
Artificial Neural Network-augmented stabilized finite
element method

Sangeeta Yadav∗ , Sashikumaar Ganesan
aDepartment of Computational and Data Sciences, Indian Institute of

Science, Bengaluru, 560012, Karnataka, India

Abstract

An artificial neural network-augmented Streamline Upwind/Petrov-Galerkin
finite element scheme (SPDE-NetII)† is proposed for solving singularly per-
turbed partial differential equations. In particular, an artificial neural net-
work framework is proposed to predict optimal values for the stabilization
parameter to be used in Streamline upwind/Petrov-Galerkin stabilization
schemes. The neural network is trained by minimizing a physics-informed
cost function, where the equation’s mesh and physical parameters are used as
input features. Further, the predicted stabilization parameter is normalized
with the gradient of the solution to treat the boundary/interior layer region
adequately. The proposed approach suppresses the undershoots and over-
shoots in the stabilized finite element solution and outperforms the existing
neural network-based partial differential equation solvers such as Physics-
Informed Neural Networks and Variational Neural Networks.
Keywords:
Singularly Perturbed Partial Differential Equations, Streamline
upwind/Petrov-Galerkin, Finite Element Method, Artificial Neural Network

1. Introduction

The convection-diffusion partial differential equation (PDE) is used in
numerous applications to model phenomena involving the transport of par-
ticles, energy, and species concentration. When convection dominates over

∗Corresponding author
†For Reviewer 1,

For Reviewer 1 and 2 both

Preprint submitted to Journal July 5, 2023

diffusion, this PDE becomes a Singularly Perturbed Partial Differential Equa-
tion (SPPDE). Finding an accurate numerical solution for SPPDEs is chal-
lenging due to the presence of interior and boundary layers. To mitigate
spurious oscillations in the numerical solution of SPPDEs, stabilization tech-
niques are often used with standard numerical methods like finite differ-
ence, finite volume, and finite element methods (FEM). These techniques
include slope limiting, flux limiting, artificial dissipation, etc. [1, 2]. In
nearly all finite element stabilization methods, the addition of artificial diffu-
sion is a crucial idea. Among them, the Streamline/upwind Petrov-Galerkin
(SUPG) stabilization method is the most widely employed for solving SP-
PDEs [3, 4, 5, 6, 7, 8, 9, 10, 11]. While SUPG suppresses spurious oscillations,
it requires a well-tuned stabilization parameter to mitigate undershoots and
overshoots in the numerical solution. However, determining the optimal value
of the stabilization parameter is highly challenging [12, 13], and heuristic ap-
proaches are often employed.
In recent literature, several neural network-based solvers have been proposed
as alternatives to mesh-based numerical methods for solving PDEs. One
such technique is Physics-Informed Neural Networks (PINNs) introduced by
Raissi et al. (2019) [14]. PINNs employ artificial neural networks (ANNs)
to estimate the pointwise solution by minimizing the residual of the given
differential equation. These neural network methods typically follow an unsu-
pervised or semi-supervised approach, where labeled data is not required for
training the neural network. Instead, the cost function of the neural network
is defined as the residual of the governing PDE, which is implicitly minimized.
Another variant of this approach, known as variational-PINNs (VPINNs), has
been proposed by Kharazmi and Montazeri (2019) [15]. VPINNs utilize the
residual of the variational form of the PDEs as the cost function. A similar
technique called VarNet [16] incorporates a Reduced-Order Model (ROM)
for efficient computations.
Recently, Kharazmi and Montazeri (2020) [17] introduced a novel framework
called hp-variational PINNs (hp-VPINNs), which allows for hp-refinement
of the approximate solution. Despite the robustness and promising perfor-
mance of neural network-based solvers, it has been observed that mesh-based
methods remain efficient and often achieve better accuracy with finer mesh
resolutions. Furthermore, network-based solvers exhibit limited performance
on Singularly Perturbed Partial Differential Equations (SPPDEs), requiring
additional stabilization techniques. These observations motivate the present
study, where we propose augmenting the Streamline upwind/Petrov-Galerkin

2

Finite Element Method (SUPG-FEM) with neural networks to obtain an op-
timal stabilization parameter.
Several ANN-augmented stabilization schemes have been proposed in the
literature. Schwander et al. [18] proposed stabilization of Fourier Spectral
Methods (FSMs) using artificial dissipation. The authors utilize ANNs to es-
timate the regularity of the local solution, identifying regions where artificial
dissipation can be added effectively. Similarly, Discacciati et al. [19] em-
ployed a similar approach to stabilize Runge-Kutta discontinuous Galerkin
(RKDG) methods. Veiga and Abgrall [20] proposed a method for parameter-
free stabilization of FEM using ANNs. Ray and Hesthaven [21, 22] utilized
multilayer perceptrons to identify troubled cells and perform slope limiting
for high-order FEM, effectively controlling spurious oscillations in the solu-
tion.
For a detailed review of ANN-augmented methods in computational fluid
dynamics, we refer the reader to Lye et al. [23]. Notably, most of the ex-
isting ANN-augmented stabilization methods primarily employ supervised
learning, requiring a significant amount of labelled data to train the ANN.
In our previous study on ANN-augmented stabilization [24], we employed
an L2-error minimization approach to train an ANN called SPDE-Net. This
approach involved minimizing the error in the numerical solution, which ne-
cessitated the availability of the analytical solution.
A similar L2-error minimization approach was used by Tomasso et al. [25] for
solving two-dimensional SPPDEs. Similar schemes have also been developed
for various numerical methods, including Fourier Spectral and discontinuous
Galerkin. For instance, Lukas et al. [26] proposed a local ANN to estimate the
local solution regularity, effectively controlling oscillations in Fourier Spectral
methods using nonlinear artificial viscosity. In another work, Jian et al. [27]
demonstrated the potential of ANNs for shock capturing in discontinuous
Galerkin methods. Their proposed ANN model mapped the element-wise
solution to a smoothness indicator for determining the artificial viscosity.
In this paper, we propose an ANN-augmented stabilization strategy for SUPG-
FEM. In particular, we strive to train the ANN using the residual of the
differential equation, eliminating the need for an analytical solution. The
proposed approach follows unsupervised neural network training, unlike the
existing ANN-augmented stabilized methods. The main contributions of this
study are summarized below.

• A hybrid approach combining the strengths of the SUPG-FEM and

3

ANN, where an ANN predicts an optimal value of the stabilization
parameter and is consequently used in the SUPG-FEM framework to
solve SPPDEs.

• A physics-informed cost function based on a posteriori error estima-
tor [28] to train the neural network. Unlike the existing approaches in
the literature, this cost function does not require the analytical solution
of the differential equation.

• The gradient normalization is applied to the predicted global stabi-
lization parameter (τ̂K) to incorporate the dynamics from the inte-
rior/boundary layers regions.

2. Preliminaries

Let Ω ⊂ R2 be a bounded domain with a polygonal Lipschitz-continuous
Dirichlet boundary denoted by ΓD := ∂Ω. We adopt standard notations, such
as Lp(Ω) and Wk,p(Ω), where 1 ≤ p < ∞ and k ≥ 0, to represent Lebesgue
and Sobolev spaces, respectively. Furthermore, we denote the Hilbert space
by Hk(Ω), which is equivalent to Wk,2(Ω). The inner product in the L2(Ω)
space is represented by (·, ·), and |c| signifies the Euclidean norm of c ∈ R.

2.1. Convection-Diffusion Equation
We consider a two-dimensional convection-diffusion equation

−ε∆u+ b · ∇u = f in Ω,

u = ub on ∂Ω,
(1)

where ε > 0 is the diffusion coefficient, b = (b1, b2)
T is the convective velocity,

f ∈ L2(Ω) is an external source term, u is the unknown scalar solution. Here,
ub ∈ H1/2(∂Ω) is a known function.

2.2. Weak Formulation
Let U := H1(Ω) denote the solution space. We can derive the weak form

of equation (1) by multiplying it by a test function v ∈ V := H1
0(Ω) and then

integrating over Ω. Here,

H1
0(Ω) := {v ∈ U and v = 0 on ΓD}.

4

By subsequently applying integration by parts, we obtain the following weak
form:

Find u ∈ U such that for all v ∈ V

a(u, v) = (f, v), (2)

where the bilinear form a(·, ·) : U × V → R is defined by

a(u, v) =

∫
Ω

ε∇u · ∇v dx+

∫
Ω

b · ∇u v dx (3)

(f, v) =

∫
Ω

f v dx. (4)

Let Ωh represent an admissible decomposition of Ω into a finite number of
cells, and let K denote a single cell within Ωh. Additionally, consider Uh ⊂ U
and Vh ⊂ V as finite-dimensional subspaces. Using these finite-dimensional
subspaces, the discrete formulation of equation (2) can be expressed as fol-
lows:

Find uh ∈ Uh such that

ah(uh, v) := ε (∇uh,∇v) + (b · ∇uh, v) = (f, v) , (5)

for all v ∈ Vh. Here, the subscript h in ah(·, ·) denotes the integral over
Ωh. The standard Galerkin form (5) is widely recognized for its tendency to
generate spurious oscillations in the solution, especially when boundary and
internal layers are present. These oscillations can lead to inaccuracies and
instabilities in the computed results. To mitigate these issues and ensure a
more accurate and stable solution, the Streamline-Upwind Petrov-Galerkin
(SUPG) stabilization term is introduced in the discrete formulation (5).

2.3. SUPG stabilization
In the SUPG method, a residual term is introduced into the variational

form of the equation in the streamline direction. This additional term helps
to improve the accuracy and stability of the solution.

Let us define R(u) as the residual of the equation (1). The residual
represents the difference between the equation’s left-hand and right-hand

5

sides and measures the extent to which the equation is satisfied. It can be
expressed as:

R(u) = −ε∆uh + b · ∇uh − f. (6)

Now, the SUPG weak form reads:

Find uh ∈ Uh such that:

aSUPG
h (uh, v) = (f, v) ∀ v ∈ Vh, (7)

where

aSUPG
h (uh, v) = ε(∇uh,∇v) + (b · ∇uh, v)

+
∑
K∈Ωh

τK(−ε∆uh + b · ∇uh − f,b · ∇v)K .

Here, the parameter τK ∈ R is a non-negative stabilization parameter cho-
sen by the user. This parameter plays a critical role in determining the
accuracy of the approximated solution. The choice of τK directly influences
the behaviour of the numerical method and is crucial for controlling both
oscillations and smearing effects.

Selecting an appropriate value for τK is essential to balance suppressing
oscillations and avoiding excessive numerical diffusion. If τK is set to a large
value, it can lead to unintended smearing of the solution, blurring important
features and reducing the overall accuracy. Conversely, if τK is chosen to be
too small, it may not effectively dampen oscillations, resulting in spurious
fluctuations in the computed solution.

The SUPG scheme faces a significant challenge in determining the opti-
mal global stabilization parameter τK for general cases. While a standard ex-
pression exists for the one-dimensional scalar convection-diffusion equation,
a general expression remains unknown. Therefore, a technique is required to
find the optimal value of the stabilization parameter adaptively.

Machine learning, particularly ANNs, has experienced significant ad-
vancements in recent years and has been applied across various scientific
fields due to their universal approximation capabilities [29]. In this work, we
leverage the power of ANNs to approximate the SUPG stabilization param-
eter.

6

2.4. Error Metrics
We use the following metrics to calculate numerical errors in the solution

obtained with the predicted τ̂ . We will use them for comparison against the
baselines as explained in section 3.3.

L2-error: ∥eh∥0 = ∥uh − u∥L2(Ω) =

(∫
Ω

(uh − u)2dx

) 1
2

Relative l2-error: ∥eh∥0,ℓ =
N∑
i=1

∥uh(xi)− u(xi)∥0,ℓ
∥u∥0,ℓ

, xi ∈ Ωh

H1 seminorm-error: |eh|1 = ∥∇uh −∇u)∥L2(Ω) =

(∫
Ω

(∇uh −∇u)2dx

) 1
2

L∞-error: ∥e∥L∞(Ω) = ess sup{|uh − u| : x ∈ Ω}.
(8)

Here, τ̂ is the stabilization parameter predicted by SPDE-NetII, u is the
known analytical solution, and uh is the SUPG solution calculated with τ̂ .

3. SPDE-NetII

We introduce a novel framework, SPDE-NetII, which utilizes a neural
network-based approach to estimate a near-optimal stabilization parameter.

3.1. Network Architecture
The neural network architecture of the proposed SPDE-NetII framework

is depicted in Figure 1. The fully connected network in SPDE-NetII consists
of a few hidden layers, with an input layer size of four. We apply a sigmoid
non-linearity for the output layer and use a tanh activation function after
each hidden layer. The selection of hyperparameters and the number of
hidden layers will be discussed in subsequent sections.

It is important to note that this architecture is designed explicitly for
equations with constant coefficients. However, in Section 3.2, we propose
an alternative variant of the architecture to handle equations with variable
coefficients.

7

Figure 1: SPDE-NetIIθ: Proposed Network Architecture to compute the stabiliza-
tion parameter τ̂ , where Pe(I) = |b|h/2ε and the θ in the subscript denotes the
weights of the network.

The backpropagation algorithm is employed in this study to optimize the
network parameters θ and plays a crucial role in training neural networks.
To quantify the error in the network’s predictions, a specific cost function is
utilized, combining a residual-based term and a cross-wind derivative term.
This cost function, proposed for finite element simulations in [12, 30], is
expressed as follows:

Λ(θ) =
∑
K∈Ω

(
∥ − ε∆uh + b · ∇uh − f∥20,K + ∥q

(
|b⊥ · ∇uh|

)
∥0,K

)
,

θ∗ = argmin
θ

(Λ(uh(θ))) .

(9)

The objective of the SPDE-NetIIθ model is to minimize the numerical er-
ror (9), which is calculated based on the predicted τ̂ . This is achieved by
iteratively applying the backpropagation algorithm. In each iteration, the
cost function is backpropagated through the network, enabling the update of
the network parameters θ. Through iterative adjustment of θ, the network
progressively converges to the optimal values that minimize the numerical
error (9). During the training process, we employed the Adam optimizer
to accelerate gradient descent and the StepLR scheduler to dynamically ad-
just the learning rate. The StepLR scheduler gradually reduces the learning
rate by a gamma factor at each step. For more detailed information on the
hyperparameters used in training, please refer to Table 1.

8

Table 1: Network hyper-parameters

Hyper-parameter Value

Non-linearity tanh
Optimizer Adam
Initial LR 0.0001
Scheduler LR
Gamma 0.1
Size of the hidden layers [16, 16]

100 1,000 10,000

3.82

3.84

3.86

·10−6

Network depth = |hidden neuronslayer1| × |hidden neuronslayer2|

L
2
-e

rr
or

Figure 2: Hyper-parameter search for AI-stab FEM

To determine the optimal network depth and number of neurons per
layer, we comprehensively evaluated fully connected neural networks. We
assessed the L2-error in the numerical solution at the final training epoch for
different network sizes, as shown in Figure 2. Interestingly, we observed that
increasing the network depth did not improve accuracy; instead, it resulted
in increased error. Based on these findings, we selected a fully connected
network architecture with two hidden layers, each containing 16 neurons.
The implementation procedure for the SPDE-NetII framework is outlined in
Algorithm 1. To utilize this algorithm, two parameters must be specified: the
learning rate η and the number of training epochs nepochs. The input array
I is a crucial component of the SPDE-NetII scheme, containing the diffusion
coefficient (ε), convection velocity (b), and mesh size (h).

9

Algorithm 1 SPDE-NetII
1: Read η0, nepochs, I = {ε, b1, b2, h}
2: Initialize τK = 0 the weights, θ0, of SPDE-NetII with random values
3: Initialize the optimizer (Adam in this case) and stepLR scheduler
4:

q(s) =

√
s s > 1

2.5s2 − 1.5s3 otherwise,
b⊥ =

(b2,−b1)

|b|
when |b| ≠ 0

0 when |b| = 0

5: Solve equation (5) to get uh

6: for t = 0 to nepochs do
7: if Predicting global τ then
8: τ̂(θt) = SPDE-NetIIθt(I)

9: τK =
τ̂(θt)

∥∇uh∥0,Ω
10: else
11: τ̂(θt) = SPDE-NetII(local)θt(I, ∥∇uh∥0,Ω)
12: end if
13: ηt = stepLR(t)

14: Solve equation (7) with τK to get uh

15: if

(
βh =

∑
K∈Ω

∥ − ε∆uh + b · ∇uh − f∥20,K

)
< βthres then

16: break
17: else
18: Λ(θt) = βh +

∑
K∈Ω

∥q(|b⊥ · ∇uh|)∥0,1,K

Backpropogate: θt+1 = θt − ηt∇θtΛ(θt)

19: end if
20: end for

Within Algorithm 1, the Péclet (Pe) number and the Galerkin solution are
computed for the given input sample I. However, using a single global value

10

τ̂ for all cells is inadequate, as layered regions require different stabilization
values compared to other cells. To overcome this limitation, we normalize the
predicted τ̂ by dividing it by the cell-wise Euclidean norm of the solution’s
gradient. In Algorithm 1, the variable uh represents the SUPG solution of
equation (7), which is essential in computing the cost function.

Figure 3: Network architecture of SPDE-NetII (local): applicable for variable co-
efficient cases of SPPDEs

3.2. SPDE-NetII (local) for problems with variable coefficients
The SPDE-NetII framework’s input layer is designed specifically for equa-

tions with constant coefficients. However, we propose an alternative archi-
tecture called SPDE-NetII (local) to tackle cases with variable coefficients,
as depicted in Fig. 3. This architecture employs a shared weight structure
across all cells in the domain. We incorporate additional inputs into the net-
work’s input to effectively handle equations with variable coefficients. These
inputs include the diffusion coefficient (ϵ), convective velocity in the x and y
directions (b1(x, y), b2(x, y)), mesh size (h), and the norm of the gradient of
the solution for each cell. By including these inputs, the SPDE-NetII (local)
architecture allows more effective handling of variable coefficient cases.

3.3. Baselines
To evaluate the performance of our proposed technique, we compare it

against several baseline methods in this section. We consider two PDE solvers
based solely on neural networks and two techniques for approximating the
stabilization parameter (τ), which can be employed in a mesh-based solver.
This allows us to comprehensively and fairly compare our proposed technique,
the traditional neural network-based solvers, and the mesh-based stabilized
solvers. The baseline techniques we include for comparison are as follows:

11

1. Physics-Informed Neural Networks (PINNs): PINNs are neural
networks trained for solving PDEs by minimizing the residual of the
given equation [31].

2. Variational Neural Networks for the Solution of Partial Dif-
ferential Equations (VarNet): In this technique, the numerical so-
lution of the equation is approximated by minimizing the residual of
the weak form of the equation. For further details, refer to [16].

3. Standard τstd: We compute τstd using the following expression, where
Pe is the local P’eclet number as given in Algorithm 1:

τstd =
h

2|b|

(
coth (Pe)− 1

Pe

)
(10)

This value of τstd is used to solve the SUPG weak form (7) of the given
equation. Table 9 shows the values of τstd calculated using the standard
formula for different testing examples. These values will be used for
the baseline comparison.

4. Standard τstd normalized with ∥∇uh∥0,K: In this technique, we
normalize τstd (equation (10)) with the cell-wise Euclidean norm of the
gradient of the numerical solution:

τK =
τstd

∥∇uh∥0,K

As shown in Algorithm 1, the proposed technique involves normalizing
τ̂ with ∥∇uh∥0,K . Therefore, we normalize τstd as well to ensure a fair
comparison against the standard technique.

4. Computational Experiments

In this section, we present the experimental evaluation of the performance
of SPDE-NetII. We performed a series of experiments using six benchmark
examples, each representing a highly convective case with varying levels of
complexity. The domain Ω is a unit square, uniformly divided into triangular
cells. Here, Ncell denotes the number of cells in the horizontal direction.
These cells are non-overlapping and have a regular shape. To approximate uh,
we utilize the P2(Ωh) finite element space, while the stabilization parameter
(τK) is approximated using the piecewise constant DG0(Ωh) space. For a
detailed definition of P2(Ωh) finite element, please refer to section 3.3 of [32].

12

4.1. Example 1:
We consider the equation (1) with following data:

ε = 10−8, b = (1, 0)T, f = 1, Ω = (0, 1)2, ub = 0. (11)

This example is taken from [33]. The exact solution of equation (11) is
depicted in Figure 4 and its analytical form is as follows:

u(x, y) = αx+
(R− L− α)(exp(−β(1−x))− exp−β)

1− exp−β
+ L,

where α =
f

b1
, β =

b1
ϵ
, L = 0, R = 0.

(12)

Readers are referred to the appendix for its derivation. The solution u ex-
hibits distinct layers: an exponential layer at x = 1 and two parabolic layers
at y = 0 and y = 1. In the SPDE-NetII, we input I = [ε, b1, b2, h], and the
predicted value τ̂ is normalized with ∥∇uh∥0,K to obtain τK . To solve the
discretized form of the equation, we utilize a grid with 40 cells in the hori-
zontal direction, resulting in hK =

√
2/40. By solving the stabilized SUPG

weak form of equation (7) with the τK , we obtain the numerical solution. We
use analytical u to calculate the error metrics discussed in Section 2.4. The
numerical results of SPDE-NetII for Example 1 are presented in Figure 4.
In Figure 4(d), we show the values of τK over the domain Ω for example 1.
Notably, the non-boundary region exhibits a constant predicted value, while
τK decreases gradually towards the outer boundary. The intersection of the
two boundary layers demonstrates the highest value of τK . Additionally, Fig-
ures 4(b) and 4(c) depict the solution with τstd normalized by ∥∇uh∥0,K and
the solution obtained using SPDE-NetII, respectively. Overall, SPDE-NetII
outperforms all the baseline techniques discussed in Section 3.3 in terms of
the error metrics outlined in Section 2.4. Detailed numerical values of the
error metrics are provided in Table 5, 6, 7, and 8.

13

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(a) Exact Solution (u)
x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(b) Solution with Standard τstd

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(c) Solution with τK obtained from SPDE-
NetII

0.00 0.25 0.50 0.75 1.00

x-axis

0.0

0.2

0.4

0.6

0.8

1.0
y-
ax
is

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21
τ

(d) τK predicted from SPDE-NetII

Figure 4: Results for Example 1: Presenting the comparison of exact solution with
the τK obtained from Standard technique and SPDE-NetII, additionally we show
the heatmap of the τK predicted from the proposed technique.

4.2. Example 2:
We consider the convection diffusion equation (1) with following equation

coefficients and boundary conditions as given in [34]:

ε = 10−8, b = (2, 3)T, ub = 0 (13)

14

The source term f is calculated by substituting the following analytical so-
lution (u) in the equation (13).

u(x, y) =xy2 − x exp

(
3(y − 1)

ε

)
− y2 exp

(
2(x− 1)

ε

)
+ exp

(
2(x− 1) + 3(y − 1)

ε

)
.

(14)

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(a) Exact Solution (u)
x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(b) Solution with Standard τstd

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(c) Solution with τK obtained from SPDE-
NetII

0.00 0.25 0.50 0.75 1.00

x-axis

0.0

0.2

0.4

0.6

0.8

1.0

y-
ax
is

0.0000

0.0006

0.0012

0.0018

0.0024

0.0030

0.0036

0.0042

0.0048
τ

(d) τK predicted from SPDE-NetII

Figure 5: Results for Example 2: Presenting the comparison of exact solution with
the τstd obtained from Standard technique and SPDE-NetII, additionally we show
the heatmap of the τK predicted from the proposed technique.

The solution exhibits two outflow boundary layers located near x = 1.0

15

and y = 1.0, as illustrated in Figure 5(a). This characteristic makes it
an appropriate test case for evaluating the performance of the SPDE-NetII
method, as discussed in [34]. Figure 5(d) depicts the values of τK otained
from SPDE-NetII, while Table 9 presents the corresponding τstd value, which
is measured to be 0.0177. Notably, all the predicted values are observed to be
smaller than τstd as given in Table 9. The heat map of τK reveals a distinct
pattern corresponding to the presence of boundary layers, with the highest τK
values occurring around these boundary layer regions. Importantly, SPDE-
NetII demonstrates superior performance across all error metrics for this
example as shown in Tables 5, 7, 8, 6, mirroring its performance in Example 1.

4.3. Example 3:
Next, we consider the convection-diffusion equation (1) with the following

equation coefficients and boundary conditions:

ε = 10−8, b = (cos(θ), sin(θ))T, θ = −π/3, f = 0,

ub(x, y) =

{
0, for x = 1 or y ≤ 0.7

1, otherwise.
(15)

The example discussed in this context involves a solution that exhibits expo-
nential and boundary layers, as referenced in [30]. The standard technique
yields a τstd value of 0.0049, whereas τK remains consistently below 0.002
throughout, as demonstrated in Figure 6. Comparing the two solutions, it is
evident that the numerical solution with τK exhibits fewer oscillations com-
pared to the standard technique. The heatmap of τK in Figure 6(d) illustrates
the successful capture of both the interior and exponential layers.

To further evaluate the performance, we compare the solutions obtained
using the τstd technique and τK . Notably, both solutions display noticeable
oscillations near the interior layer. However, upon comparing Figures 6(b)
and 6(c), it becomes apparent that SPDE-NetII effectively captures the sharp
interior layer in contrast to τstd. It is worth mentioning that among all
the baseline techniques described in section 3.3 for this example, SPDE-
NetII demonstrates the least errors across all the error metrics detailed in
section 2.4.

16

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(a) Exact Solution (u)
x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(b) Solution with Standard τstd

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(c) Solution with τK obtained from SPDE-
NetII

0.00 0.25 0.50 0.75 1.00

x-axis

0.0

0.2

0.4

0.6

0.8

1.0
y-
ax
is

0.0090

0.0105

0.0120

0.0135

0.0150

0.0165

0.0180

0.0195
τ

(d) τK predicted from SPDE-NetII

Figure 6: Results for Example 3: Presenting the comparison of exact solution with
the τstd obtained from Standard technique and SPDE-NetII, additionally we show
the heatmap of the τK predicted from the proposed technique.

4.4. Example 4:
We consider the convection-diffusion equation (1) with the following equa-

tion coefficients and boundary conditions:

ε = 10−8, b = (1, 0)T, ub = 0

f =

{
0, if |x− 0.5| ≥ 0.25 ∪ |y − 0.5| ≥ 0.25

−32(x− 0.5), otherwise,

u =

{
0, if |x− 0.5| ≥ 0.25 ∪ |y − 0.5| ≥ 0.25

−16(x− 0.25)(y − 0.75), otherwise.
(16)

17

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(a) Exact Solution (u)
x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(b) Solution with Standard τstd

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(c) Solution with τK obtained from SPDE-
NetII

0.00 0.25 0.50 0.75 1.00

x-axis

0.0

0.2

0.4

0.6

0.8

1.0
y-
ax
is

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
τ

(d) τK predicted from SPDE-NetII

Figure 7: Results for Example 4: Presenting the comparison of exact solution with
the τstd obtained from Standard technique and SPDE-NetII, additionally we show
the heatmap of the τK predicted from the proposed technique.

In this example, we introduce a variation compared to example 1 by
considering a different source function f , as previously used in [35]. The
key characteristic of this example is the presence of two interior character-
istic layers in the convection direction, located between the spatial points
(0.25, 0.25) and (0.25, 0.75). The Péclet number associated with this case
is 1.77e + 06. To assess the generalizability of SPDE-NetII, we solve this
example for various levels of mesh refinement. Figure 7 presents the numer-
ical solution and heat map of τK corresponding to a mesh size h =

√
2/40.

In the subsequent section, we provide a grid-convergence study. Notably,
for this example, the solution obtained from SPDE-NetII exhibits the closest

18

agreement with the exact solution and displays minimal spurious oscillations.
Furthermore, when evaluating error metrics, SPDE-NetII outperforms other
techniques. Both SPDE-NetII and Standard τstd effectively capture the in-
terior layers.

4.5. Example 5: Variable convection velocity
In Section 3.2, we introduced SPDE-NetII(local), a method capable of

effectively handling SPPDEs with variable coefficients (i.e. coefficients which
are a function of the independent variable x and/or y). Unlike the SPDE-
NetII, SPDE-NetII(local) considers the local convective velocity (b(x, y)) as
an input, allowing for accurate solutions in such cases. To demonstrate the
capabilities of SPDE-NetII(local), we applied it to solve equation (1) with
variable convection velocity case as given below:

ϵ =10−8, b = (−y, x)T, f = 0

ub(x, y) =

{
1 if 1

3
≤ x ≤ 2

3
and y = 0

0 else.
(17)

x-axis

0.0

0.5

1.0 y-ax
is

0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(a) Exact Solution (u)

x-axis

0.0

0.5

1.0 y-ax
is

0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(b) uh obtained with τ̂ from SPDE-
NetII(local)

Figure 8: SPDE-NetII(local) for Example 5 (equation 17) with variable coefficients.

It is important to note that the standard technique, which is applicable
only to constant coefficient cases, could not be utilized for this scenario.

19

SPDE-NetII (local) fills this gap by accommodating variable coefficients and
providing reliable solutions. The obtained solution is presented in Figure
8. The uh obtained from the τK obtained with SPDE-NetII is over-smeared
near the interior layer. We couldn’t compare the numerical solution of SPDE-
NetII with SPDE-NetII (local) as SPDE-NetII is not applicable for variable
coefficients

(a) Solution uh obtained with τK predicted
from SPDE-NetII

(b) τK predicted from SPDE-NetII

Figure 9: Results for Example 6: Hemker’s Example (Eq. 18): (a) Presenting
the solution with the τK obtained from SPDE-NetII, (b) additionally we show the
heatmap of the τK predicted from the proposed technique.

4.6. Example 6: Hemker’s Example
Finally, we consider Hemker’s example, which has garnered significant

attention in the literature due to its direct relevance to real-world applica-
tions. Unlike conventional test examples, this equation closely mirrors the
situations frequently encountered in practical scenarios. We consider the
equation (1) with

Ω = {(−3, 12)× (−8, 8)} \ {(x, y);x2 + y2 ≤ 1}
ϵ = 10−8,b = (1, 0)T , and f = 0.

(18)

In this study, we impose homogeneous Dirichlet boundary conditions at the
inlet x = −3 while setting u = 1 on the circle and applying Neumann
boundary conditions to the remaining parts of ∂Ω. This example serves as a
depiction of heat transfer from a heated column in the presence of convection.

20

However, when employing this approach, undesired oscillations become ap-
parent at the initial points of the interior layers. These spurious oscillations
have a detrimental effect on the accuracy of the results. Acknowledging and
addressing these oscillations is crucial to ensure the outcomes’ reliability and
precision.

Table 2: Perforance comparison for Example 6: Hemker’s example (Eq. 18)

Relative
L2-error l2-error H1 seminorm-error L∞-error

Standard τstd 9.32e-6 1.75e-1 5.97e-4 8.18e-5
SPDE-NetII (local) 5.35e-7 2.57e-2 7.23e-5 7.48e-7

Furthermore, it is important to note that the standard τstd values near
the circle are relatively small due to the small cell diameters in that specific
mesh region. We have visualized the predicted τK from SPDE-NetII for
this example in Figure 9b, along with the corresponding numerical solution
depicted in Figure 9a. However, it is worth mentioning that the solutions
obtained using this approach exhibit significant undesirable oscillations at the
initial points of the interior layers. To evaluate the performance of SPDE-
NetII (local) compared to τstd, we have conducted a comprehensive analysis
and summarized the results in Table 2, considering various metrics defined
in Section 2.4. The comparison reveals that SPDE-NetII (local) performs
reasonably well in comparison to τstd.

5. Consistency Analysis: Verifying the Numerical Scheme

This section showcases the results of various experiments conducted to as-
sess the consistency of the proposed scheme. Firstly, we present the optimal
order of convergence achieved by the proposed scheme. Next, we demon-
strate the effectiveness of incorporating an additional crosswind term in the
loss function, highlighting its impact on improving the solution. Lastly, we
showcase the performance of SPDE-NetII in cases involving higher Pe num-
bers, demonstrating its efficacy in complex scenarios.

5.1. Mesh Refinement Analysis
Studying grid convergence is essential for ensuring any mesh-based solver’s

numerical stability and accuracy. The standard τstd scheme, as discussed in

21

Section 3.3, demonstrates an optimal order of convergence away from layers.
However, as we move closer to layers, the associated error for this scheme
tends to increase with a decrease in the mesh size (h). On the other hand, it
is important to note that all other ANN-based baselines are meshless meth-
ods. Consequently, it is not possible to define an order of convergence for
these methods in the traditional sense, as they do not rely on a mesh-based
discretization. For the SPDE-NetII, we present the numerical errors obtained
on uniformly refined mesh, specifically for the case of example 4. By comput-
ing the order of error convergence for the L2-error, we determine the optimal
convergence rate for the P2 finite element used to approximate the solution
u. The corresponding results are illustrated in Table 3.

Table 3: Mesh refinement analysis for example 4

Ncells h L2-error Order of convergence

10 1.41e-1 4.75e-4
20 7.07e-2 2.93e-5 4.02
40 3.54e-2 3.63e-6 3.01
80 1.77e-2 4.51e-7 3.01

1 2 3 4

0

1

2

3

4

·10−5

Example IDs

L
2
-e

rr
or

0.0

0.5

1.0

Figure 10: Comparison of L2-error for different weights of the crosswind-derivative
term.

22

5.2. Impact of crosswind derivative term in the loss function
One major contribution of this manuscript is using the aposteriori error

indicator term consisting of the crosswind derivative term in the loss function.
This term controls the smearing in the solution. Figure 10 compares the L2-
error in the numerical solution obtained by minimizing the loss function with
different weights of the cross-wind derivative term. We clearly saw a drop
in L2-error for all the examples when we used crosswind derivative terms in
the loss function. L2-error corresponding to weight 1.0 is least among the all
and hence the same is used for all the experiments in this manuscript.

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(a) Exact Solution (u)
x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(b) uh with τstd

x-axis0.0
0.5

1.0y-axis
0.0

0.5

1.0

u

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u

(c) uh with τ̂ from SPDE-
NetII

Figure 11: Example 2 with ε = 10−9, b = (60, 90), |b| = 108.16.

5.3. Robustness check for higher Peclet number
In this section, we wanted to check the performance of SPDE-NetII for

testing examples beyond the range of coefficients considered for training the
network. We evaluated the performance of the proposed method, SPDE-
NetII, for cases where the value of ϵ is smaller than 10−8 and while the abso-
lute value of |b| exceeds 100. To establish the benchmark, we compared the
outcomes obtained from our proposed method with those from the Standard
τstd solution.The graphical representation of these results can be observed
in Figure 11. In table 4, we can see that SPDE-NetII has lesser error than
Standard τstd.

Table 4: Comparison of performance of SPDE-NetII with Std. τ for high Pe

L2-error Relative l2-error H1 seminorm-error L∞-error

Standard τstd 6.77e-6 1.36e-1 6.74e-4 7.29e-5
SPDE-NetII 5.04e-6 9.73e-2 4.80e-4 4.05e-5

23

6. Comparative Analysis: Evaluating against Baselines

In this section, we conduct a comprehensive evaluation of SPDE-NetII’s
performance by comparing it with various baseline methods, considering di-
verse error metrics. Subsequently, we assess the range of the predicted τ̂ in
comparison to the values obtained from τstd.

6.1. Performance
We compared the performance of VarNet, the standard technique, and

the method of standard τstd normalized with ∥∇uh∥0 with SPDE-NetII for all
four benchmark examples in terms of L2-error, H1-seminorm, L∞-error, and
relative l2-error. The performance of PINN is reported in terms of relative l2

error only since other metrics cannot be computed for PINNs solutions. The
tables below display different error metrics for numerical solutions generated
by the considered numerical techniques. For all the examples, SPDE-NetII
performs better than all the baselines (section 3.3) in terms of various metrics
defined in section 2.4.

Table 5: L2-error (∥eh∥0)
Examples

Techniques 1 2 3 4

Standard τstd 1.32e-5 6.77e-6 1.41e-5 3.63e-6
Standard τstd normalized with ∥∇uh∥0,K 4.04e-5 1.63e-5 1.76e-5 3.85e-6
VarNet 1.70e-4 2.37e-4 3.00e-4 2.80e-4
SPDE-NetII 7.45e-6 5.04e-6 1.20e-5 3.63e-6

Table 6: Relative l2-error (∥eh∥0,ℓ)
Examples

Techniques 1 2 3 4

PINN 4.85e-1 4.85e+1 8.69e-1 1.01e
Standard τstd 1.17e-1 1.36e-1 8.02e-2 4.63e-2
Standard τstd normalized with ∥∇uh∥0,K 3.35e-1 3.06e-1 9.68e-2 4.90e-2
VarNet 5.17e-1 1.62e 5.39e-1 1.25e
SPDE-NetII 7.41e-2 9.73e-2 6.94e-2 4.60e-2

24

Table 7: H1 seminorm-error (|eh|1)
Examples

Techniques 1 2 3 4

Standard τstd 1.30e-3 6.74e-4 1.43e-3 3.28e-4
Standard τstd normalized with ∥∇uh∥0,K 3.65e-3 1.51e-3 1.72e-3 3.69e-4
VarNet 1.80e-3 1.87e-3 2.26e-3 2.62e-3
SPDE-NetII 7.10e-4 4.80e-4 1.23e-3 3.29e-4

Table 8: L∞-error (∥e∥L∞(Ω))

Examples
Techniques 1 2 3 4

Standard τstd 9.07e-5 7.29e-5 1.13e-4 7.60e-6
Standard τstd normalized with ∥∇uh∥0,K 1.32e-4 8.70e-5 1.47e-4 1.06e-5
VarNet 3.27e-4 3.55e-4 3.53e-4 3.54e-4
SPDE-NetII 6.91e-5 4.05e-5 9.08e-5 7.35e-6

6.2. Comparison of τ obtained from SPDE-NetII and classical stabilization
scheme

In table 9, we present a comprehensive comparison between the values
of τstd obtained through the classical stabilization scheme and the values
derived using the SPDE-NetII approach for various testing examples. The
traditional method yields a single τstd value, whereas, with SPDE-NetII, we
observe a range of τK values due to its localized definition. By examining
the results in table 9, we can observe the distinct differences between the
two approaches. The τstd values obtained from the classical stabilization
scheme provide a baseline for comparison, representing a global stabilization
parameter across all testing examples. On the other hand, the SPDE-NetII
approach introduces the concept of τK , which varies locally and adapts to the
specific characteristics of each example. The range of τK values for SPDE-
NetII signifies its ability to capture the intricacies and heterogeneity within
the dataset. This localized approach allows for finer control and adaptability
in stabilizing the system, resulting in more accurate and tailored solutions
for individual examples.

25

Table 9: Value of τK by standard technique for different examples.

Example Internal Boundary Ncells τstd Min. of τK Max of τK
Layer Layer

1 ✗ ✓ 40 1.77e-2 0.0 2.10e-01
2 ✗ ✓ 40 1.77e-2 0.0 4.80e-03
3 ✓ ✓ 40 1.77e-2 0.0 1.95e-02
4 ✓ ✗ 40 4.90e-3 0.0 7.00e-03

Comparing the two methods, we can observe cases where the τK values
obtained from SPDE-NetII closely align with the global τstd value derived
from the classical stabilization scheme. These instances indicate consistency
between the localized and global stabilization approaches, suggesting that
the classical scheme captures the dominant stability characteristics of those
examples adequately. However, there are also scenarios where the τK values
significantly deviate from the τstd value. These deviations illustrate the limi-
tations of the classical scheme, which assumes a uniform stability parameter
across all instances. In contrast, SPDE-NetII’s ability to adapt and adjust
τK locally provides a more nuanced perspective on the stability requirements,
enabling improved accuracy and performance for challenging cases. Overall,
the comparison between τstd obtained from the classical stabilization scheme
and the range of τK values from SPDE-NetII reveals the benefits of a lo-
calized approach. While the classical scheme offers a global perspective on
stabilization, SPDE-NetII introduces a more flexible and adaptive framework
that accounts for the intricacies and variations within the dataset.

7. Summary and Future Work

This paper proposes an ANN-based technique to predict an optimal stabi-
lization parameter for the SUPG method in solving SPPDEs. The technique
utilizes equation coefficients and mesh size as input features for the neural
network, and the gradient of the solution normalizes the predicted parameter.
Using the strong residual form of the equation and considering the cross-wind
derivative term, a cost for the back-propagation algorithm is calculated. The
proposed technique surpasses existing Neural Network-based PDE solvers
like PINNs and VarNet for SPPDE applications and outperforms standard
techniques for benchmark problems. Additionally, it achieves optimal con-
vergence when refining the computational grid. Future work can expand on

26

these findings by exploring time-dependent convection-diffusion and investi-
gating its intricacies and potential applications. Theoretical investigations
can be conducted on SPDE-Net, SPDE-NetII, and SPDE-NetII(local) to
understand their empirical performance compared to existing methods, con-
tributing to their effectiveness justification. Furthermore, enhancing SPDE-
NetII with adaptive mesh refinement in unstable regions can lead to more
accurate equations by dynamically refining the mesh during the neural net-
work’s training process, resulting in improved results.

Acknowledgements

We would like to express our sincere gratitude to Shell, India for their
generous support and funding provided for the completion of this research
project.

References

[1] R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser-
Verlag, 1990.

[2] H. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly per-
turbed differential equations, Springer-Verlag, 2008.

[3] A. N. Brooks, T. J. R. Hughes, Streamline upwind/Petrov-Galerkin for-
mulations for convection dominated flows with particular emphasis on
the incompressible Navier-Stokes equations, Computer Methods in Ap-
plied Mechanics and Engineering 32 (1982) 199–259.

[4] E. Burman, Consistent supg-method for transient transport prob-
lems: Stability and convergence, Computer Methods in Ap-
plied Mechanics and Engineering 199 (17-20) (2010) 1114–1123.
doi:10.1016/j.cma.2009.11.023.

[5] S. Ganesan, An operator-splitting Galerkin/SUPG finite element
method for population balance equations: Stability and convergence,
ESAIM Mathematical Modelling and Numerical Analysis 46 (2012)
1447–1465. doi:10.1051/m2an/2012012.

[6] V. John, J. Novo, Error analysis of the supg finite element discretization
of evolutionary convection-diffusion-reaction equations, SIAM Journal
on Numerical Analysis 49 (3) (2011) 1149–1176. doi:10.1137/100789002.

27

[7] B. Faranak, N. J. Charles, A semi-discrete SUPG method for contami-
nant transport in shallow water models, Procedia Computer Science 80
(2016) 1313–1323. doi:10.1016/j.procs.2016.05.476.

[8] D. F. Javier, G.-A. Bosco, J. Volker, N. Julia, An adaptive SUPG
method for evolutionary convection-diffusion equations, Computer
Methods in Applied Mechanics and Engineering 273 (2014) 219–237.
doi:10.1016/j.cma.2014.01.022.

[9] J. Claes, N. Uno, P. Juhani, Finite element methods for linear hyperbolic
problems, Computer Methods in Applied Mechanics and Engineering
45 (1-3) (1984) 285–312. doi:10.1016/0045-7825(84)90158-0.

[10] G. Swetlana, I. Traian, J. Volker, W. David, SUPG reduced order models
for convection-dominated convection-diffusion-reaction equations, Com-
puter Methods in Applied Mechanics and Engineering 289 (2015) 454–
474. doi:10.1016/j.cma.2015.01.020.

[11] L. Richen, W. Qingbiao, Z. Shengfeng, Proper orthogonal decomposi-
tion with SUPG-stabilized isogeometric analysis for reduced order mod-
elling of unsteady convection-dominated convection-diffusion-reaction
problems, Journal of Computational Physics 387 (18) (2019) 280–302.
doi:10.1016/j.jcp.2019.02.051.

[12] P. Knobloch, P. Lukáš, P. Solin, On error indicators for optimizing pa-
rameters in stabilized methods, Advances in Computational Mathemat-
ics 45 (4) (2019) 1853–1862. doi:10.1007/s10444-019-09662-4.

[13] P. Knobloch, P. Lukáš, P. Solin, Importance of parameter optimization
in a nonlinear stabilized method adding a crosswind diffusion, Jour-
nal of Computational and Applied Mathematics 393 (2021) 113527.
doi:10.1016/j.cam.2021.113527.

[14] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, Journal of
Computational Physics 378 (2019) 686–707.

[15] E. Kharazmi, Z. Zhang, G. E. Karniadakis, Variational physics-informed
neural networks for solving partial differential equations, arXiv preprint
arXiv:1912.00873 (2019).

28

[16] R. Khodayi-Mehr, M. Zavlanos, Varnet: Variational neural networks for
the solution of partial differential equations, in: A. M. Bayen, A. Jad-
babaie, G. Pappas, P. A. Parrilo, B. Recht, C. Tomlin, M. Zeilinger
(Eds.), Proceedings of the 2nd Conference on Learning for Dynamics
and Control, Vol. 120 of Proceedings of Machine Learning Research,
PMLR, 2020, pp. 298–307.

[17] E. Kharazmi, Z. Zhang, G. E. Karniadakis, hp-vpinns: Variational
physics-informed neural networks with domain decomposition, arXiv
preprint arXiv:2003.05385 (2020).

[18] S. Lukas, R. Deep, H. J. S., Controlling oscillations in spectral methods
by local artificial viscosity governed by neural networks, Journal of Com-
putational Physics 431 (2021) 110144. doi:10.1016/j.jcp.2021.110144.

[19] D. Niccolò, H. J. S., R. Deep, Controlling oscillations in high-order
discontinuous Galerkin schemes using artificial viscosity tuned by neu-
ral networks, Journal of Computational Physics 409 (2020) 109304.
doi:10.1016/j.jcp.2020.109304.

[20] V. M. Han, A. Rémi, Towards a general stabilisation method for conser-
vation laws using a multilayer perceptron neural network: 1D scalar and
system of equations, in: Proceedings of the 6th European Conference
on Computational Mechanics: Solids, Structures and Coupled Problems,
ECCM 2018 and 7th European Conference on Computational Fluid Dy-
namics, ECFD 2018, 2020, pp. 2525–2539.

[21] R. Deep, H. J. S., An artificial neural network as a troubled-cell
indicator, Journal of Computational Physics 367 (2018) 166–191.
doi:10.1016/j.jcp.2018.04.029.

[22] R. Deep, H. J. S., Detecting troubled-cells on two-dimensional unstruc-
tured grids using a neural network, Journal of Computational Physics
397 (2019) 108845. doi:10.1016/j.jcp.2019.07.043.

[23] L. K. O., M. Siddhartha, R. Deep, Deep learning observables in compu-
tational fluid dynamics, Journal of Computational Physics 410 (2020)
109339. arXiv:1903.03040, doi:10.1016/j.jcp.2020.109339.

[24] S. Yadav, S. Ganesan, Spde-net: Neural network based prediction of
stabilization parameter for supg technique, in: 13th Asian Conference

29

on Machine Learning, no. Proceedings of Machine Learning Research,
2021, pp. 268–283.

[25] T. Tassi, A. Zingaro, L. Dede', A machine learning approach to en-
hance the SUPG stabilization method for advection-dominated dif-
ferential problems, Mathematics in Engineering 5 (2) (2022) 1–26.
doi:10.3934/mine.2023032.

[26] L. Schwander, J. Hesthaven, D. Ray, Controlling oscillations in spectral
methods by local artificial viscosity governed by neural networks (2020).

[27] J. Yu, J. S. Hesthaven, A data-driven shock capturing approach for
discontinuous galekin methods, Computers & Fluids 245 (2022) 105592.
doi:https://doi.org/10.1016/j.compfluid.2022.105592.

[28] R. Verfürth, Robust a posteriori error estimates for stationary
convection-diffusion equations, SIAM Journal on Numerical Analysis
43 (4) (2005) 1766–1782. arXiv:https://doi.org/10.1137/040604261,
doi:10.1137/040604261.

[29] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks
are universal approximators, Neural Networks 2 (5) (1989) 359–366.
doi:https://doi.org/10.1016/0893-6080(89)90020-8.

[30] V. John, P. Knobloch, S. B. Savescu, A posteriori optimization of pa-
rameters in stabilized methods for convection–diffusion problems – part
i, Computer Methods in Applied Mechanics and Engineering 200 (41)
(2011) 2916–2929. doi:https://doi.org/10.1016/j.cma.2011.04.016.

[31] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equa-
tions, arXiv preprint arXiv:1711.10561 (2017).

[32] S. Ganesan, L. Tobiska, Finite elements: Theory and algorithms,
Cambridge-IISc press, 2017.

[33] V. John, P. Knobloch, On spurious oscillations at layers diminishing
(sold) methods for convection-diffusion equations: Part ia review, Com-
puter Methods in Applied Mechanics and Engineering 196 (2007) 2197–
2215. doi:10.1016/j.cma.2006.11.013.

30

[34] P. Knobloch, On the choice of the supg parameter at outflow boundary
layers, Adv. Comput. Math. 31 (2009) 369–389. doi:10.1007/s10444-008-
9075-6.

[35] P. Knobloch, On the definition of the supg parameter, Electronic Trans-
actions on Numerical Analysis. Volume 32 (2008) 76–89.

31

Appendix A. Derivation: Analytical solution of Example 1

Let’s say we have a one-dimensional convection-diffusion equation given
as follows:

−ϵu′′ + bu′ = f (A.1)

Here b and f are constants, and the value of u on the boundary is

u(0) = L, u(1) = R (A.2)

Let u(x) = u0(x) + up(x) (A.3)

where u0 is the solution of the homogeneous equation and up is the particular
solution. Let’s solve the homogeneous equation. Let say u0 = Aeλx is the
homogeneous solution for

ϵu′′ + bu′ = 0 (A.4)

Substitute the value of u0 = Aeλx in the equation A.1, and we get

−Aϵλ2 + Abλ =0, this equation has two roots λ1 = 0, λ2 =
b

ϵ

=> u0(x) =A1 + A2e
βx where β =

b

ϵ
u(x) =u0(x) + up(x) = A1 + A2e

βx + αx

u(0) =L = A1 + A2

u(1) =R = A1 + A2e
β + α

R = L− A2 + A2e
β + α

=> A2 =
R− L− α

eβ − 1

u(x) =L− A2 + A2e
βx + αx

=L+ A2(e
βx − 1) + αx

=L+ (R− L− α)(
eβx − 1

eβ − 1
) + αx

=L+ (R− L− α)
eβx

eβ
− 1

eβ

1− e−β
+ αx

u(x) =αx+
(R− L− α)[e(−β(1−x)) − e−β]

1− e−β
+ L

32

