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SUMMARY

A variational multiscale method for computations of incompressible Navier—Stokes equations in time-
dependent domains is presented. The proposed scheme is a three-scale variational multiscale method with
a projection-based scale separation that uses an additional tensor valued space for the large scales. The
resolved large and small scales are computed in a coupled way with the effects of unresolved scales confined
to the resolved small scales. In particular, the Smagorinsky eddy viscosity model is used to model the effects
of unresolved scales. The deforming domain is handled by the arbitrary Lagrangian—Eulerian approach and
by using an elastic mesh update technique with a mesh-dependent stiffness. Further, the choice of orthog-
onal finite element basis function for the resolved large scale leads to a computationally efficient scheme.
Simulations of flow around a static beam attached to a square base, around an oscillating beam and around
a plunging aerofoil are presented. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Incompressible flows are modeled by the time-dependent incompressible Navier—Stokes equations
(NSE). In general, the Navier—Stokes equations are used for both laminar and turbulent flows,
although the flow states are quite different from a physical point of view. The occurrence of one or
the other state strongly depends on the Reynolds number associated with the flow. Turbulent flows
are highly unsteady flows, where the main velocity field is superimposed by random fluctuations. In
typical engineering applications, turbulent flows are prevalent, among other things, because of their
positive features, such as more effective transport and mixing ability with respect to a comparable
laminar flow. The analytical solution of NSE is deficient, in particular with regard to the turbulent
flow regime. There exist no analytical solution for turbulent flows even in simple geometries [1, 2].
It leaves out the numerical approach as the only viable alternative. Besides Reynolds-averaged
Navier—Stokes, the most popular conceptual alternatives for the numerical simulation of turbulent
flows are the direct numerical simulation (DNS), the large eddy simulation (LES), and the varia-
tional multiscale method (VMS), which is a novel approach based on LES. The concepts of DNS
and the classical LES in its basic form struggle with different challenges in terms of computational
complexity, accuracy, and/or efficiency.

Direct numerical simulation is the most straightforward approach, and it attempts to solve NSE
numerically by resolving all scales in the flow, without any additional turbulence model. However,
the challenge lies in the broad range of length and time scales associated with the turbulent flow,
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which makes DNS computationally infeasible in most of the cases. An alternative is LES, where
the strategy is to compute the large flow structures (resolved scales) and model the effect of the
small flow structures (unresolved scales) on the large scales. In general, LES relies on a filter to
separate the resolved and unresolved scales. The major challenges in LES are firstly, the choice
of an appropriate filter function; secondly, it involves commutation error or the error incurred in
restricting the theory of LES on unbounded domains to a bounded domain; and thirdly, the effects
of unresolved scales are incorporated into the entire resolved scales through a turbulence model,
whereas adding its effects only to a part of the resolved scales would have been physically more
sound. More details of the classical LES can be found in [3-6].

Variational multiscale method is a novel approach based on the classical LES for simulating tur-
bulent flows. In contrast to the classical LES, one of the main features of VMS is its mathematical
consistency that enables transition to DNS when more and more scales are resolved in computa-
tions. The theoretical framework of VMS has initially been established in [7], and has further been
developed for problems in computational mechanics [8]. VMS allows to separate the entire range of
flow scales into a predefined number of scales (mostly two or three), and hence tailored numerical
schemes can be used for different flow scales. Two important aspects of VMS are (i) scale separa-
tion based on projection into appropriate spaces, rather than using a filter function as in LES thereby
doing away with the commutation errors, and (ii) the direct influence of the turbulence model is
confined to the resolved small scales, whereas the resolved large scales are devoid of any direct
influence of the modeling term. Nevertheless, the resolved large scales are still influenced indirectly
by the sub-grid scale model because of the inherent coupling of all scales.

Several variants of VMS implementations have been proposed in the literature (e.g., [9—14]). The
residual-based VMS and the projection-based VMS are the most commonly used approaches. The
basic idea of the residual-based VMS approach is to seek the solution of the fine-scale equation,
which is written in terms of the large scale residual, in an enriched solution space, and then use
it in the large-scale approximation. For instance, the small-scale equation is solved using Green’s
functions in [15]. Alternatively, the small-scale solution is approximated in a space enriched with
bubble functions, and the solution is transferred to the large-scale equation in the form of a stability
tensor in [16, 17]. Further, this approach maybe considered as a variant of the stabilization methods
[16, 18], such as SUPG. Contrarily, in projection-based VMS approaches, the influence of the sub-
grid scales on the resolved scales are incorporated by a model, and subsequently, the resolved scales
are computed (e.g., [11, 19]).

Apart from other challenges associated with simulations of turbulent flows, moving bound-
aries/interfaces make computations more challenging. Interface tracing/capturing schemes (e.g.,
[20-24]) can be classified into two categories: (i) Eulerian approach and (ii) Lagrangian approach.
In the Eulerian approach (e.g., level-set, volume of fluids, front-tracking, etc.), the computational
grid is fixed and the fluid flows through the grid. Because the moving boundaries/interfaces are not
resolved by the mesh, computation of surface forces and suppressing spurious velocities are chal-
lenging in the Eulerian approach. On the other hand, moving boundaries/interfaces are resolved by
a moving mesh in the Lagrangian approach, for example, arbitrary Lagrangian—Eulerian (ALE).
Hence, the solution can be approximated accurately by using the ALE approach. However, han-
dling topological changes is challenging in the ALE approach. Nevertheless the ALE scheme is the
appropriate choice when the deformation of the domain is relatively small.

In this paper, the projection-based VMS using the ALE approach is presented for flows in time-
dependent domains. Though the residual-based VMS has been extended in [16—18, 25] for the flows
in time-dependent domains, to the best of the authors knowledge, the projection-based VMS has
not been presented for flows in time-dependent domains. Because the mesh velocity is part of the
nonlinear convective term in the ALE form of NSE, the mesh velocity has to be calculated in each
nonlinear iteration step of NSE when the domain is a priori unknown. Hence, the mesh velocity is
needed for both the large-scale and fine-scale equations in the residual-based VMS, whereas this
is not the case in the projection-based VMS as we have only the resolved small-scale equations.
Moreover, unlike in residual-based VMS, the projection-based VMS does not require an enrichment
of the underlying resolved small scales space by higher order polynomial bubble functions. Because
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the bubble functions generally vanish on the element boundaries, resolved small scales cannot cross
the mesh cell boundaries in residual-based VMS, and therefore this behavior can be avoided in the
projection-based VMS.

In the proposed projection-based ALE-VMS scheme, we consider a three-scale decomposition
of the flow fields: resolved large scales, resolved small scales, and unresolved (small) scales or the
sub-grid scales. Further, the separation of the resolved large and resolved small scales is achieved
by a projection, whereas the Smagorinsky turbulence model [19, 26, 27] is used to incorporate the
effects of unresolved scales on the resolved small scales. Moreover, the resolved small and large
scales are discretized using continuous and discontinuous finite element spaces, respectively. The
choice of discontinuous spaces for the resolved large scales allows to reformulate the ALE-VMS
system matrix into the standard form of the NSE system matrix. Thus, an existing Navier—Stokes
solver needs only a minor modification to implement the projection-based ALE-VMS scheme.

The remainder of the paper is organized as follows: In Section 2, the NSE and its ALE formu-
lation are given. Section 3 describes the projection-based three-scale ALE-VMS scheme. Further,
the variational form of the Navier—Stokes equations and its spatial discretization are given in this
section. Section 4 describes the temporal discretization and the mesh moving technique for deform-
ing meshes. Section 5 discusses the matrix manipulation and other implementation aspects of the
scheme. In Section 6, simulations of flow around a stationary beam attached to a square base, flow
around a deforming beam, and flow around a plunging aerofoil are presented. Finally, concluding
remarks are summarized in Section 7.

2. MATHEMATICAL MODEL AND ITS ARBITRARY LAGRANGIAN-EULERIAN
FORMULATION

We consider an incompressible fluid flow around a moving/deforming obstacle in a three-
dimensional channel (see Figure 1 for a cross-sectional schematic view). The incompressible fluid
flow in the considered geometry is described by the time-dependent incompressible NSE:

0u_ 2 V.D+ @ V)u+Vp =0 in (0.T] x 2,

ar @)
V.u=0,in (0,T] x Q4.

Here, u = (uy,u2,u3)” is the fluid velocity, p is the pressure in the fluid, T is a given final time,
Q; C R3,t € (0, T] is the channel with deforming/moving boundary I's inside the domain, I';, and
T'yu: are the inflow and the outflow boundaries, respectively. Further, I'y,,;; represents the lower,
upper and lower boundaries of the channel. The NSE are closed with the initial condition

u(0,-) = ug in Qg
and boundary conditions

u(t,x) =mup on (0,T]x Iy,
ut,x) =0 on (0,T] X (Cya; UTs),

(éﬂ)(u) — p]I) ‘n =0 on (0,T] % [py.

Fu;all

OFS F()ut

1—‘wall

F’i,’n,

W¢ill¢¢

Figure 1. Computational domain for a fluid flow around an obstacle.
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Here, uy is a given initial velocity and up = (u;,, O)T a given inlet velocity, I is the identity tensor
and n is the outward normal to the boundary I',,;. Further, the velocity deformation tensor and the
Reynolds number are defined by

Vu + Vu” UL
D(u) = —u—i—2 4 and Re = ez ,
m

where p is the density of the fluid, u is the dynamic viscosity, U and L are characteristic velocity
and length scales, respectively.

2.1. Arbitrary Lagrangian—Eulerian formulation
In order to handle the time-dependent domain, we now derive an ALE form of the NSE (1). Let Q
be a reference domain, and define a family of bijective ALE mappings

A Q> Q.  AXY)=xX.t), te(0,T).

The reference domain € can simply be the initial domain €2¢ or the previous time-step domain when
the deformation in the domain is large. Next, for a function v € C 0(€2;) on the Eulerian frame, we
define their corresponding function o € C%(2) on the ALE frame as

5:8Qx(0,T) > R, b:=vod, with (Y1) = v(A(Y),1).
Further, the time derivative on the ALE frame is defined by
)

ot

(x,1) = Z—U(Y,z), with ¥ = A '(x).
Y

9
Q2 x(0,T) >R, & t

y ot

We now apply the chain rule to the time derivative of v o .A; on the ALE frame to get

v v ax v dA(Y) v
— = —(x,t — . = .V = — - Vv,
B e e AL P L

where w is the domain velocity. Using this relation to the NSE (1) to account for the deformation in
the domain, we get the ALE form of the NSE as

Ju

2
—_ V.- — . Vp =
5 Rev D@) + (u—w)-Vu) + Vp =0,

@)

Y
V.-u=0.

Note that the main difference between (1) and (2) is the additional domain velocity w in the ALE
form that accounts for the deformation in the domain. The ALE form (2) can be viewed as a gener-
alized form of NSE, because the Lagrangian form of NSE can be obtained by setting w = u and the
Eulerian form of NSE can be obtained by setting w = 0.

2.2. Variational form of the arbitrary Lagrangian—Eulerian equation
To derive the variational form of the ALE-NSE (2), let us define the solution spaces with the ALE
mapping
Vo(Q) :={ve (H'(R))’:v=00nTi, Ulyu UTls},
Vr(Q):={ve (H' () :v=00n Ty, UTs},
Vo= {ve Ve(20) :v:i(0.T]xQ > R3, v=10A1, b e Vp(fz)},

0= {qeLZ(Q,):q:(O,T]XQ,—HR,q:c}oAt_l, geLz(Q)}.
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Now, multiplying Equation (2) with a test function v € Vj, and the continuity equation with a test
function ¢ € @, and after applying integration by parts to the higher order derivative term, the
variational form of the ALE Equation (2) and the continuity equation read:

For given w, ug, and Qo, findu € L2(0,T; V), p € L?(0, T, Q) such that

A(U; (ll, P), (V9 LI)) - b(W, u, V) =0 (3)
(¢.V-w)=0 4)
for all (v, q) € Vy x Q, where
Ju 2
Aty a) = (G v) +bwu + g Ow. DO = (.7
y e

b(w,u,v) = (w-Vu,v).

Here, (-, -) denotes the L?—inner product in §,. Further, u € L2(0, T; V) implies that the mapping
t +— u(¢) is continuous.

3. VARIATIONAL MULTISCALE METHOD FOR ARBITRARY LAGRANGIAN-EULERIAN
NAVIER-STOKES EQUATIONS

3.1. Variational multiscale method in time-dependent domains

The solution of the variational form (3) can be obtained numerically by a finite dimensional dis-
cretization. However, the discretization does not capture the fluid flow scales that are smaller than
the mesh size (discretization parameter). Because the turbulent kinetic energy dissipates at the Kol-
mogorov length scale, the mesh has to be fine enough (at least up to the Kolmogorov length scale) in
order to capture the dynamics of the turbulent flows. This approach is referred to as DNS. Neverthe-
less, the choice of the mesh relies on the model (1), and in general, a finer mesh requires enormous
memory and computing power. To overcome this huge demand, a reasonable mesh with a model to
correct the discretization error is used, and this model can be referred to as a turbulence model. One
of the simple and attractive approaches for turbulence modeling is the recently proposed two-scale
VMS [28]. The basic idea in VMS is to decompose the flow fields into resolved (large) and unre-
solved (small) scales, and incorporate the effects of small scales into the solution of the large-scales
by a model. The resolved scale is finite dimensional, and it can be represented by a standard finite
element space. The modeled unresolved scale, also known as the sub-grid scale, is the remnant of
the solution and is infinite dimensional.

A three-scale VMS having the same model equations as the two-scale VMS but with different
modeling assumptions has been proposed in [9]. In this paper, we apply the three-scale decomposi-
tion, wherein the resolved solution space is further partitioned into resolved large and resolved small
scales, that is,

~ A

V=VaeVel ad 0=060®0,
and the velocity test space as
Vo=To® Vo® .

In the aforementioned equations, the bar, the tilde, and the hat over the spaces represent the
resolved large, the resolved small, and the unresolved small scales, respectively. Consequentially,
the functionsu € V' and g € Q can be written as

u=u+t+u+a and ¢g=¢+4g+4g. 5)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
DOL: 10.1002/fld



B. PAL AND S. GANESAN

Using the decomposition (5), the momentum balance Equation (3) becomes

A(w; (@, p), (v.q)) + A(w: (@, p), (v.9)) + A(w; (@, p), (V.q)) —b(w.u+u+10,V) =0
A(u; (@, p), (v.9)) + A(w; (@, p), (v,9)) + A(w; (@, p), (v.g)) —b(w,u+u+ua,v) =0 (6)
A(u; (1, p), (v.9)) + A(u: (0, p). (V.9)) + A(uw; (@, p), (V.4)) —b(W.u+ 0 +1a,V) = 0.

Note that the DNS solution will also contain the approximation of the last equation in (6).

3.2. Modeling assumptions
To avoid DNS of the variational form (6), the following assumptions are made.

e Contrary to DNS, the main purpose of VMS is to avoid explicit computation of the unresolved
scales, and hence, the last equation (6) is ignored as the test functions are from the unresolved
scales.

e The first equation in (6), that is, the equation with the test function from the resolved large
scales, the term b(w,u + @ + W, V) incorporates to the mesh movement into the model. Using
linearity in the second component, this term can be expanded, and further b(w, u, V), b(w, 11, V)
can be combined with A(u; (u, p), (v, q)) and A(u; (a, p), (v, q)), respectively, to obtain A(u—
w; (u, p), (v,q)) and A(u—w; (@, p), (v, g)). Similar modifications can be done to the second
equation in (6).

e The resolved scales are further split into resolved large and resolved small scales, and it is
assumed that the direct influence of the unresolved small scales is only on the resolved small
scales and has negligible direct influence on the resolved large scales. Also, the Reynolds stress
and cross stress terms

A(u—w; (@, p). (v, §)), b0, 0, ¥), b4, i, V), b(@, a,v)

that contain the unresolved and resolved large scales are assumed to be zero.

e The unresolved scales dissipate the turbulent kinetic energy from the small scales, and the
unresolved scales are sufficiently small. Thus, the influence of unresolved scales on resolved
small scales is modeled by an appropriate turbulence model, that is,

A — o~

A(u—w; (@, p), (V,q))+ b, u,v)+ b0, 0, V) + 50,0, V) ~ Bu—w; (u, p), (@, p). (v.9)).

This modeling is essential to incorporate the effect of the unresolved scales into the resolved scales
of the flow. Imposing these assumptions, the VMS form of ALE-NSE (6) reduces to

A@+a—w; (W, p),(v.q) + A@+a—w: (0, p),(v,q)) =0
A@+u—-w; (W p),(V,q) + A@+ua—-w;(u p),(V,9) + Bla—w; (u p), @, p),(V,q)) =0

Note that the turbulent model in the three-scale VMS acts only on the resolved small scales and
not on the resolved large scales directly. Nevertheless, the three-scale model indirectly incorporates
the effects of unresolved scales in the resolved large scales because of the inherent coupling of the
resolved small scales with the resolved large scales. This is in contrast to the classical LES, where
the turbulent model acts directly on all resolved scales.

3.3. Finite element discretization

A number of approaches have been proposed in the literature for the scale separation (e.g., [19,
29-35]). In this work, we consider the projection-based approach presented in [19], and extend
it for ALE-NSE in time-dependent domain. Let €2; 5 be the triangulation of the domain 2; into
simplex cells, V(2; ) C V() and Q;(2;,) C Q(R2;) be the conforming finite element spaces
satisfying the discrete inf-sup condition

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
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(Qh,V'Vh) ,3

inf sup =
01 €nvyevy, llgnllLz IVVallL2

=0 )

for some positive constant 3, which is independent of the mesh size 4. Note that the continuous
spaces V' and Q contain all scales, whereas the finite dimensional spaces 1}, and Qj contain only
the resolved large and small scales. Further, let

L={L:Le(L*)>3 L=L"}

be a space of 3 x 3 symmetric tensors (deformation tensor in the context of NSE), and Ly C L be
a coarse discrete space defined as

Ly ={D(v):D(v) €L, VveVy C(H ()}

Here, the subscript H in Vg denotes that the polynomial order of Vg is smaller than the polynomial
order of Vj,. Next, define Pr,, : L — Ly, D(v) = Pr,D(v) with the L2-projection

((I[ —PLH)D(U), ]LH) =0, V ]D)(ll) € L, Lgely.

Using these discrete finite dimensional spaces and the projection operator, the semi-discrete
(continuous in time) VMS form of the ALE-NSE reads:

For given w,ug and Q¢ 5, find u, € L2(0,T; V},), pp € L?(0, T, Qp), and Gy = Pr,,D(up) €
L?(0, T, L) such that

A(ug; (g, pr)i (Vi gn)) +vr (D(ug) — Gy, D(vy)) —b(W,up, vy) =0
(gn,V-up) =0 (8)
D) -Gy, Lyg) =0

for all (v, qp) € Vp x Qpand Ly € Ly. Here, vy = 0 is a turbulent viscosity model and w is the
mesh velocity.

Remark 1

The space L g and the turbulence model v need to be chosen suitably, and these two choices char-
acterize the turbulence model of the VMS scheme. A popular choice for the turbulent viscosity
model is the Smagorinsky eddy viscosity model. Further, the first equation in (8) essentially means
that the turbulent viscosity is added to all resolved scales and then the turbulent viscosity is sub-
tracted from the large scales, thereby limiting the effect of turbulent model only on the resolved
small scales. This is the main idea of VMS.

Remark 2

The third equation in (8) represents an L2-projection of D(uy,) from L onto Lg. In a three-way
partition of the flow field, the space L can be interpreted as a space representing the deformation
tensor of the resolved scales, containing both the large and the small scales, whereas the space Ly
represents the deformation tensor of the resolved large scales.

4. TEMPORAL DISCRETIZATION AND LINEARIZATION

4.1. Temporal discretization

Let0=1% <t!' <... <t = T be auniform decomposition of the considered time interval [0, T],
and §; = t" — "1 1 <n<N,bethe time-step size. For brevity, we denote the discrete functions
u, (1", x) and py(t", x) as wy and pj, respectively. Further, the triangulated domain €2, , and the
moving solid structure boundary I's at time ¢” are denoted by Q;» j and I'%, respectively. Moreover,
Vi, O, and L% denote the discrete spaces defined on €2 ;. The mesh velocity is often part of

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
DOL: 10.1002/fld



B. PAL AND S. GANESAN

the solution and needs to be approximated, for instance in fluid—structure interaction problems. In
order to solve the VMS form of the ALE-NSE (9), the mesh velocity is needed. The discrete ALE
mapping in [t"~!, "] is defined by

t—nl " —t
— A, n(Y) +
5t h,t ( ) 5t

Ap(Y) = Apn-1(Y),

fort € [t"~!, "] and the discrete mesh velocity is then defined by

Apin(Y) = Ap n—=1(Y)
8

VAVh(Y) =

as a piecewise constant function in time. Further, the functions in the Eulerian frame are defined by
applying the discrete ALE mapping. For example, the unknown discrete functions in the Eulerian
frame are defined by

N -1 A -1 h -1 A -1
w, =Wy o Ah,z" (x), py,=ppo -Ah,zn (x), n=G}o -Ah,zn (x), wp=W,o ‘Ah,t" (x).

Applying now the general #-scheme, the discrete form of (8) in the interval (17!, ") reads:
For given wy, u" ! and Qn—1 j, with u’ = u, find uy € V', pp € Qf and G € L' such that

n_

u? —u?! 20
(%v) +o (D)), D(V)) + 0b (W} — Wi, ul,v) + vy (D(u}) — G, D(vy))
t

2
T = 10| 2 ., D)+ b - |

+ (1= (D) =Gy, D(vp))
((Ih» V. llZ) =0
6 (D}) -Gy, Ly)=>1-0) (D@}, -G}" Ly) o
for all (vi,qp) € V}' x Q) and Ly € L. Note that a nonlinear solver has to be used to solve the

system (9) because of the nonlinear convective term. Alternatively, an iteration of fixed point type
can also be applied to handle the nonlinear convective term.

Remark 3

The main difference between the NSE defined in a fixed and in a time-dependent domain is the
mesh velocity term, b (“Z — Wy, up, v) in the first equation in (9). Suppose the displacement of the
domain is prescribed, then the mesh velocity is known a priori and it is enough to compute wj, only
once at each time step. However, the computational domain is part of the solution in fluid—structure
interaction and multiphase flows, and therefore wj is unknown, and eventually it has to be calculated
at each nonlinear iteration step.

4.2. Computation of the mesh velocity and mesh movement

In this section, we describe the calculation of the mesh velocity and the used mesh movement
technique. Let T¢ be the displacement of the solid structure boundary at " from T'%~! to T'%. Then,
the displacement ¥ of the inner points (mesh vertices) in 2,21 , is obtained by solving the linear
elasticity equation

V-TP") =0 inQuy
W" =T¢ onIg! (10)
W =0 ondQu-1, \TE!

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
DOL: 10.1002/fld



PROJECTION-BASED VMS FOR INCOMPRESSIBLE NSE IN TIME-DEPENDENT DOMAINS

where T (¢) = A1 (V-¢9)[+2A,D(¢), In computations, the Lame constants A; and A, are chosen as
one. Further, continuous piecewise linear polynomials are used to approximate each component of
the displacement vector. Moreover, the solution of Equation (10) is approximated by using mapped
finite elements, that is, all integrals in the discrete form of Equation (10) are transformed over the
reference cell by affine mapping, and evaluated on the reference cell. Further, the determinant of the
Jacobian is dropped in the transformed reference integral that contains the stiffness term in order
to preserve the predefined mesh adaptivity during the deformation. Because the determinant of the
Jacobian will be small for smaller cells, ignoring it in the reference integral of the stiffness term
induces more stiffness to the smaller cells. Consequently, the deformation of the smaller cells will
be less in comparison to the larger cells, and it helps to maintain the predefined mesh adaptivity.

Once the displacement vector is calculated for all points in €211 j, then the domain ;n j is
obtained by adding the displacement to the coordinates of vertices in 2,11 j. Further, the discrete
mesh velocity at wj, is obtained by

an
n
W, = —
h ’
8
which is piecewise constant in time. The mesh movement with the linear elastic approach avoids the
remeshing in the considered examples.

5. IMPLEMENTATIONS OF ARBITRARY LAGRANGIAN-EULERIAN VARIATIONAL
MULTISCALE METHOD IN TIME-DEPENDENT DOMAINS

In this section, we present the matrices that arise from the discrete form (9), and then the necessary
modifications to obtain the standard system matrix format of the NSE. In general, the small and
large-scale finite element spaces can be defined in two-ways, either using the same order polynomi-
als for both L i and V}, but defining it on a coarse and a fine mesh, respectively, or defining L i and
V}j, on the same mesh with lower and higher order polynomial functions, respectively. We prefer the
second choice.

Let ¢i1 , ¢i1 I q’)il i = 1,2,...,Ny be the basis functions of the velocity components
(1,1, U2 i, U3p), Tespectively. Here, Ny is the number of degrees of freedom (DOF) of each
velocity component. Then, the finite element space for the resolved small scale is defined by

¢/ 0 0
Vi = span 0|l 0 |:fori=12,....Ny
0 0 piM!

The superscripts I, 1, I11 are used to indicate the corresponding basis functions of the velocity
components. However, the same basis functions are used for each component of the velocity. Let
Yr,k = 1,2,..., Np be the basis functions of each component of the tensor. Here, Ny, is the
number of DOF of each tensor component. Then, the components of the tensor are defined by

gllh glzh g13h
Gu = | g12" 222" 223" |,
g13h g23h g33h

Furthermore, the space of symmetric tensors, L g is defined by

Y00\ | (0 vk 0\ {00
Ly = span 000]),=l¥Yx OO},=| OOO |,
000) 2\Vo 00/ Z2\y0 0
000 1 00 O 00 O
Ovr 0], =100 vy |,{000
000/ 2\0y, 0 00 Y
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fork = 1,2,..., Np. Using the definition of finite dimensional spaces, the discrete form of ALE-
NSE (9) with 8 = 1 results in the system of algebraic equations

At A1z A3 BT Gy Gia Gis 0 0 0 Uy [ F1 ]

Azi Az A3 B2T 0 Gy 0 Goa G25 0 Uz F>

As1 Asz A3 BsT 0 0 Gisz 0 Gss Gsg Us F3

B, B, B, 0 0 0 0 0 0 0 P . 0

Gga 0 0 0 M O O 0 o0 o gllh _ 0 an

Gy1 G O 0 0 M/2 0 0 0 0 812 0

Gy 0 Gss 0 0 0 M/2 0 0 0 g13" 0

0 G2 0 0 0 0 0 M 0 0 g2o" 0

0 Gs2Gs3 0 0 0O O O M/2 0 g23" 0

| 0 0 Ges O O O O 0 o0 M__g33h_ | 0

Here, the matrices A,g, BrT and B,,1 < r,s < 3 are the standard matrices in Navier—Stokes

problem. Note that A,, contains the mesh velocity. Further,

(G1)ij = 1%
(Gra)ij = 1%
(Gra)y = =
(Gn)ij = l%
(Gaahj = =
(Gashy = =
(G33)ij = 1%
(G3s5)ij = %T
(G3e)ij = 1%
(Gn)ij = !
4

Copyright © 2016 John Wiley & Sons, Ltd.
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2¢i1,x ¢l{y ¢l{z 2Wj 00
¢f, 0 0 0 00
¢l 0 0 0 00
2¢i1,x ¢lI,y ¢tI,z 0 v, 0
iy, 0 0 ¥ 00
¢ 0 0 0 00
iI,x t{y l{z 00 Wj
¢f, 0 0 000
ol 0 0 ¥ 00
0 ¢/l 91 0 v; 0
ik 2¢1y b, v 00
0 i1 o 0 00
0 ¢” 0 0 00
i ¢1y ¢” 02y, 0
0 00 0
0 ¢” 0 00 0
¢!l 29! ¢l! 00 v,
0 ¢! 1 0y; 0
0 0 ¢>;” 00y,
0 0 ¢/l 000
¢III ¢III 2¢III 1//1 00
0 0 ¢’Z 00 0
0 0 ¢/ 00 v
¢III ¢III 2¢III 0% 0
0 0 ¢;Z 00 0
0o o ¢/ 00 0
¢III ¢III 2¢III 002%]
20, 00\ (28] 0!, ¢!,
000 ¢fy, 0 0
0 00 ¢l, 0 0
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1 0 v; 0 ¢Itl,x ¢i1,y ¢i1,z
(G21)ij = I ¥i 00 ¢, 0 0
000 ¢l 0 0
fowo 0 ¢!l 0
(G22)ij = 1 ¥i 00 11)16 2 I; tlé
0 00 0 ¢ 0
(00w (299l 4l
(Gany =7 ¢ 000 ¢l, 0 0
¥i 00 ¢l, 0 0
(00w 0 0 ¢;”
(G33)ij = 4 000 0 0 ;I
¥i 0 0 gL plI1 g1l
(o 00 0 ¢>” 0
Ga)ij =71 [ 02vi 0 || ¢, 29 Iy L ol!
000 0 ¢! 0
L[fo0 0 0 ¢,{’ 0
(G2)ij =74 0 0 wi |+ | ¢k 2075 i
0y 0 0 ¢/ 0
[0 00 0 0 ¢;”
(G53)i_i = Z 02y; 0 0 0 ¢ 1
0 0 0 ¢111 ¢111 ¢111
00 0 0 0 ¢!lf
(Geaj= 71100 0 || 0 0 ¢f”
00 2y, ¢111 ¢111 ¢111

In the preceding expression, the subscripts x, y,z in the basis functions denote the derivative of
the basis functions with respect to x, y, z. Further, the matrix M is the mass matrix of the large
scale space Ly and is given by M; ; = (v;, {;). Here, ( : ) represents the tensor product in the
respective spaces. The preceding system can be solved for g11, g12, 13, 822, €23, £33, and then
substituting it in (11) results in a saddle point system of the form

A Az Ars BT U1 N
A21 A22 A23 BT uz | _ | J2
A3y Asy Az B3T us VE
B, B, By 0 p

For the explicit form of the modified block matrices, we refer to [19]. There are two main challenges
associated with the computation of these modified matrices: first, the inyerse of the large-scale space
mass matrix has to be simple to compute, and next, the sparsity of A,5,1 < r,s < 3 should be
similar to that of A,s. The mass matrix becomes a diagonal matrix when orthogonal basis functions
are used for the large-scale space, and hence the inverse can be calculated efficiently. Further, the
choice of discontinuous basis functions for the large-scale space leads A,5, 1 < r, s < 3, to the same
sparsity as of A;.

The preceding saddle point system is solved by an iteration of fixed point type because of
the implicit treatment of the nonlinear convective term in the block matrices A1, A2, and Azj.
Note that the convective term also contains the mesh velocity. Contrary to the NSE in stationary
domains, all matrices in the preceding system change in time. Hence, in addition to the assembling
of A11 , A22, and A33 matrices at each fixed point iteration, all other block matrices in the system
need to be assembled at every time step.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
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6. NUMERICAL EXAMPLES

In this section, we present an array of numerical simulations for flow around a stationary beam, flow
around an oscillating beam, and flow around a plunging aerofoil. The first two test examples are two-
dimensional, whereas the third example is three-dimensional. In all computations, the Smagorinsky
model, vr = ¢;82||D(uy)| F with ¢, = 0.01 and § = 2k is employed. Here, A is the mesh size and
||l.Il 7 denotes the Frobenius norm.

The two-dimensional computational domain is triangulated into triangles using the mesh gen-
erator ‘Triangle’[36, 37], whereas the mesh generator ‘Gmesh’[38, 39] is used to tetrahedralize
the three-dimensional domain. On the triangulated mesh, an inf-sup stable finite element pair,
sz"bbl"/ Pld is¢ that is, continuous piecewise quadratic polynomials enriched with a cell bubble
(cubic polynomial in 2D and quadratic polynomial in 3D) and four face bubbles (cubic polynomi-
als) in 3D for the velocity, and discontinuous piecewise linear polynomial for the pressure, is used
for the resolved small scales. Moreover, a piecewise constant polynomial, Py, is used as a projection
space for the resolved large scales. Further, an unconditionally stable second-order Crank-Nicolson
method is used for the temporal discretization, by choosing 8 = 0.5 in (9). In each time step, an
iteration of fixed point type is applied to handle the non-linear convective term in the NSE. Note
that the mesh velocity, which is part of the convective term, needs to be calculated in the fixed point
iteration step, if the mesh velocity is unknown a priori. Finally, the resulting system matrix is solved
using the direct solvers UMFPACK [40] in 2D, whereas MUMPS solver [41, 42] is used for 3D
system. All computations are performed using our in-house finite element package, ParMooN.

6.1. Flow around a stationary beam attached at a square base

We consider a two-dimensional channel that contains a rectangular beam attached to a square base.
The channel is rectangular in shape of dimension 46 by 20 units, whereas the beam is of dimension
5 by 0.2 units. The base to which the beam is attached, is a unit square centered at the origin. An
outline of the fluid domain that contains the structure is shown in Figure 2. We impose a free-stream
boundary condition u = (u1,u2)” = (1,0)7 on the top and bottom walls of the channel and a
unit inlet velocity at the inflow boundary, whereas a zero Nuemann condition is imposed on the
outflow boundary. Further, the no-slip boundary condition is imposed on the square base and on the
surface of the beam. Moreover, a zero initial condition, uy = 0, is used. Computations are carried
out with 59,860 DOF for each u; and u,, respectively, and 15,082 DOF for the pressure. Two sets
of computations are performed with time step §; as 0.025 and 0.05 for the considered Reynolds
number, Re=100. Typically at this range of Reynolds number, flow around the square base without
a beam attached to it would produce Karman vortex-like structures in the wake region.

Figure 3 shows the streamwise velocity profile of the fluid around a unit square obstacle and of
a beam attached to a unit square base at time ¢ = 35. The development of asymmetric flow can
be seen in Figure 3(a), and it could further lead to Karman vortex-like structures at a later stage.
However, it can be seen in Figure 3(b) that the presence of the beam has suppressed the formation
of asymmetry flow.

(36,10)
F’wall
(0.5,0.5) 550
Fin P 5“5'_(')1 Fout
(-0.5,-0.5) I's (5.5.-0.1)
-10-10) F’mal[

Figure 2. Schematic view of a beam attached to a square base in the fluid domain.
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Figure 3. Streamwise velocity profile of the fluid flow around (a) unit square obstacle (b) stationary beam
attached to a unit square base at t = 35. The used time-step §; = 0.025.
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Figure 4. (a): The variation of C, along the entire upper surface of the stationary beam at time ¢ = 15.

Time-step used §; = 0.025. (b): The mean pressure coefficient, C,,(¢) over a part of the upper surface of
the beam in a flow over a stationary beam.
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Figure 5. A close-up view of the mesh used in the oscillating beam example. (a) Beam at the initial position,
and (b) beam at its maximum amplitude.
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Next, to quantify the pressure variation around the beam, the mean pressure coefficient C,(t) is
computed by

— 1
Mean C, = Cp(t) = H/F Cp(t,x)ds,
C

where the pressure coefficient Cp, (¢, x) is defined by

_ Pt = palt)
(1/2)(va (2))?
Here, p, and v are the free-stream pressure and velocity that are chosen to be the pressure and the

streamwise velocity at the point (—10, 0). The integral in the definition of C,(¢) is evaluated using
trapezoidal rule. In Figure 4(a), the distribution of pressure coefficient, C, over the entire upper

Cp(t,x)

(a)t=15 (b) t = 15.925 (¢) t = 16.875

(e) t = 18.75 (f) t=19.675

=2 a 2 4 6

(g) t = 20.625

-0.2000 0.1500 0.5000 0.8500 1.200
= |

p
Figure 6. Pressure profile in the fluid flow around an oscillating beam at different instances of time 1 =
15,15.925,16.875,17.8,18.75,19.675,20.625,21.55, 22.5. The used time-step §; = 0.025.
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Figure 7. Mean pressure (C,) profiles obtained for a section of the upper surface, (a): T'c = [(2.97,3.06) x
0.1], and the lower surface, (b): Tc = [(2.97,3.06) x —0.1], of the oscillating beam.

-#-lower surfacel]
-B-upper surface
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Figure 8. Superimposed mean pressure (C,) profiles obtained for the upper and the lower surface of the
oscillating beam. Time-step used §; = 0.025
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Figure 9. Computational domain for a fluid flow around an aerofoil, with characteristic length 1.
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surface of the beam at t+ = 15 is plotted. The variation of C_p along the upper part of the beam,
I'c =[(2.97,3.06) x0.1], that is, along a part of the line y = 0.1, over time is shown in Figure 4(b).
After increasing initially, the mean pressure coefficient reaches a steady state. Because a similar
behavior is observed for the lower surface of the beam, only the plots for the upper surface is shown.
Further, the computed results, C, and C_p(t), are compared with the numerical results reported in
[16] and are in very good agreement.

6.2. Flow around an oscillating beam

We next consider a typical fluid—structure interaction problem, that is, a flow around an oscillating
beam that directs the flow around it. In this two-dimensional example, the dimension of the channel
and of the structure are same as in the previous example (Figure 2). Also, the initial condition, the
boundary conditions, and the Reynolds number are same as in the previous example. Computations
are performed with §; = 0.025 and §; = 0.05 by using 59,860 DOF for each 1, and u,, respectively,
and 15,082 DOF for the pressure. The simulations are performed till the time 7" = 50.

In the example, the flow is being directed by a prescribed sinusoidal movement of the beam in
y—direction, and the coordinates of the beam, (x, y) € ['s(¢), at any given time ¢ is prescribed by

x(t) = x9—0.25d tan @ — yosinf; y(t) = yo + d,

d(t) = A(xg — @)’ sin(Qrwt); tanh = o .
X0 — &

Here, (x9, yo) € Fg, A = 0.1 is the amplitude, o« = 0.5 is the abscissa of the joint of the beam with
the square, and w is the angular velocity of the oscillation with time period for one full oscillation
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Figure 10. Mean streamwise velocity profile obtained along the line x = 1 at (a) ¢ = 0 (b) ¢ = 7/2 (c)
¢ = m (d) ¢ = 37/2 in plunging aerofoil computations with Re = 40,000.
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being 7.5 time units. Moreover, the movement of the mesh is handled using the ALE approach as
described in Sections 2.1 and 4.2. Because the Jacobian is dropped in the mesh matrix assembling,
the smaller triangles near the structure get much less deformation compared with the larger triangles
away from it. Consequentially, the effect of the domain deformation is absorbed substantially by
the larger cells compared with the smaller cells (see Section 4.2 for more details). Further, a pre-
defined adaptive mesh with a high resolution near the deforming structure and coarser away from
the structure is preserved during the mesh movement. Further, the tip of the beam is considered as
a semi-circle to do away with the singularities that might occur due to the sharp corners. A zoomed
view of the mesh with the beam at the initial state and at its highest position are shown in Figure 5.
Note that no remeshing is used.

Figure 6 shows the pressure profile in the fluid at different instances, t = 15,15.925,16.875,
17.8,18.75,19.675,20.625,21.55,22.5, during one complete oscillation of the beam. Figure 6(a),
(b), and (c) show the upward sweep of the beam in the positive y-direction from its initial mean
position. During this stage, the velocity of the beam that is maximum at the mean position gradually
decreases as the beam reaches its highest position. Because the displacement of the beam is against
the fluid flow, a high pressure is observed on the upper surface of the beam and the pressure is more
near the tip of the beam. Nevertheless the pressure on the upper surface of the beam decreases when
the beam reaches its highest position as the velocity of the beam, which pushes the beam against
the fluid, is minimum at this position. Moreover, a relatively low pressure near the square base on
the upper surface can also be observed, and it can be attributed to the fact that the flow is hindered
in this region by the square base. Figure 6(d) and (e) show the pressure profile in the fluid during
the downward sweep of the beam from its highest position back to its mean position. During this
stage, the pressure on the upper surface of the beam gradually reduces while at the same time it
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-5 t=0.0005
;*- 1.2F : 1 é\ Masud et al
Q \/-ﬁh Q E E
S o 12
EEES ,J/ g 4
E3 Z o0sf .
: :
= - 51=0.001 2
“ 04k W-5i=00005 [ 1 P b ! ‘ ]
Masud et al
1 1 1 1 L |
-0 0 05 -05 0 05
y y
(c)p=m (d) ¢ =3m/2
14 T T T T T
1 m
oy 2 12F
S 08F : : 4 3
2 =
L o6p 4 2
% 0.4+ i qé 0.8
= 3
g o02r : 4 g
8 ok #5000 | ] 3 oab / -50=0001 | |
@ 5100005 a - 5100005
-0.2F Masud et al | 7| Masud et al
4 1 1 ] 0_ 1 1 Il 4
-05 0 05 -05 0 05
y y
Figure 11. Mean streamwise velocity profile obtained along the line x = 1 at(a) ¢ = 0 (b) ¢ = 7/2 (c)
¢ = m (d) ¢ = 37/2 in plunging aerofoil computations with Re = 60,000.
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increases significantly on the lower surface. Figure 6(e), (f), and (g) show the downward motion of
the beam in the negative y-direction from its mean position. Because the prescribed motion of the
beam being is a periodic sinusoidal one, as expected, the pressure profile in the fluid during this stage
is symmetric to the previous instances when the beam was moving upward. Finally, Figure 6(h) and
(i) show the upward motion of beam returning from its lowest position to its mean position. Note
that the pressure profile at the initial stage (Figure 6(a)) and after one complete oscillation of the
beam (Figure 6(i)) are identical, and it shows the accuracy of the numerical scheme.

Next, the plots in Figure 7(a) and (b) show the mean pressure coefficient C, () over a section on
the upper surface, I'c = [(2.97,3.06) x 0.1], and the lower surface, I'c = [(2.97, 3.06) x —0.1], of
the beam, respectively. Because the oscillation of the beam is periodic and the definition of C_p isa
linear function of pressure, the oscillations of C_p are also periodic. Both these plots are compared
with the numerical results presented in [16], and are in good agreement. Next, to show the phase
difference in C,(¢) for the upper and lower surfaces of the beam, the mean pressure, C,(¢) for both
the surfaces are plotted together in Figure 8.

6.3. Flow around a plunging aerofoil

In this section, we present a set of 3D simulations of flow around a plunging aerofoil. A standard
SD7003 aerofoil is placed within the channel whose schematic representation is given in Figure 9.
The aerofoil, whose chord-line is of unit length, is placed with its tip at the origin, and is at 4° angle
of attack. The inflow boundary, I';,, is semicircular with radius 6 units, with its geometric center
at the origin. The outflow boundary, I'y,;, is 6 units further away from the origin. The width of the
channel is 12 units and the thickness is 0.2 units. We impose the free-slip boundary condition at
the top and bottom as well as at the lateral walls of the channel. On the surface of the aerofoil, the
no-slip boundary condition is imposed. The Dirichlet condition with a unit inflow is imposed on the
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Figure 12. Mean pressure profile obtained along the line x = l at(a)¢p = 0(b) ¢ = 7/2(c) ¢ = 7 (d)
¢ = 37 /2 in plunging aerofoil computations with Re = 40,000.
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inflow boundary, and the zero Nuemann boundary condition is imposed on the outflow boundary.
The plunging motion of the aerofoil is prescribed by a sinusoidal displacement in y-direction, the
y-ordinate of the aerofoil at any given time ¢ is prescribed by

y(t) = yo +d(t),  d(t) =0.05+ 0.05sin(3.93( — 6.395)) when ¢ > 6.395,

with time period 1.6, and (xg, yo) € Fg. Further, a coarse mesh with §; = 0.001 and a finer mesh
with §; = 0.0005 are using in this example. The choice of P2bb¢/pdisc finite elements on the
coarser mesh results in 30,682 DOF for each u1, u,, and u3, respectively, and 23,204 DOF for the
pressure, and on the finer mesh, we have 46,440 DOF for each u,, u,, and us, respectively, and
35,844 DOF for the pressure. Moreover, computations are performed with Reynolds number 40,000
and 60,000 on both meshes.

In all variants of these computations, the inlet velocity is increased linearly from O to 1 during the
time interval [0, 6.395], and during this same time interval the position of the aerofoil is also moved
linearly in the positive y-direction from y = 0 to y = 0.05. After this initial phase, the previously
prescribed sinusoidal motion of the aerofoil is allowed to ensue.

In this study, four different positions of the aerofoil during its plunging motion are considered:
(i) the initial stationary position as phase angle ¢ = 0; (ii) the highest displaced position along the
positive y-axis as ¢ = m/2; (iii) the stationary position during its downward sweep as ¢ = x; and
finally (iv) the maximum displacement along the negative y-axis as ¢ = 37/2.

The flow features at the wake of the plunging aerofoil at these four positions are studied by calcu-
lating the mean value of the streamwise velocity and pressure along the lines, x = 1 with y ranging
from —1 to 1 along 11 equidistant points in the spanwise (z) direction. Further, for averaging over
the time, computed values are sampled over three consecutive oscillations. These measurements are
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Figure 13. Mean pressure profile obtained along the line x = l at(a)¢p = 0(b) ¢ = 7/2(c) ¢ = 7 (d)
¢ = 3x/2 in plunging aerofoil computations with Re = 60,000.
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taken only after the flow around the aerofoil evolve to a statistical periodicity, which is after five
complete oscillations.

Figures 10 and 11 show the mean streamwise velocity profiles corresponding to Re = 40, 000
and Re = 60, 000, respectively. The streamwise velocity profiles agree with the results of [17].
Next, the mean pressure profiles corresponding to Re = 40, 000 and Re = 60, 000 are presented in
Figures 12 and 13, respectively. Although the behavior of the pressure profiles are comparable with
the results in [17], there are variations in the range of some of the pressure values. Because of the
sequential implementation of our code, even in the finer mesh we used 2,774 nodes and 8,961 cells,
whereas 1,676,592 nodes and 1,600,225 cells were used in [17] for the coarse mesh itself. Moreover,
the generated mesh is unstructured, whereas the structured mesh was used in [17]. Even though the
number of nodes are very less in our computations, choosing a fine mesh near the aerofoil leads to
175,164 DOFs in total, which provides a comparable result. Nevertheless, we strongly believe that
this variation in the mesh resolution is the reason for the differences in some of the obtained values.
However, the proposed scheme is still able to capture the velocity and pressure profiles even with a
comparatively coarser mesh.

7. CONCLUSION

In this paper, a finite element variational multiscale method for the incompressible NSE in time-
dependent domains is presented. This work is an extension of the multiscale method proposed in
[19] for turbulence flows in fixed domains. In the considered three-scale VMS scheme, the flow
fields are decomposed into resolved large and small scales by a projection together with a model
for the unresolved subgrid scales. In particular, a turbulent viscosity is added to all resolved scales
to incorporate the effects of unresolved scales, and then the added turbulent viscosity is subtracted
from the large scales, thereby confining its effect only on the resolved small scales. Moreover,
the velocity space in the proposed VMS scheme does not need to be enriched with higher order
polynomial bubble functions, which vanish on element boundaries, to capture the resolved small
scales. Further, the second-order Crank—Nicolson method is used for the temporal discretization.
The moving boundaries at the fluid—solid interfaces and the time-dependent domain are handled by
the ALE approach, whereas an adaptivity preserving mesh movement is obtained by solving the
linear elastic equation with mesh-dependent stiffness. Furthermore, this method can be implemented
efficiently on an existing NSE solver with some assumptions on the resolved large-scale space.

Three numerical examples are considered in this study, to show the robustness and applicability
of this scheme: (i) flow around a static beam attached to a square base; (ii) flow around an oscillating
beam; and (iii) flow around plunging aerofoil, with different Reynolds numbers and meshes. The
obtained results are in agreement with the existing results in the literature. The extension of the
projection-based three-scale VMS scheme for fully coupled fluid-structure interaction problems will
be pursued in the future.
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