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Abstract

Convergence of iterative algorithms in solving large linear systems is largely affected by the

condition number of the matrix. Preconditioners reduce the condition number of the system

matrix, thereby letting the linear system converge in fewer iterations. First, we perform a

theoretical study on the expected iterations saved due to a general purpose preconditioner

as a function of matrix size, tolerance, condition number and the linear solver (CG or GM-

RES). A metric is suggested for evaluating gains with respect to the iterations required in

preconditioned and non-preconditioned systems, and experimental analysis of the same will be

presented. These experiments explore split Jacobi and Incomplete Cholesky preconditioners

for symmetric positive definite (SPD) matrices. The second part of this work focuses on the

role of error estimators in realizing the gains of a preconditioner. We apply error estimators for

non-preconditioned and preconditioned solvers and compare their significance in both cases.
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Chapter 1

Introduction

Preconditioners have become an essential tool in speeding up linear solvers. Potentially we

stand to gain a lot by using these, as we will see in Figure 1.1. But section 1.5.1 highlights

that using them might turn out to be counter-productive. There might be cases where the

overhead of using a preconditioner might not justify the iterations saved and also cases where

it might make the system harder to solve. This motivates us to revisit and study the effect of

the preconditioners on the the condition number of the system matrix, and the actual number

of iterations saved, especially as an experimental analysis.

Before we address that, we define key concepts that we will be using going forward and

section 1.6 lists our objectives. Then in Chapter 2, we try to answer the above question for at

least a subset of the matrices.

1.1 Condition Number

In general a problem can be written as a function f : X → Y [27] (here X and Y are normed

vector spaces). The condition number describes what happens to a problem when there is a

small change in x ∈ X, i.e how much f(x) changes for a small change in x. A well-conditioned

problem implies a small change in f(x) for a small perturbation in x, whereas a large change

in f(x) for the same would be called an ill-conditioned problem.

In floating point arithmetic, the errors introduced are relative in nature. So we look at

the relative condition number of the problem. For the given problem f , its relative condition

number (κ) can be given as:

κ = sup
‖δx‖→0

(
‖δf‖
‖f(x)‖

)/(‖δx‖
‖x‖

)
(1.1)

1
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The ‖.‖ symbol here refers to the norm of the vector.

1.1.1 Condition Number of a Matrix

For linear systems Ax = b (A ∈ Rn×n, b ∈ Rn and b ∈ Rn ) given a matrix A, there can be

three different ways the condition number can be interpreted.

Suppose for the given matrix A, input x is given and we are required to calculate b. In such

a case, the change in output b corresponding to the perturbation in input x is examined [27].

Using equation 1.1, we can write the condition number of the problem as:

κF = sup
‖δx‖→0

(
‖A(x+ δx))− Ax‖

‖Ax‖

)/(‖δx‖
‖x‖

)
κF = sup

‖δx‖→0

(
‖Aδx‖
‖δx‖

)/(‖Ax‖
‖x‖

)

Then using the definition of a matrix norm (supδ ‖Aδx‖ / ‖δx‖ = ‖A‖) and replacing Ax with

b, we get:

κF =
‖A‖ ‖x‖
‖b‖

(1.2)

We refer to this as the forward condition number. ‖.‖ can be any type of norm.

Similarly, when the input is b and we are required to calculate x, the condition number for

perturbations in b is given by:

κB = sup
‖δb‖→0

(
‖A−1(b+ δb))− A−1b‖

‖A−1b‖

)/(‖δb‖
‖b‖

)
κB = sup

‖δb‖→0

(
‖A−1δb‖
‖δb‖

)/(‖A−1b‖
‖b‖

)

Then using the definition of a matrix norm (supδb ‖A−1δb‖ / ‖δb‖ = ‖A−1‖) and replacing A−1b

with x, we get:

κB =
‖A−1‖ ‖b‖
‖x‖

(1.3)

We call κB as the backward condition number.

The above two quantities were obtained by perturbing x and b. We now perturb A infinites-

2
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imally by δA and fix b. Then the change in x, δx must be such that:

(A+ δA)(x+ δx) = b

Ax+ δAx+ Aδx+ δAδx = b

Using Ax = b and ignoring δAδx, above expression becomes:

δAx+ Aδx = 0

δx = −A−1(δA)x (1.4)

Because of the above equation, we can write the following:(
‖δx‖
‖x‖

)/(‖δA‖
‖A‖

)
≤ ‖A‖

∥∥A−1
∥∥

When A is the perturbed quantity, supremum of the left hand side of equation 1.5 will be

the condition number of that problem. Hence, we can say that:

κ = ‖A‖
∥∥A−1

∥∥ (1.5)

We call the above quantity as the condition number of the matrix A. It is visible upon

little speculation that the condition number of a matrix is κ = κB × κF . This quantity is an

important indicator in many applications, as we will see later.

1.2 Iterative solvers

A primitive classification of Linear solvers would be into Direct and Iterative solvers. Direct

solvers, though more robust, are cost prohibitive when size of matrix ’N ’ increases as they scale

as O(N3) [5]. The advantage of iterative schemes is that for each iteration, the operation count

increases by a factor of O(N2) only. In most cases they require only a few iterations (much less

than N) to converge. Moreover, most of these methods are able to utilize the sparsity of the

matrices very well. In fact for matrices with sizes in millions and billions, iterative methods are

the only viable option.

We explore a certain subset of iterative methods called the Krylov subspace methods [14].

Specifically, we look at two Krylov Methods called the Conjugate Gradient Method and the

GMRES (Generalized Minimal Residual) method.

3
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1.2.1 Conjugate Gradient

The method of Conjugate Gradient can be interpreted as the solution to an optimization prob-

lem with the objective function f(x) = xTAx− bTx+ c (where A ∈ Rn×n is Symmetric positive

definite [13], b ∈ Rn, c ∈ R and x ∈ Rn is the parameter). For the objective function to have a

maxima, the matrix A must be positive definite. Moreover, if the matrix A is symmetric, then

solving the optimization problem is equivalent to solving Ax = b because the function is convex

(∇2 = A which is symmetric positive definite) and ∇f(x) = b− Ax.

The method looks for the solution ’x’ in A-conjugate directions. Two vectors ’pi’ and ’pj’

are said to be A-conjugate if pTi Apj = pTj Api = 0. We choose x to be a linear combination of

these search directions:

x =
n∑
j=1

αjpj

For simplicity, we will assume the starting vector x0 = 0 now and for our experiments too.

A-conjugacy ensures linear independence of pj. As a result, n such vectors spans Rn.

Algorithm 1 Conjugate Gradient

Require: A, b

x0 = 0

r0 = b− Ax0

p0 = r0

for j = 1 to N do

αj =
rTj−1rj−1

pTj−1Apj−1

xj = xj−1 + αjpj−1

rj = rj−1 − αjApj−1

βj =
rTj rj

rTj−1rj−1

pj = rj + βjpj−1

end for

In algorithm 1, if the iteration is continued for ’N ’ steps, we converge to the exact x when

the computing device has sufficient precision. Generally for iterative methods, we need the

error/residue to be within a certain tolerance, and for a well conditioned matrix, the tolerance

is reached much before N iterations. CG requires minimal additional storage space and is the

method of choice for solving SPD systems.

4
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1.3 Generalized Minimal Residual method(GMRES)

As the name suggests, the method aims to minimize the residue (specifically, the 2-norm of

the residue) [25]. At the ’nth’ iteration, the method seeks the least squares solution of the

n dimension Krylov subspace Kn = Kn(A, b) = span {b, Ab,A2b, . . . , An−1b} [14]. GMRES

calculates an orthonormal basis in each iteration using Arnoldi’s iteration and finds the best yn

which minimizes the residue for the nth iteration (xn = Vnyn where Vn is the orthonormal basis

for the n dimension Krylov subspace). Formally:

AVn = Vn+1Hn

So the residue at the nth iteration becomes:

‖Axn − b‖ =
∥∥Hnyn − V T

n+1b
∥∥

In algorithm 2, we try to find the yn that will minimize rn. At the end of k iterations, xk = Vkyk.

This poses a storage constraint on the method. For k iterations, all the k vectors must be stored.

Hence, we generally use GMRES method with restarts [4].

GMRES was created as a generalized version of the Minimal Residual Method (MINRES)

[21]. The MINRES method is for symmetric systems only whereas the GMRES methods applies

to non-symmetric systems as well . Since we are limiting our experiments to SPD systems, we

will also be in fact working with MINRES only. The only difference in the algorithm of MINRES

is that instead of the Arnoldi iteration, we do the Lanczos iterations[12].

5
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Algorithm 2 GMRES

Require: A, b, tol

x0 = 0

r0 = b− Ax0

v1 = r0/ ‖r0‖
for j = 1 to N do

hi,j =< Avj, vi >, i = 1, 2, ..., j

v̂j+1 = Avj −
∑j

i=1 hi,jvi

hj+1,j = ‖v̂j+1‖
vj+1 = v̂j+1/hj+1,j

if relative residue < tol then

break

end if

end for

xk = x0 + Vkyk

1.4 Preconditioning Linear Systems

Iterative schemes save operations and utilize the sparsity of the matrix to converge faster. But

what they fail to provide is the robustness that Direct Solvers offer. At times the iterative

scheme might not even converge.

Convergence properties of these linear systems have a great deal of dependence on the con-

dition number of the matrix A. Systems with a higher condition number have been known to

take more number of iterations to converge as compared to problems with a lower condition

number [22]. Determining the condition number is in itself a very hard problem (O(n3) itera-

tions) and one can only get a rough estimate [8]. Preconditioners are applied to problems with

the purpose of reducing the condition number, making the system easy to solve. There are

three general ways of applying a preconditioner to a linear system Ax = b:

• Left preconditioning : M−1Ax = M−1b.

The matrix M is similar to the matrix ‘A’. Hence M−1A should resemble an identity

matrix which has a condition number of 1.

• Right preconditioning: AM−1Mx = b

In this case, we solve the system AM−1y = b first and then we solve for x, since x = M−1y.

Same as the case above, a matrix M which is similar to A will speed up convergence.

6
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• Split preconditioning: M−1
1 AM−1

2 M2x = M−1
1 b

The matrix M splits into M1 and M2 (M = M1M2). The system M−1
1 AM−1

2 y = M−1
1 b is

then solved. Following that, x is solved like so: x = M−1
2 y

The way to apply preconditioners is limited to these three but techniques like adaptive and

variable preconditioning might be also used to get a better output [18, 3]. For a non-singular

M , we can see that the solution of the problem does not change, but the problem itself changes.

Fig 1.1 shows the effect a preconditioner can have on the convergence properties of a linear

system. As evident from the figure, the advantage of using a preconditioner is quite significant.

The residue after 40 iterations is around 10−7 in the preconditioned case whereas in the non-

preconditioned case, it managed to reach 10−1 only.

0 5 10 15 20 25 30 35 40

Iteration number

10 -7

10 -6

10 -5
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10 -3

10 -2

10 -1

10 0

R
e

la
ti
v
e

 r
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s
id

u
e

Not preconditioned
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Figure 1.1: The above figure shows comparison of convergence characteristics of a matrix solved

using Conjugate Gradient with and without a preconditioner
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1.4.1 Incomplete Cholesky Preconditioner

The Cholesky factorization decomposes a Symmetric Positive Definite Matrix A into the prod-

uct of a lower triangular matrix L and its transpose.

A = LLT

This method completely factorizes the matrix, but when the matrix is large and sparse, we can

seek for a sparse approximation of L too. The level of fill-in decides the sparsity pattern of this

sparse approximation L̃. A very common practice is to choose sparsity pattern of L similar

to that of A. This incomplete factorization of A is used as a preconditioner and called the

Incomplete Cholesky preconditioner (zero fill-in)[17]. Higher the level of fill-in [11], more the

number of extra operations required. For large matrices, a high level of fill-in can be a huge

overhead. Hence generally for large and sparse systems, zero fill-in is the default choice. If the

incomplete factorization gives us L̃, then :

A = L̃L̃T + E, L̃(i, j) = 0 if (i, j) /∈ S

where E is the error matrix and S is the sparsity pattern of A. Generally increasing the fill-in

leads to a smaller E. For complete factorization, E will be a zero matrix. For this incomplete

factorization to succeed, it is not sufficient for the matrix A to be symmetric positive definite

(SPD). The ’A − E’ matrix must be SPD (A − E = L̃L̃T ) too. This is not always true which

results in the factorization itself producing negative pivots. There exist ways to make sure

that the factorization succeeds, such as using diagonal shifts, recasting the factorization, using

A-orthogonalization and so on [6, 16].

The advantage of the preconditioner is that it conserves symmetry and positive definiteness

when applied to an SPD system. The Incomplete Cholesky factorizations results in the lower

triangular matrix L̃ and let L̂ (= L̃−1) be its inverse, then the preconditioner is applied in the

following way :

L̂AL̂T L̂x = L̂b

1.4.2 Split Jacobi preconditioner

The Jacobi preconditioner is essentially the inverse of the diagonal matrix of A. This is applied

as a left or right preconditioner to the matrix A [19]. So the Jacobi preconditioner ’D’ is simply:

D = diag(A)

8
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This preconditioner is especially useful for diagonally dominant matrices. But for methods like

Conjugate Gradient, this preconditioner does not ensure an SPD system when applied. So we

apply a modified version of the Jacobi preconditioner, called the split Jacobi preconditioner.

Let D̃ be the split Jacobi preconditioner, then:

D̃2 = diag(A)

When A is Symmetric and Positive Definite, its diagonal contains only positive values,

ensuring the existence of D̃ always.

We call this the split Jacobi Preconditioner which breaks the diagonal matrix into two by

taking its square root. This preconditioner is applied in a split way, the same as we do in

incomplete cholesky preconditioner, i.e. for D̂ = D̃−1:

D̂AD̂D̂x = D̂b

Above is the resultant system we end up after applying the Split Jacobi Preconditioner.

1.5 Related Work

1.5.1 Jacobi vs. ILU preconditioner

There are a rich source of methods for solving linear equations nowadays such as BiCG, QMR,

IDR, CGS. These methods are generally accompanied by a preconditioner which increases the

operation cost but supposedly reduces the iteration count by much more. In their paper [2]

Anzt et al. look at two such preconditioners i.e. the ILU and Jacobi preconditioners.

The ILU (Incomplete LU) preconditioner is similar to the Incomplete Cholesky precondi-

tioner in the sense that it also factorizes the matrix incompletely based on the level of fill-in.

For zero fill-in, the sparsity pattern of L matches to that of the lower triangular part of A and

sparsity pattern of U matches the upper triangular part of A.

In his paper Anzt applies the same ILU and Jacobi preconditioners indiscriminately to

the set of matrices acquired from the Florida Sparse Matrix collection. Their purpose was

to determine if the increased number of operations per iteration was justified by the reduced

number of iterations or not. They compared the speed-up (in terms of time taken) obtained by

the application of these preconditioners and it was found that even though ILU was a better

preconditioner (in terms of iterations reduced), it failed to provide the speedup that Jacobi

gave because of the increased number of operations ILU took. Moreover their results indicated

that Jacobi was a more reliable preconditioner. ILU preconditioners managed to increase the

9
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time taken to converge in more than half the cases whereas Jacobi gave a speed-up more than

one in most cases. This introduces the need for robustness of preconditioners as discussed in

the next section.

1.5.2 Robustness of preconditioners

As discussed in the previous section, randomly applied preconditioners may not give the desired

result. Chow [7] explains the need for robust preconditioning techniques and explains the

pitfalls that come with using preconditioners like ILU. For instance ILU(0) [10] produces very

ill-conditioned L and U for a non-symmetric system [24]. Even techniques like thresholding

and pivoting cannot ensure that the preconditioning will succeed. There have been continued

efforts still to stabilize the ILU preconditioner [1].

Further Benzi [6] in his paper does an in-depth survey for existing preconditioning tech-

niques, their existence, stability and again stresses on the need for robustness of these precon-

ditioners. Zhang and Saad suggest such a multipurpose preconditioner in their paper [28]. We

put our focus on preconditioners for the SPD systems and study their properties as affected by

factors like condition number, tolerance and size. A benchmark for the gain obtained in terms

of iterations can help developers and engineers decide the need for a preconditioner.

1.5.3 Error Estimator for preconditioned systems

Puneet [15] discusses in his paper the significance of error-estimators for methods like Bi-CG

and GMRES. High condition number matrices tend to bring with them a high magnitude of

uncertainty. For example, a matrix with condition number κ, the relative error at kth iteration

(εk = x∗−xk) can be bounded by the relative residue at the kth iteration (rk = b−Axk) in the

following way:
‖rk‖
‖b‖κ

≤ ‖εk‖
‖x∗‖

≤ ‖rk‖κ
‖b‖

Resultantly, in cases when the condition number is too high, an error estimator might be

necessary to avoid stopping prematurely or too late. This paper [15] discusses the accuracy of

residue as an estimate of the error and also how this ”uncertainty” is affected by factors like

condition number of the matrix, forward condition number and backward condition number of

the problem. They show that for high condition number problems, the residue can be many

orders of magnitude larger or smaller the actual error, especially for problems like GMRES.

GMRES specifically minimizes the residue, so one can expect the residue to be much lower

value than the actual error. And as the condition number of the problem increases, so does the

difference between the residue and error. Preconditioning aims to reduce the condition number

10
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of the matrix. So we explore the significance of error estimators for these preconditioned

systems.

1.6 Objectives

We saw how preconditioners can drastically improve the convergence properties of the system. It

was also noted that applying these preconditioners indiscriminately might not have the desired

effect [2]. Hence we try to quantify the computing saved.

We investigate solvers like CG, where we care about preserving symmetry. Only split

preconditioners do so for SPD matrices:

• The Incomplete Cholesky Factorization

• The Split Jacobi preconditioner

Another advantage of using SPD matrices is that they make the theoretical bounds (discussed

in the next chapter) tighter. We try to quantify the iterations saved by these preconditioner

which helps us establish their robustness [6].

Although CG is the preferred solver for SPD matrices, it converges very slowly for high

conditioned matrices. GMRES on the other hand converges much faster in such cases. So we

include GMRES in our analysis too. Later for the same set of solvers and preconditioners, we

extend the work done by my peers [15] and demonstrate the significance of error-estimators.

11
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Chapter 2

Theoretical estimate of gains due to

preconditioners

In this chapter we try to derive an estimate for the iteration gain provided by preconditioners.

We start by simplifying the Chebyshev polynomial which will be further used to simplify the

upper bounds obtained in GMRES and CG. This helps us bound the iterations taken and

ultimately arrive to our estimate.

2.1 Chebyshev Polynomial

Let w = t+
√
t2 − 1 and |t| > 1, then the ith degree Chebyshev polynomial is given by:

Ci(t) =
1

2
(wi + w−i) (2.1)

Also, the ith Chebyshev polynomial can be either an odd or even function, depending on the

value of i. In general we can say that |Ci(t)| = Ci(|t|) and resultantly:∣∣∣∣Ci(1 + c

1− c

)∣∣∣∣ = Ci

(
c+ 1

c− 1

)
(2.2)

Putting t = (c + 1)/(c − 1), w = (
√
c + 1)/(

√
c − 1). Thus for a large i, wi + w−i ≈ wi and

wi + w−i ≥ wi. Combining this with the equation 2.1 and 2.2 we get:

1

|Ci(1+c
1−c)|

≤ 2

(√
c− 1√
c+ 1

)i
(2.3)

12
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2.2 Upper Bound for Relative Residue (GMRES)

We follow the analysis done by Saad [23]. GMRES minimises the residue (b − Ax) obtained

from the Krylov subspace at any step k for a positive definite matrix A. Hence (‖.‖ signifies

the L2 norm henceforth):

‖rk‖ = min
p∈Pk
‖p(A)r0‖

=⇒ ‖rk‖ ≤ min
p∈Pk
‖p(A)‖ ‖r0‖

=⇒ ‖rk‖
‖r0‖

≤ min
p∈Pk
‖p(A)‖ (2.4)

Pk is the set of all monic polynomials (p(0) = 1) with degree less than or equal to k, and rk

refers to the residue after kth iteration.

For all our experiments, we start with a zero vector x0, meaning r0 = b. Assuming that A

can be diagonalized to A = V ΛV −1, equation 2.4 becomes:

‖rk‖
‖b‖

≤ min
p∈Pk

∥∥V p(Λ)V −1
∥∥

=⇒ ‖rk‖
‖b‖

≤ min
p∈Pk
‖V ‖ ‖p(Λ)‖

∥∥V −1
∥∥ (2.5)

Now, p(Λ) is simply a diagonal matrix with the ith diagonal entry being p(λi), where λi is

the ith eigenvalue. Therefore :

‖p(Λ)‖ = max
λ∈Λ
|p(λ)|

So, we can re-write equation 2.5 as:

‖rk‖
‖b‖

≤ κ(V ) min
p∈Pk

max
λ∈Λ
|p(λ)| (2.6)

Here κ(.) refers to the condition number of the matrix. Also, when λ is real (α, β are the

smallest and the largest eigenvalues):

min
p∈Pk

max
λ∈Λ
|p(λ)| ≤ 1

|Ck(α+β
α−β )|

(2.7)

Where ’Ck’ is the Chebyshev polynomial of degree ’k’. Let ’κ’ be the condition number of an

13
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SPD system A. Then, after simplifying the Chebyshev polynomial as seen in equation 2.3, we

can rewrite equation 2.6 as:

‖rk‖
‖b‖

≤ 2

(√
κ− 1√
κ+ 1

)k
(2.8)

To check how close the upper bound is to the actual quantity, we generate random SPD

matrices of size N = 500. We run GMRES for a randomly generated non-trivial right hand

side b to find an x that solves Ax = b. Then the ratio of the upper-bound and observed relative

residue is averaged over all iterations for these sample matrices. Figure 2.1 has the ratio plotted

for 1000 such sample matrices. We see that the ratio averages to 6.83 over all such matrices.

This means the upper bound can be used for analysis.
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Ratio of estimated to observed residue (cond = 1e+03, N = 500) avg = 6.83

Figure 2.1: Ratio of upper bound and observed relative residue (κ = 103, N = 500) avg = 6.83

. This establishes the utility of the theoretical upper bound derived.

14

Page 24 of 63

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

2.3 Upper Bound for Relative A-norm (CG)

A-norm of the error is given by

‖εk‖A =
√

(x∗ − xk)TA(x∗ − xk)

xk being the kth iterate of x and x∗ being the true solution for Ax = b. Similar to GMRES,

Saad’s analysis for CG [23] shows that:

‖εk‖A
‖x∗‖A

≤ 2

(√
κ− 1√
κ+ 1

)k
Similar to what we did for GMRES, here also we generate 1000 random SPD matrices.

They are solved using the Conjugate Gradient method. Ratios of the upper-bound to the

actual quantity are calculated over iterations and averaged. The ratio is plotted for 1000 such

matrices as shown in Figure 2.2.
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Figure 2.2: Ratio of upper bound and observed relative A-norm (κ = 103, N = 500) avg = 3.85

. This establishes the utility of the theoretical upper bound derived.

2.4 Bounds on the gain

Suppose we want to stop the iterations when relative residue < ε and at iteration ’i’ we achieve

a tolerance less than ε. Then using equation 2.8:

‖ri‖
‖b‖
≤ ε

=⇒ 2

(√
κ− 1√
κ+ 1

)i
≤ ε

=⇒ i log

(√
κ+ 1√
κ− 1

)
≥ log

(
2

ε

)
=⇒ i ≥

log
(

2
ε

)
log
(√

κ+1√
κ−1

) (2.9)
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What the above implies is that when we need to reach a tolerance that is less than ε, then we

need to run the algorithm for at most as many times as the ceiling of the quantity on the left

hand side of Equation 2.9.

To verify the validity of Equation 2.9, we fix the condition number and the distribution of

singular values after which we generate random matrices of different sizes. For the right hand

side b, we use the sum of the singular vectors of A. Then these system are solved using the

GMRES method. Figures 2.3 to 2.6 are plots for condition numbers 102 to 105 respectively.

The y axis shows the number of iterations taken to converge to 10−5 and x-axis shows the size of

matrix. What we see is that as these matrices grow in size, they seem to become asymptotic to

a certain line. This illustrates Equation 2.9 and the dependence on condition number and size.

Higher condition numbers appear to draw the iterations taken, away from the upper bound,

whereas increasing size brings it closer to the upper bound. This implies that for low condition

numbers and higher sizes, we operate very close to the upper bound.
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Figure 2.3: Comparison of the iterations taken to the upper bound for a condition number of

102
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Figure 2.4: Comparison of the iterations taken to the upper bound for a condition number of

103
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Figure 2.5: Comparison of the iterations taken to the upper bound for a condition number of

104
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Figure 2.6: Comparison of the iterations taken to the upper bound for a condition number of

105

2.5 Gain

Assuming the left side ’b’ is never trivial, and from equation (2.9), we get the below bounds on

the number of iterations:

1 ≤ i ≤
log
(

2
ε

)
log
(√

κ+1√
κ−1

)
For a preconditioned matrix, lets call its condition number as κp. For the preconditioned

matrix too, the below is true:

1 ≤ ip ≤
log
(

2
ε

)
log
(√

κp+1
√
κp−1

)
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From the above two equations, one can bound the iterations gain (i/ip) by:

log
(√

κp+1
√
κp−1

)
log
(

2
ε

) ≤ i

ip
≤

log
(

2
ε

)
log
(√

κ+1√
κ−1

) (2.10)

2.6 Proposed estimate for the gain

From equation (2.10), we get the lower and upper bound of the gain. The square of the

geometric mean of these bounds is :

G =
log
(√

κp+1
√
κp−1

)
log
(√

κ+1√
κ−1

) (2.11)

Above is our estimate of the iteration gain for preconditioned CG and GMRES. It is important

to note that the above may not be suited for small N.
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Chapter 3

Numerical results

3.1 Experimental Setup

3.1.1 Matrices

Matrices of size 1000 × 1000 were generated using the sprandsym method in MATLAB. This

sprandsym function generates symmetric sparse matrices of the specified density and condition

number. We decided on a matrix density of O(NlogN) (Here N=1000, dimension of the matrix).

Alternatively, we also used few sparse matrices used in practical applications from SuiteS-

parse Matrix collection (Formerly the University of Florida Sparse Matrix Collection) [9]. The

results of these matrices have been mentioned separately in table 3.4.

3.1.2 Preconditioners

The above matrices have two different kind of preconditioners applied to them: Split Jacobi

and Incomplete Cholesky (A ≈ LLT ). The Incomplete Cholesky has zero fill in, meaning the

resultant matrix L will have a sparsity pattern same as that of the original matrix A.

3.1.3 Solvers

We use the GMRES and Conjugate Gradient Method for solving the system themselves and also

their preconditioned counter-parts. As mentioned earlier, the preconditioners are applied such

that they retain their symmetric positive definite property. Hence conditions for convergence

are met for GMRES and Conjugate Gradient for the preconditioned matrices too.

For the purposes of analysis, we use the GMRES method without restarts.
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3.1.4 Stopping criteria

We use the relative residue of the matrix to stop at a specific tolerance for GMRES as well as

Conjugate Gradient. We use the same quantity ‖b− Ax‖ / ‖b‖ for the preconditioned case as a

stopping criteria. Even though for a preconditioned system, the residue would have a different

value and meaning, we chose to keep the quantity similar for both of them because we are

ultimately interested in solving Ax = b.

3.1.5 Gain Comparison

In our experiments below, the gain is calculated as the ratio of the number of iterations taken

to converge without a preconditioner to the number of iterations taken with a preconditioner.

The results are then compared with our estimate (Theoretical Gain) as depicted in equation

2.11.

3.2 Plots (Split Jacobi — Incomplete Cholesky)

For the plots below, we will see the gain for the Split Jacobi (left) and the Incomplete Cholesky

preconditioner (right). For each Ax=b problem solved, the observed gain for GMRES, Conju-

gate Gradient is plotted along with our theoretical estimate.

3.2.1 Constant condition number, Varying tolerances

The condition number for the matrix is kept constant at 100 and the tolerances are varied from

10−3 to 10−6. Figures 3.5 to 3.8 show the plots for the same. For better readability of the

scatter plots, one can refer to table 3.1 for the mean values of the gain.
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Figure 3.1: Observed and Theoretical gain comparison for Split Jacobi (left) and Incomplete

Cholesky (right) preconditioner, for a matrix of size 1000 × 1000 and condition number 100

with a stopping tolerance of 10−3
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Figure 3.2: Observed and Theoretical gain comparison for Split Jacobi (left) and Incomplete

Cholesky (right) preconditioner, for a matrix of size 1000 × 1000 and condition number 100

with a stopping tolerance of 10−4
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Figure 3.3: Observed and Theoretical gain comparison for Split Jacobi (left) and Incomplete

Cholesky (right) preconditioner, for a matrix of size 1000 × 1000 and condition number 100

with a stopping tolerance of 10−5
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Figure 3.4: Observed and Theoretical gain comparison for Split Jacobi (left) and Incomplete

Cholesky (right) preconditioner, for a matrix of size 1000 × 1000 and condition number 100

with a stopping tolerance of 10−6

Split Jacobi mean Gains Incomplete Cholesky mean Gains

Tolerance Theoretical Gain CG Gain GMRES gain Theoretical Gain CG Gain GMRES gain

10−3 1.24 1.26 1.30 4.05 4.08 3.84

10−4 1.24 1.21 1.21 4.08 3.92 3.69

10−5 1.24 1.18 1.16 4.05 3.85 3.61

10−6 1.25 1.17 1.13 4.06 3.81 3.55

Table 3.1: Mean of the respective gains for randomly generated matrices of condition number

100

3.2.2 Varying condition number, Constant tolerance

Now we keep the tolerance fixed at 10−5 and vary the condition number from 102 to 105 as seen

in figures 3.5 to 3.8. For better readability of the scatter plots, one can refer to table 3.2 for

the mean values of the gain.
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Figure 3.5: Observed and Theoretical gain comparison for Split Jacobi (left) and Incomplete

Cholesky (right) preconditioner, for a matrix of size 1000 × 1000 and condition number 102

with a stopping tolerance of 10−5
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Figure 3.6: Observed and Theoretical gain comparison for Split Jacobi (left) and Incomplete

Cholesky (right) preconditioner, for a matrix of size 1000 × 1000 and condition number 103

with a stopping tolerance of 10−5
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Figure 3.7: Observed and Theoretical gain comparison for Split Jacobi (left) and Incomplete

Cholesky (right) preconditioner, for a matrix of size 1000 × 1000 and condition number 104

with a stopping tolerance of 10−5
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Figure 3.8: Observed and Theoretical gain comparison for Split Jacobi (left) and Incomplete

Cholesky (right) preconditioner, for a matrix of size 1000 × 1000 and condition number 105

with a stopping tolerance of 10−5

Split Jacobi mean Gains Incomplete Cholesky mean Gains

Condition Number Theoretical Gain CG Gain GMRES gain Theoretical Gain CG Gain GMRES gain

102 1.25 1.17 1.13 4.06 3.81 3.55

103 1.28 1.20 0.95 4.36 4.52 3.40

104 1.33 1.23 0.67 4.70 5.26 2.68

105 1.38 1.00 0.58 5.13 3.46 1.66

Table 3.2: Mean of the respective gains for randomly generated matrices with a stopping

tolerance of 10−5

3.3 Results for the practical application matrices

As mentioned earlier, we also ran our experiments on some matrices that we find in real world

use. These matrices are mostly high in condition number and hence the results for lower

condition numbers are not available in this case. For these we solved for 100 random b for each

matrix and have tabulated the gains obtained in table 3.4. The tolerance was set as 10−5 for

these matrices. For simplicity, we will be referring to these matrices by the number assigned to

them (Matrix no. 1, Matrix no. 2 and so on).
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No. Matrix Description Type of problem Size(N) Link

1 S Admittance Matrix Power Network Problem 1138 link

2 Stiffness Matrix Structural Problem 1074 link

3 FE Approximation to biharmonic on plate Structural Problem 960 link

4 S Admittance Matrix Power Network Problem 685 link

5 Matric from MSC/NASTRAN Structural Problem 726 link

6 Mixed-effects model Statistical/Mathematical Problem 2541 link

7 Free Vibration Mass Matrix Materials Problem 4875 link

8 S Admittance Matrix Power Network Problem 494 link

9 S Admittance Matrix Power Network Problem 662 link

10 Structure from NASA Structural Problem 2416 link

Table 3.3: Matrix Descriptions

Original Split Jacobi mean Gains Incomplete Cholesky mean Gains

No. Condition no. Theoretical Gain CG Gain GMRES gain Theoretical Gain CG Gain GMRES gain

1 106.93 4.18 1.18 0.60 20.59 8.72 3.89

2 107.41 83.01 6.99 5.07 562.36 39.50 18.79

3 104.58 1.07 1.16 1.25 5.28 5.42 5.54

4 105.63 7.10 2.38 1.42 20.57 6.72 3.97

5 105.62 18.98 7.29 13.36 81.44 21.42 36.69

6 102.39 5.62 4.75 5.00 270.34 75.98 70.00

7 102.36 2.94 2.55 1.12 65.20 36.97 23.55

8 106.38 5.53 1.19 0.70 16.22 5.35 3.33

9 105.90 4.22 2.73 1.48 11.74 8.54 4.66

10 103.24 1.36 1.32 3.95 19.53 23.22 34.30

Table 3.4: Mean of the respective gains for matrices used in practical applications. The gain

values are averaged over 100 trials of random b. The description of the respective matrices can

be found in table 3.3

3.4 Inferences

The plots 3.5 to 3.8 showed that the estimated gain was very close to the observed gain,

especially for relatively smaller condition numbers. As we increase the condition number, we

notice a very prominent trend: the observed gains gradually move below the estimated gain

with the increase in condition number. The GMRES gains move further down as compared to

CG gains.
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3.4.1 Lower observed gain for higher condition number

This can be attributed to the fact that the gain in equation 2.11 assumes the residue of their

respective systems as the stopping criteria. For example, the relative residue for a linear system

Ax = b and a left preconditioned linear system MAx = Mb are respectively:

r =
‖b− Ax‖
‖b‖

, rpre =
‖M(b− Ax)‖
‖Mb‖

The upper bounds in equation 2.11 hold when rpre is used for stopping the preconditioned

system, whereas we use r everywhere as the stopping criteria. M matrix is supposed to be

similar to A−1, hence naturally it’ll have a condition number similar to A−1 which is equal to

the condition number of A. As the condition number increases, so does the difference between

r and rpre and hence observed gain deviates from the estimated gain.

3.4.2 Lower gains for GMRES as compared to CG

The reason behind this is also the stopping criteria. We know that GMRES minimizes the

2-norm of the residue. GMRES does so for the system Ax = b but for the preconditioned

system, it minimizes rpre instead. Meaning at iteration k, rpre might have gone below the given

tolerance, but not r because GMRES was minimizing rpre in this case. The implication is that

it takes more number of iterations than expected to converge in the preconditioned case. CG

which minimizes the A-norm isn’t as affected by the change in parameter for stopping.

3.4.3 Effect of tolerance on Gain

Our estimate does not account for the change in tolerance. Meaning the gain should be the

same irrespective of the tolerance. We know that for really high tolerances we will get unex-

pected results because of limitations in finite arithmetic. Our plots show that for conservative

tolerances, the observed gain does not change too much, if at all. Figure 3.9 shows how observed

gain varies with tolerance. Even on log scale the gain drops sub-linearly.
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Figure 3.9: The figure shows how the gain behave as tolerance decreases

3.4.4 Effect of N on Gain

We see that in figures 2.3 to 2.6, as we increase N (dimension of the matrix), the iterations taken

to converge to a specific tolerance tends to grow with N and eventually becomes asymptotic.

Figure 3.10 shows the change in gain with the dimension. We see that for a fixed condition

number, we get better gains as N increases. Our estimated gain also shows a similar trend.
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Figure 3.10: The avg estimated and observed gain were averaged (averaged over 1000 matrices)

for N=100, 200, 500, 1000, 1500 and plotted for a fixed condition number

3.4.5 Results obtained from real world matrices

In most of the cases in table 3.4, we see trends similar to what we saw for randomly generated

matrices. The theoretical gain is close to the estimated gain for matrices with smaller condition

number. But as we increase the condition number, the distance between theoretical and actual

gains widens as seen for Matrix 2, which has a condition number higher than 107. In most cases

we do see the CG gain being higher than that of GMRES.

For matrix 6 we see that in the case of Cholesky, we get Theoretical gain of around 270

but the actual gains are much lower. This is because the preconditioned system converges to a

35

Page 45 of 63

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

tolerance of ≈ 10−15 in a single iteration. This has underestimated the actual gain.
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Chapter 4

Gains of a preconditioner with and

without error estimation

4.1 Problems with the residue as a stopping criteria

For an iterative linear solver, the error at the kth iteration is given by:

εk = x∗ − xk

One would like to stop the iterations when the error εk reaches a certain tolerance. Unfor-

tunately, x∗ is the quantity we are trying to find, meaning we cannot use εk as our stopping

criteria. Instead, residue/relative residue is used to stop more often than not. The residue

becoming smaller does imply that we are getting closer to the solution. But the residue being

below a certain tolerance does not ensure that the actual error is below that tolerance too [15].

In fact in the worst case, the relative residue and relative error might be off by a factor of κ

(Condition number of the matrix), i.e.:

‖rk‖
‖b‖κ

≤ ‖εk‖
‖x∗‖

≤ ‖rk‖κ
‖b‖

Figure 4.1 shows how far the relative residue is from the actual error. They are almost off

by a factor of 103 for a matrix of condition number 104. If we use the residue to stop, then

we will certainly stop prematurely and we might not have the accuracy that we actually need.

This gave to the rise of error-estimators. These are values that help us approximate εk at the

cost of a fixed number of additional iterations. As seen in the figure, the error estimator does

a very good job of estimating the error, in-spite of the high condition number.
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Figure 4.1: Actual and estimated error estimates for a matrix of dimension 1500 and condition

number 104

For iterative methods, the actual error at kth step is given by εk = (x∗ − xk). So we can

derive a basic 2-norm error estimator in the following way:

εk − εk+1 = (x∗ − xk)− (x∗ − xk+1)

=⇒ εk − εk+1 = xk+1 − xk

Now if we take the telescopic sum of the left hand side over d steps, then:

=⇒ εk ≈ xk+d − xk
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We ignore εk+d from the above expression because for a big enough d, it would be too small

as compared to εk. Another assumption is that the algorithm is converging fast otherwise εk+d

and εk might not be too far apart. d is then called the delay in estimation. Meaning, to get the

error estimate at kth step, we would need to run the algorithm for d more steps.

A similar idea is used to derive the error estimators in general. The above is an O(N)

estimator, where N is the dimension of the matrix. Also, within this chapter ’residue’ will

imply relative residue and ’error’ will imply relative error unless specified otherwise.

4.2 Quantifying the uncertainty

As seen in Figure 4.1, the residue introduces some uncertainty with it. The question now arises,

if we can enumerate in some way, how well a quantity estimates the error. We use the method

used by Puneet [15] to quantify it. We take the difference between the actual error and the

estimator divided by the minimum of the two. We call this the Uncertainty Ratio (U.R)[15]

which is given by:

U.R =
1

m

m∑
k=1

|estimated relative error - relative error|
min(estimated relative error, relative error)

The uncertainty is then averaged over the total number of iterations m. It is also worth dis-

cussing the minimum in the denominator. The estimator might undercompute or overcompute

depending on the error estimator. If the error estimator over-estimates the error, then that

leads to greater number of iterations or over-computing and vice versa. The minimum ensures

that we take note of the under-computing or over-computing that might happen.

4.3 l2 Error Estimation for Conjugate Gradient

In the method of Conjugate Gradient, the more popularly used measures for stopping are the

l2 norm or A-norm of the error. We see in our figure 4.1 that the relative A-norm of the error

tends to underestimate the actual error by a huge margin and residue tends to overestimate

the same. Thus we look at an error estimator for Conjugate Gradient below:

The error at the kth iteration of the Conjugate Gradient method is given by:

εk = x∗ − xk

Here x∗ is the true solution to the equation Ax = b and xk is the value of x at the kth iteration

of the Conjugate Gradient method. Now we look at the difference in errors at successive
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iterations:

εk − εk+1 = (x∗ − xk)− (x ∗ −xk+1)

=⇒ εk − εk+1 = xk+1 − xk
=⇒ εk − εk+1 = αk+1pk+1

pk+1 and αk+1 are the same as defined in the Conjugate Gradient method. When we take the

telescopic sum of these differences over d iterations, then we get:

εk − εk+d =
k+d∑
j=k+1

αjpj

=⇒ εk ≈
k+d∑
j=k+1

αjpj (4.1)

We can choose to ignore εk+d since for a large enough d, εk � εk+d. The term d is referred

to as the delay because we need to iterate at least k + d times to get an estimate of error at

the kth iteration. We will be using equation (4.1) as our l2 error estimate for all experiments

henceforth. The estimator is an O(N) estimator.

In the preconditioned case, we can use the same estimator because the algorithm is such

that it allows us to same pj that we expected in the non preconditioned case [26].

4.3.1 Results

We took four SPD matrices (1500 × 1500) with different condition numbers and varied their

backward condition number by changing the right hand side b. We then solved them and plotted

their uncertainty ratio for the residue as well as the error estimator as seen in Figures 4.2 and

4.4 respectively. We did the same for preconditioned systems as shown in Figures 4.3 and 4.5.

The preconditioner used is the Incomplete Cholesky Preconditioner.
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Figure 4.2: Observed uncertainty ratio for the residue of CG
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Figure 4.3: Observed uncertainty ratio for the residue of PCG
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Figure 4.4: Observed uncertainty ratio for the error estimator of CG
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Figure 4.5: Observed uncertainty ratio for the error estimator of PCG

4.3.2 Inference

We notice that the Uncertainty Ratio of residue in both the preconditioned as well as the non-

preconditioned case is pretty high. They show significant increase with the increase in condition

number. The preconditioned case shows higher uncertainty for residue, mostly due to the fact

that preconditioning changes the problem itself. Residue for the new preconditioned system is

now M−1(b−Ax) and not (b−Ax) and this produces even more uncertainty. The estimators do

well in both the preconditioned and non-preconditioned case, even for high condition numbers.

Unlike the residue, uncertainty in estimators does not increase with the change in backward

condition number and this further proves its robustness.

The preconditioned error estimator works better than in the general case, very distinctly

showing that error estimators with preconditioners is not only a necessity but also yields better

results.

44

Page 54 of 63

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

4.4 l2 Error Estimation of GMRES

For solving GMRES, we use Puneet’s estimator [15] which is a small modification of the Meu-

rant’s estimator [20].

GMRES produces an orthonormal set of basis vectors Vk for the k dimensional Krylov

subspace at the kth iteration. Let d be the delay. Then the Hessenberg matrix can be split into

a block of 4:

Hk =

(
Hk−d Wk−d

Y T
k−d H̃k−d

)
and let

γk−d =
hk−d+1,k−d(ek−d, H

−1
k−de1)

1− hk−d+1,k−d(ek−d, H
−1
k−dwk−d)

where wk−d = Wk−dH̃
−1
k−de1 and

δk+1 =
h2
k+1,k

1 + h2
k+1,ktkk

and

uk = δk+1tk

where tk is the final column of (HT
k Hk)

−1 and tkk its final element. The resulting error estimate

at the (k − d)th iteration proposed by Meurant is:

χ2
k−d

‖r0‖2 = γ2
k−d

∥∥∥H̃−1
k−de1

∥∥∥2

+
∥∥γk−dH−1

k−dwk−d + (ek−d, H
−1
k−de1)uk−d

∥∥2

In their paper, they add an extra term to the expression that prevents unstable overshoots

in estimation. This estimator is given by:

χ2
k−d

‖r0‖2 =

∣∣∣∣γ2
k−d

∥∥∥H̃−1
k−de1

∥∥∥2

+
∥∥γk−dH−1

k−dwk−d + (ek−d, H
−1
k−de1)uk−d

∥∥2 −
∥∥(ek, H

−1
k e1)uk

∥∥2

∣∣∣∣
The ’absolute’ stops the estimator from becoming negative in non converging situations. It

is an O(k2) estimator, where k is the current iteration number. Because GMRES is generally

used with restarts, this turns out to be a small quantity.

For the preconditioned case, we use ‖L(error estimate)‖ (where L is lower triangular matrix

produced in incomplete Cholesky)to calculate the actual error. However, this takes O(N2)
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operations. In order to save operations, one can also find the infinity norm of L and multiply it

with the error estimate. This will be less accurate than our plotted estimate but more accurate

than the residue nonetheless.

4.4.1 Results

We choose a similar setup as for CG in GMRES too. Figures 4.6 and 4.8 show the residue and

error estimator respectively. We did the same for preconditioned GMRES as shown in Figures

4.7 and 4.9.
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Figure 4.6: Observed uncertainty ratio for the residue of GMRES
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Figure 4.7: Observed uncertainty ratio for the residue of preconditioned GMRES
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Figure 4.8: Observed uncertainty ratio for the error estimator of GMRES
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Figure 4.9: Observed uncertainty ratio for the error estimator of preconditioned GMRES

4.4.2 Inference

In the general case, the residue turns out to be a very bad estimator of the error. This is

because GMRES minimizes residue causing it to be much lower than the error. Unlike CG,

the preconditioned case brings down the uncertainty in residue but dip is not very noteworthy.

This means the uncertainty in residue is still significantly high.

The correlation between uncertainty in residue and condition number remains the same as

in CG. Higher condition number leads to a higher uncertainty in the residue.

The error estimators work better in both the cases and do not change with the change

in backward condition number. This shows that yet again, there is a strong need for error

estimators even in preconditioned systems using iterative methods.
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