of limiting spectra of matrices
Sk claimed in section 2.2.1 by simply applying the theorems in section 1. As
mentioned before, spectrum of Sk for an even number k reduces to that of S2 and
hence is not discussed further. Let the odd natural number k = 2m − 1 where
m > 1. Let s1 = 2m−6

4 when m is odd and s2 = 2m−4
4 when m is even.

Theorem 2. Characteristic polynomial of any Sk of dimension nk satisfies the
three-term recurrence relation given by

pn(z) = Qk(z)pn−1(z) + (−1)
k+1

2 pn−2(z) (57)

where

Qk(z) =
s1∑
t=0

((
m− t− 1

t

)
z2m−4t−1 −

(
m− t− 2

t

)
z2m−4t−3

)
+ z (58)

when m is odd, and

Qk(z) =
s2∑
t=0

((
m− t− 1

t

)
z2m−4t−1 −

(
m− t− 2

t

)
z2m−4t−3

)
(59)

when m is even.

The proof of the above theorem is provided in the appendix.

Note that we have γ = 1 when m is even and γ = −1 when m is odd. When
we apply theorem-1 and corollary-1 using the above derived values of γ andQk(z),
all observations about the limiting spectra of Sk in section 2.2.1 are proved to be
true in generality.
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2.3 Numerical examples

In this section we present a few example solutions of eigenvalues, both in
the case of a matrix Sk and other general tridiagonal k-Toeplitz matrices Mk. The
polynomial Qk(z) = L has k distinct roots for any point in L. These nk roots can
be well approximated using n Chebyshev roots on line L which become dense in
the limiting case (section 1.1). As pointed before, such evaluations cost O(nk2)
arithmetic operations while numerical evaluations cost O(n2k2). In many appli-
cations where n is large, tracing these curves as the support for eigenvalues using
fewer points on L may be sufficient. As the points on L vary smoothly, these
roots can be viewed as k curves in three dimensional space (X, Y axis representing
real and imaginary parts of z, and Z axis corresponding to L). Therefore limiting
eigenvalues are supported by the curve Qk(z) = L in C− L space.

2.3.1 Sk

1. For a graphic example of S3, we haveQ3(z) : z3−z = LwithL ∈ [−2i, 2i].
For S5, we have Q5(z) : z5 − z3 + z = L, with L ∈ [−2, 2]. For S7 we
have Q7(z) : z7− z5 + 2z3− z = L with L ∈ [−2i, 2i]. These curves, their
projections and eigenvalues for a large N can be seen in figure 4.

2. Note that when k is of the form 4m + 1, spectrum contains real axis as one
of the curve and k of the form 4m + 3 spectrum contains imaginary axis as
one of the curves (Theorem 2).

3. Convergence of the absolute value of eigenvalues of 2× 2 recurrence matrix
i.e. |r±| defined in section 2.1, indicates the convergence to the limiting
spectrum for tridiagonal k-Toeplitz matrices (as shown in appendix using
Widom’s theorems). In figure 5, the maximum, minimum and average of
absolute r are plotted for S3 with N ∈ {3, 6, 9, · · · 300}.
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Figure 4: Traces ofQk = Lwhen L is a purely real or imaginary interval for the Chebyshev
approximation, and corresponding spectrum of matrices Sk.
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2.3.2 Mk

In Mk, when aj = a we can limit our discussion to matrices of the form

M ′k =



0 x1 0 0 0 0
y1 0 x2 0 0 0

0 y2 0 . . . 0 0

0 0 . . . . . . xj 0

0 0 0 yj 0 . . .

0 0 0 0 . . . . . .


.

Here Mk = M ′k + aI and spectrum of the matrix Mk is shifted from that of
M ′k by a value a. In this section we consider examples of M ′5. When we apply
Lemma-1 we get expressions for Q5 and γ for these examples.

Let uj = xjyj ; then

Q5 = z5 −
( 4∑
i=0

ui

)
z3 +

 2∑
i=0

4∑
j=i+2

uiuj

 z (60)

γ = −u0u1u2u3u4 (61)

As an example, xj and yj were taken from uniform disc of radius 1 in the
complex plane and theorem-1 was applied to generate limiting supports for the
eigenvalue distribution. Matrices of dimension 500 are shown in Figures 6 and 7.
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In figure 6,

x =[0.14786− 0.14549i, 0.49296− 0.14926i,−0.49709 + 0.31233i,
− 0.66051− 0.63714i,−0.47679 + 0.10519i]

y =[−0.46743− 0.33319i, 0.23728 + 0.09273i,−0.63907− 0.29653i,
0.52739− 0.24468i,−0.32003 + 0.10717i]

In figure 7,

x =[0.54284 + 0.13073i,−0.38154− 0.59148i,−0.26609− 0.04314i,
− 0.41213 + 0.59500i, 0.10894 + 0.11749i]

y =[−0.33995 + 0.23836i,−0.11798 + 0.00038i, 0.44581 + 0.19947i,
0.59770 + 0.51966i, 0.00649− 0.00344i]

3 Summary

We analyzed the behavior of roots of polynomials with a three-term recur-
rence relation of the form pn+1(z) = Qk(z)pn(z) + γpn−1(z), where the coeffi-
cientQk(z) is any kth degree polynomial, and z, γ are C1. In addition to establish-
ing existence and convergence to a limiting set of roots for generality of variables
in C and any k, useful approximations for roots in case of finite n were derived.
A slower convergence to the limiting set of roots by an order of 1/

√
n was shown

to be possible for some cases, compared to the expected order of 1/n. Relations
for the up-to 2k critical roots which depend on the initial conditions and lie outside
the continuous limiting set, were also derived. These results were applied to eigen-
value problems of tridiagonal k-Toeplitz matrices which are significant for chain
and lattice models. Numerical examples were used as a demonstration of theo-
rems later. These closed-form solutions and approximations can substitute direct
numerical solution of these eigenvalue problems which involve significantly larger
computational effort and are error prone.

Appendix

Proof of theorem 2 :

Let the odd natural number k = 2m− 1. Let s1 = 2m−6
4 when m is odd and

s2 = 2m−4
4 when m is even.

Theorem 2: Characteristic polynomial of any Sk of dimension nk satisfies the
three-term recurrence relation given by

pn(z) = Qk(z)pn−1(z) + (−1)
k+1

2 pn−2(z) (62)
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where

Qk(z) =
s1∑
t=0

((
m− t− 1

t

)
z2m−4t−1 −

(
m− t− 2

t

)
z2m−4t−3

)
+ z (63)

when m is odd, and

Qk(z) =
s2∑
t=0

((
m− t− 1

t

)
z2m−4t−1 −

(
m− t− 2

t

)
z2m−4t−3

)
(64)

when m is even.

Proof. For the matrices Sk we have U(i) =
[
z (−1)i
1 0

]
for 1 ≤ i ≤ k. Also

Uk =
k∏
i=1

[
z (−1)i
1 0

]
. For Sk and Sk+2 we have, Uk+2 =

[
z2 − 1 z
z 1

]
Uk. There-

fore we obtain, det(Uk+2) = −det(Uk) and trace(Uk+4) = z2trace(Uk+2) +
trace(Uk).

Which can also be written as

γk+2 = −γk (65)

Qk+4 = z2Qk+2 +Qk (66)

Corresponding initial Uk matrices with k = 1 and k = 3 are

U1 =
[
z −1
1 0

]

U3 =
[

z3 1− z2

1 + z2 −z

]

We use these initial conditions to solve equation (65) and equation (66).
Thus

det(Uk) = (−1)
k−1

2 (67)

For equation (66), initial conditions are

trace(U1) = z

trace(U3) = z3 − z

With these two initial conditions and recurrence relation (66) we obtain coefficients
ci of Qk where

Qk = trace(Uk) = ckz
k + ck−1z

k−1 + · · ·+ c0
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z13 z11 z9 z7 z5 z3 z Value of k m
0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 -1 3 2
0 0 0 0 1 -1 1 5 3
0 0 0 1 -1 2 -1 7 4
0 0 1 -1 3 -2 1 9 5
0 1 -1 4 -3 3 -1 11 6
1 -1 5 -4 6 -3 1 13 7

Table 1: Coefficients of Qk(z)

Table 1 shows ci values corresponding to first few k. Let f(m,n) be an element
at mth row nth column in table 1. Where m and n start from top right corner. Here
f(m,n) = c2n+1 corresponding to Q2m−1(z). From equation (66) we have

f(m,n) = f(m− 1, n− 1) + f(m− 2, n) (68)

with appropriate initial conditions.
The table 1 can be seen as two pascal triangles one with initial condition 1

and another with initial condition -1. f(m,m − 2t) is the entry in the row m − t
and the column t + 1 of the pascal triangle and that will be

(m−t−1
t

)
. Similarly

f(m,m− 2t− 1) is given by entries in row m− t− 1 and column t+ 1 of another
pascal triangle and this is−

(m−t−2
t

)
. Using the above, we construct the polynomial

as

Q2m−1(z) =
s∑
t=0

((
m− t− 1

t

)
z2m−4t−1 −

(
m− t− 2

t

)
z2m−4t−3

)
+z (69)

when m is odd, and

Q2m−1(z) =
s∑
t=0

((
m− t− 1

t

)
z2m−4t−1 −

(
m− t− 2

t

)
z2m−4t−3

)
(70)

when m is even.

The limiting set C and Widom’s conditional theorems on block-Toeplitz
operators

In the special case of characteristic polynomials of tridiagonal matrices and
the recurrence relation of interest here, the continuous limiting set C can be as well
derived from theorems for existence of the limiting spectrum for block-Toeplitz
matrices. These were shown to exist under certain conditions by H. Widom [14]
and [15]. Extension of this theory to the equilibrium problem for an arbitrary
algebraic curve was presented in a recent article [4], and in this brief note, we
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maintain the notations used there. Here we treat the tridiagonal k-Toeplitz matrix
as a block-Toeplitz matrix. The symbol for the matrix was defined as

A(z) = A0 +A1z
−1 +A−1z (71)

Here,

A(z) =



a1 x1 0 0 zyk
y1 a2 x2 0 0

0 y2
. . . . . . 0

0 0 . . . ak−1 xk−1
xk
z 0 0 yk − 1 ak


The spectrum is determined by an algebraic curve zf(z, λ) = z det(A(z)−λI) and
in this case it is a quadratic polynomial. The limiting spectrum of the tridiagonal
block-Toeplitz matrix is given by all z where both roots of the quadratic polynomial
have same magnitude [14]. This is valid under certain assumptions (named H1,H2,
H3) as shown by Delvaux [4]. Let the quadratic polynomial zf(z, λ) be of the form
a(λ)z2 + b(λ)z + c(λ). Below we show that b and Qk are identical, also showing
that the relevant theorems of Widom and Delvaux can be reduced to derive the
continuous set C in the limiting spectra of tridiagonal k-Toeplitz matrices. The
coefficients have to be evaluated by finding the determinant. To do this, consider a
permutation matrix

J =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

0 ... 0 0 0
1 0 0 0 0


J2 = I and det(J2) = det(J)2 = 1 and det(A(z)) = det(JA(z)J). By applying
the expansion for determinant of such matrices (provided in [7]) to det(JA(z)J)
we get

zf(z, λ) = Πk
i=1xi + z2Πk

i=1yi + zb(λ)

With,

b(λ) =

trace
([
a1 − λ −x1y1

1 0

] [
a2 − λ −x2y2

1 0

] [
a3 − λ −x3y3

1 0

]
· · ·
[
ak − λ −xkyk

1 0

])

Let r± = −b(λ)±
√
b(λ)2−4a(λ)c(λ)
2a(λ) be the roots of quadratic equation zf(z, λ) =

0. In the case of limiting large n it was shown by those authors that the quadratic
polynomial has two roots of equal magnitude. So this gives a corresponding con-

dition |r+| = |r−| =
√
|c(λ)|
|a(λ)| . So the coefficient b(λ) is related to the determinant
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as √
|a(λ)c(λ)| = 1

2 | − b(λ)±
√
b(λ)2 − 4a(λ)c(λ)| (72)

With a change of notation from λ to z, by rewriting b(λ) = Qk(z) and a(λ)c(λ) =
−γ we get,

√
|γ|eiθ = −Qk(z)±

√
Qk(z)2 + 4γ

2 (73)

This also defines the continuous set C for the special case of these matrices, and
implies the same condition on Qk(z) in theorem-1.

Symmetry in spectrum of odd diagonal matrices

Let the diagonals of a square matrix be indexed such that the main diagonal
is zeroth diagonal, and diagonals above and below it are numbered sequentially
using positive and negative integers respectively. Then, odd-diagonal matrices refer
to matrices with non-zero entries only on the odd-numbered diagonals. In this
section we show that a significant reflection symmetry exists in the spectra of all
odd diagonal matrices with constant entries on the main diagonal, including k-
Toeplitz matrices of this kind.

Proposition 1. Suppose two square matrices A,B ∈ Cn×n commute up to a con-
stant k ∈ C, i.e. AB = kBA and B is non-singular, then if λ is eigenvalue of A
with eigenvector x, then kλ is also an eigenvalue with a corresponding eigenvector
Bx.

Proof. From the statement of the theorem,

Ax =λx (74)

AB−1Bx =λB−1Bx (75)

BAB−1Bx =λBx (76)
1
k
ABB−1Bx =λBx (77)

ABx =kλBx (78)

corollary 6. For a square matrix A with zeros on the even indexed diagonals, and
a square matrix B with (1,−1, 1,−1 · · · ) as entries in the diagonal and all other
entries as zeros, the above theorem applies with k = −1. Therefore eigenvalues
of Sk and Mk occur in a ± λ pairs, when the main diagonal consists of constant
entries ′a′.
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