
Comput Visual Sci (2009) 12:329–336
DOI 10.1007/s00791-008-0111-3

REGULAR ARTICLE

Modelling and simulation of moving contact line problems
with wetting effects

Sashikumaar Ganesan · Lutz Tobiska

Received: 31 January 2007 / Accepted: 14 August 2007 / Published online: 12 April 2008
© Springer-Verlag 2008

Abstract This paper presents a numerical scheme for
computing moving contact line flows with wetting effects.
The numerical scheme is based on Arbitrary Lagrangian
Eulerian (ALE) finite elements on moving meshes. In the
computations, the wetting effects are taken into account
through a weak enforcement of the prescribed equilibrium
contact angle into the model equations. The equilibrium
contact angle is included in the variational form of the model
by replacing the curvature with Laplace Beltrami operator
and integration by parts. This weak implementation allows
that the contact angle determined by the numerical scheme
differs from the equilibrium value and develops a certain
dynamics. The Laplace Beltrami operator technique with an
interface/boundary resolved mesh is well-suited for descri-
bing the dynamic contact angle observed in experiments. We
consider the spreading and the pendant liquid droplets to
investigate this implementation of the contact angle. It is
shown that the dynamic contact angle tends to the prescribed
equilibrium contact angle when time goes to infinity. Howe-
ver, the dynamics of the contact angle is influenced by the
slip at the moving contact line.
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1 Introduction

In free surface and interface flows, the contact points (in 2D)
or contact line (in 3D) emerges when the interface between
a liquid–gas or a liquid–liquid intersects a solid surface. The
contact line is said to be a moving contact line if the rela-
tive velocity between the interface and the solid surface is
non-zero, i.e., the interface and solid surface move (either
one of these two can be also fixed) in different velocities.
In computations of these type of flows, the description of an
appropriate boundary condition at the moving contact line
and the inclusion of the wetting effect, i.e., inclusion of the
contact angle, are the two main difficulties.

Using the no-slip condition at the moving contact line
leads to an non-integrable force singularity in the model.
Several boundary conditions have been proposed in the lite-
rature to relieve this singularity, see for an overview [4,7].
Among them, the so-called Navier-slip boundary condition
has been more often used and is widely accepted. It reads:

u · νS = 0, u · τ i,S = −εµ(τ i,S · T(u, p) · νS) (1)

for i = 1, . . . , d −1, on the liquid–solid interface. Here, d is
the dimension of the considered problem, νS and τ i,S are the
unit normal and tangential vectors on the liquid–solid inter-
face. Further, εµ is the slip coefficient. The unit of the stress
tensor T(u, p) is kg/(m s2) and the velocity is m/s. Thus,
from the dimensional analysis, the unit of the slip coeffi-
cient εµ should be of εµ−1

0 , where ε and µ0 have the unit
of a length and a dynamic viscosity, respectively. The first
condition in (1) is the no penetration boundary condition,
that is, the fluid cannot penetrate into an impermeable solid
and thus the normal component of the velocity is zero. The
second condition is the slip with friction boundary condition,
that is, on the liquid–solid interface, the tangential velocities
of the fluid are proportional to their corresponding tangential
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Fig. 1 Interpretation of the slip-length ε. Arrows indicate the magni-
tude of the velocity component in X direction

stress. Depending on the choice of ε, we get different types
of boundary conditions as:

1. no-slip if ε = 0,
2. slip with friction if 0 < ε < ∞,
3. free slip if ε = ∞.

For an interpretation of the slip-length, see Fig. 1. For example,
in case of shear flow, i.e., partial slip, ε can be interpreted [7]
as the fictitious distance to the solid surface as shown in Fig.1
(middle). In our model, we use the second type, i.e., the slip
with friction type condition.

Next, to include the wetting effects, a description of the
contact angle (the angle formed between the liquid–gas inter-
face and the liquid–solid interface) has to be included to the
flow equations. Earlier, Fukai et al. [5] included the contact
angle into the model through the curvature approximation
at the contact line in their Lagrangian approach computa-
tions of a spreading droplet. In the volume-of-fluid approach,
Renardy et al. [9] have preferred to incorporate the contact
angle while determining the normal to the interface at the
solid surface. Alternatively, the contact angle has been inclu-
ded as local force into the model equations by Sikalo et al.
[12] in their volume-of-fluid approach. Recently, in the level
set approach Spelt [11] has imposed the contact angle condi-
tion in the redistance step of level set function after solving
the flow equations. In this paper, we present a new finite
element scheme for the moving contact line problem which
includes the contact angle as an input parameter in the weak
form of the model equations, which allows different choices,
for example, the equilibrium, the advancing or the receding
contact angle. In our numerical tests, we will always set this
input parameter equal to the equilibrium contact angle.

2 Finite element model

In our study the considered test examples of moving contact
line problems are the spreading and pendant axisymmetric
liquid droplets. The finite element model for these moving
contact line problems is presented in this section. We will
only simulate the liquid phase where the influence of the gas
phase is neglected.

2.1 Governing equations

The fluid flow in the liquid droplet is governed by the time
dependent Navier–Stokes equations in a time dependent
domain Ω(t) ⊂ R

3. In the time interval (0, I] the dimen-
sionless form of the model equations reads:

∂u
∂t

+ (u · ∇)u − ∇ · S(u, p) = 1

Fr
e in Ω(t),

∇ · u = 0 in Ω(t),

(2)

where the dimensionless stress tensor S(u, p) and the velo-
city deformation tensor D(u) are given by

S(u, p) = 2

Re
D(u) − pI,

D(u) = 1

2

(
∇u + ∇uT

)
.
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Here, u is the fluid velocity, p the pressure in the fluid, t the
time, e an unit vector in the opposite direction of the gravita-
tional force and I the identity tensor. Further, ∇ denotes the
gradient operator, ∇· denotes the divergence operator and the
superscript T denotes the transpose. The Reynolds number
and the Froude number are given by

Re = ρU L

µ
, Fr = U 2

Lg
,

where L is the characteristic length, U the characteristic velo-
city, ρ the density, µ the dynamic viscosity and g the gravi-
tational constant.

2.2 Boundary conditions for flows with a moving contact
line

The force balancing and kinematic conditions are used on
the free surface �F (t). As discussed in the introduction the
Navier-slip boundary condition is imposed on the liquid–
solid interface �S(t). The dimensionless form of the boun-
dary conditions in (0, I] reads:

νF · S(u, p) · νF = K
W e

on �F (t),

τ i,F · S(u, p) · νF = 0 on �F (t),

u · νF = w · νF on �F (t),

u · νS = 0 on �S(t),

βε(τ i,s · S(u, p) · νs) = −u · τ i,S on �S(t),

(3)

for i = 1, 2. Here, νF and τ i,F are the unit normal and tan-
gential vectors, respectively on the free surface. Further, K
is the sum of the principal curvatures and w is the free sur-
face velocity. The dimensionless numbers (Weber and slip,
respectively) in the above equations are defined by

W e = ρU 2L

σ
, βε = εµρU ,

where σ is the coefficient of surface tension.
In addition to these boundary conditions (3), the contact

angle θ at the contact line has to be prescribed. A simple form
is to prescribe the contact angle as the equilibrium contact
angle θe, i.e., θ = θe. A more general form is to prescribe the
contact angle with respect to the contact line velocity ucl as

θ = θA if ucl > 0,

θ = θR if ucl < 0,

θR ≤ θ ≤ θA if ucl = 0.

Here, θA and θR are the advancing and receding contact
angles, respectively. One could also use any experimentally
validated law depending on the contact line velocity.

2.3 Inclusion of the contact angle

To include the contact angle, we start with the weak form of
the model (2). Let V := (H1(Ω(t)))3 and Q := L2(Ω(t))
be the usual Sobolev spaces. We multiply (2) by test functions
v ∈ V and q ∈ Q and integrate over Ω(t). After integrating
by parts and incorporating the boundary conditions, the weak
form of (2) reads:

For given Ω(0) and u(0), find (u(t), p(t)) ∈ V × Q such
that

(
∂u
∂t

, v
)

+ a(u; u, v) − b(p, v)

+ b(q, u) = f (K, v), (4)

for all v ∈ V and q ∈ Q. Here,

a(û; u, v) = 2

Re

∫

Ω(t)

D(u) : D(v) dx

+
∫

Ω(t)

(û · ∇)u · v dx

+ 1

βε

∫

�S(t)

(u · τ i,S)(v · τ i,S) dγS,

b(q, v) =
∫

Ω(t)

q ∇ · v dx,

f (K, v) = 1

Fr

∫

Ω(t)

e · v dx

+ 1

W e

∫

�F (t)

(v · νF ) K dγF .

Now, the contact angle is included by replacing the curva-
ture K in the free surface integral with the Laplace Beltrami
operator and then integration by parts. The Laplace Beltrami
operator is defined as the tangential divergence of the tan-
gential gradient ∇, i.e., for a scalar function h,


(h) := ∇ · ∇(h),

where,

∇(h) := ∇(h) − (νF · ∇(h))νF .

This technique of reducing the order of differentiation asso-
ciated with the curvature term has been already employed
in [10]. The formulation by means of the Laplace Beltrami
operator has been proposed in [3] and was also used in [1,8]
for flows within a closed free surface, i.e., flows without
moving contact lines. Here, we extend this technique for
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flows with moving contact lines as

1

W e

∫

�F (t)

v · νFK dγF = 1

W e

∫

�F (t)


id�F · v dγF

= −1

W e

∫

�F (t)

∇id�F : ∇v dγF

+ 1

W e

∫

cl(t)

(νcl · ∇id�F ) · vdζ

= −1

W e

∫

�F (t)

∇id�F : ∇v dγF

+ 1

W e

∫

cl(t)

νcl · vdζ,

since νcl · ∇id�F = νcl . Here, the identity mapping id�F :
R

d �→ R
d is the restriction onto �F (t), νcl is the outward unit

normal vector at the moving contact line cl(t) with respect to
the free surface �F (t). Now, we decompose the test function
in the contact line integral as

v = (v · νS)νS +
2∑

i=1

(v · τ i,S)τ i,S

and use the fact that v · νS = 0 on �S to get

∫

cl(t)

νcl · vdζ =
∫

cl(t)

(νcl · τ i,S)(v · τ i,S)dζ

=
∫

cl(t)

cos(θ) v · τ i,Sdζ, (5)

since νcl · τ i,S = cos(θ). Thus, the external force term
f (K, v) in the weak form (4) becomes

f (K, v) = 1

Fr

∫

Ω(t)

e · v dx

− 1

W e

∫

�F (t)

∇id�F : ∇v dγF

+ 1

W e

∫

cl(t)

cos(θ) v · τ i,Sdζ,

which contains the contact angle θ . Another advantage of
using this technique is that only first order derivatives (tan-
gential gradient) are needed to approximate the curvature.
Further, this approximation can be done with the standard
finite element basis functions.

3 Numerical scheme

A finite element scheme with Arbitrary Lagrangian Eulerian
(ALE) approach is used to solve the considered test examples.
We refer to [6] for more details of the numerical scheme.
Here, we briefly describe the main ingredients of our nume-
rical scheme.

3.1 Discretisation

First, we reformulate the weak form in an axisymmetric weak
form and reduce one space dimension. Then, after rewriting
the weak form in the ALE framework, we triangulate the
meridian domain of the axisymmetric droplet Ω(t) with a
boundary resolved triangular mesh. We take the “inf-sup”
stable second order finite element pair Pbubble

2 /Pdisc
1 for the

velocity and pressure, where the velocity space is enriched
with a cubic bubble function [2]. For the time discretisation
we use the second order, strongly A-stable fractional-step-ϑ
scheme. Then, the convection term is linearised by an itera-
tion of fixed point type. Since it is difficult to maintain the
hierarchy of mesh levels for moving grids, especially when
remeshing is needed, we prefer to take a direct solver for
solving the linear system of equations.

3.2 Tracking the free surface

After calculating the velocity and pressure at each time step,
we advect the (free surface and interface) boundary points
with the fluid velocity in a Lagrangian manner. Then, the
inner points are displaced with the elastic solid technique
according to the displacement of the boundary points.
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Fig. 2 Dynamic contact angle of an axisymmetric spreading droplet
with Re = 100 and W e = 1.4. (i) θe = 30◦, (ii) θe = 150◦
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Fig. 3 A sequence of images at different instances of an axisym-
metric spreading droplet with θe = 30◦, timings from image 1 are
t = 0, 0.5, 1.0, 1.5, 2.0, 2.5. Colours represent the magnitude of the
velocity in radial direction, min = −0.4 (blue) max = 0.9 (red)

4 Numerical results

To investigate the implementation of the contact angle in the
proposed numerical scheme we made an array of computa-
tions for spreading and oscillating pendant liquid droplets.
Computations are made until a prescribed time or until the
droplet attaining the equilibrium position. For the validation
of the numerical scheme we refer to [6]. In the following
examples, the computations have been started at time t = 0
with a mesh with hmin = 0.001032 and hmax = 0.1278
corresponding to 10, 670 and 5, 034 degrees of freedom for
velocity and pressure, respectively. If remeshing is needed, an
automatic mesh generator implemented in our code generates

Fig. 4 A sequence of images at different instances of an axisym-
metric spreading droplet with θe = 150◦, timings from image 1 are
t = 0, 0.5, 1.0. Colours represent the magnitude of the velocity in
radial direction, min = −1.4 (blue) max = 0.5 (red)

a new mesh in such a way that the area of each cell is less
or equal to 0.005. These quantities slightly vary over time,
due to the moving mesh and the remeshing. The time step
has been set to 0.0001. One or two fixed-point iterations in
each sub-step of the fractional-step-ϑ scheme have been suf-
ficient to reduce the residual under the threshold of 10−8. We
found that the additional time needed for calculating the new
mesh positions by the elastic mesh update, the mesh velocity,
generating the mass and stiffness matrices, and the right hand
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Fig. 5 Dynamic contact angle of an axisymmetric water droplet impin-
ging on a wax surface with θe = 100◦, Re = 4204, W e = 90
and Fr = 93. (i) 1/βε = 1, (ii) 1/βε = 10, (iii) 1/βε = 1/r and
(iv) 1/βε = 10/r

side, compared to a simple flow calculation on a fixed grid,
is only a small fraction, i.e., the time for solving the fixed
point iteration dominates the overall procedure.

4.1 Spreading droplet

We consider a water droplet of radius r0 = 100 µm in zero
gravity space which resides on a horizontal solid surface with
a contact angle θ = 90◦. That is, at time t = 0 the domain
of the droplet is the semi-sphere of radius r0 = 100 µm. For
water, the following values are used: surface tension σ =
0.073 N/m, density ρ = 1, 000 kg/m3, the dynamic viscosity
µ = 10−3 N s/m2. The used characteristic values are L = r0

and U = 1 m/s which result in the dimensionless numbers
Re = 100 and W e = 1.4. In these computations we use
1/βε = 1 and assume that the droplet is in rest at t = 0.
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Fig. 6 Dynamic contact angle of an axisymmetric water droplet impin-
ging on a smooth glass with θe = 10◦, Re = 4204, W e = 90 and
Fr = 93. (i) 1/βε = 1, (ii) 1/βε = 10, (iii) 1/βε = 1/r and
(iv) 1/βε = 10/r

For the droplet with the data above, we changed the equi-
librium contact angles to θe = 30◦ and θe = 150◦, respecti-
vely. Since the free surface of the droplet before changing the
equilibrium contact angle has been in the equilibrium posi-
tion and there are no other external forces (initial velocity
is zero and gravitational force is neglected), the only imba-
lances in forces at time t = 0 is at the contact line because
of θ(t = 0) 	= θe. Thus, if the contact angle is incorpo-
rated in the numerical scheme accurately then the droplet
should starts to spread or recoil according to the equilibrium
contact angle. As we expected, in the first case the droplet
starts to spread (θ(t = 0) > θe) and in the second case the
droplet starts to recoil (θ(t = 0) < θe). The measured dyna-
mic contact angle from the geometry of the moving mesh
is presented in Fig. 2 for both cases. Figures 3 and 4 show
sequences of frames corresponding to different instance of
the first and second cases, respectively. The colours in these
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Fig. 7 A sequence of images at different instances of an axisym-
metric pendant droplet with θe = 30◦, timings from image 1 are
t = 0, 1.0, 2.0, 3, 4, 5. Colours represent the magnitude of the
velocity in radial direction, min = −1.2 (blue) max = 0.3 (red)

images represent the magnitude of the velocity in the radial
direction. The computed results of both cases show that the
numerical scheme incorporates the given contact angle accu-
rately.

4.2 Effects of the slip coefficient on the dynamic contact
angle

Since the exact value of the slip coefficient is unknown, a few
computations are made to study the effects of the slip coef-
ficient on the dynamic contact angle. In this example, we
consider a spherical water droplet of radius r0 = 1.35 mm
impinging perpendicularly on a wax surface with the impact

Fig. 8 A sequence of images at different instances of an axisym-
metric pendant droplet with θe = 150◦, timings from image 1 are
t = 0, 0.5, 1.0. Colours represent the magnitude of the velocity in
radial direction, min = −1.6 (blue) max = 0.3 (red)

velocity u(0) = 1.56 m/s. Further, the used equilibrium
contact angle is θe = 100◦. The dimensionless numbers with
L = 2r0 and U = 1.56 m/s are Re = 4204, W e = 90
and Fr = 93. We compute this example with the following
four different values of the slip coefficient: (i) 1/βε = 1,
(ii) 1/βε = 10, (iii) 1/βε = 1/r and (iv) 1/βε = 10/r . The
dynamic contact angle obtained in this array of computations
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Fig. 9 Dynamic contact angle of an axisymmetric pendant droplet with
Re = 100, W e = 1.4 and Fr = 1020. (i) θe = 30◦, (ii) θe = 150◦

is shown in Fig. 5. Next, for the same droplet configurations
but with a different equilibrium contact angle θe = 10◦, we
perform another array of computations to study the effects of
the slip coefficient on the dynamic contact angle on a hydro-
philic surface. The different dynamic contact angles obtained
in these computations are presented in Fig. 6.

These results clearly show the influence of the slip coeffi-
cient on the contact angle on both the hydrophobic and hydro-
philic surfaces. However, in comparison with the
hydrophilic surface, the influence is less for a hydrophobic
surface (note the different scaling in Figs. 5, 6).

4.3 Pendant droplet

Further, to show the robustness of the numerical scheme we
compute the oscillating pendant liquid droplet including gra-
vitational effects. Here, we consider a water droplet of radius
r0 = 50 µm hanging on a horizontal surface as the initial
configuration.

At time t = 0, the droplet is assumed to be of semi-
spherical shape, i.e., θ(t = 0) = 90◦ and in rest. The compu-
tational domain is the meridian domain of the semi-spherical
droplet. We use the slip coefficient 1/βε = 1, characteristic
length L = 2r0 and characteristic velocity U = 1 m/s. These
values result in Re = 100, W e = 1.4 and Fr = 1020. As
in the spreading droplet case we make two different compu-
tations with θe = 30◦ and θe = 150◦. Sequences of images
obtained in the pendant droplet computations at different
instance for the two cases, θe = 30◦ and θe = 150◦, are
shown in Figs. 7 and 8, respectively. The colours in these
images indicate the magnitude of the velocity in radial direc-
tion. Figure 9 shows the obtained dynamic contact angle of
the pendant droplet in both cases. These results once again

show that the contact angle is accurately incorporated in the
numerical scheme.

5 Concluding remarks

A new finite element scheme, which allows to compute the
dynamic contact angle for a given equilibrium contact angle
in moving contact line problems is presented. The capabi-
lity to capture the dynamics of the contact angle and the
robustness of the numerical scheme are shown through the
examples of spreading and pendant liquid droplets. Further,
we have observed the dependency of the dynamic contact
angle on the slip coefficient.

References

1. Bänsch, E.: Numerical methods for the instationary Navier–
Stokes equations with a free capillary surface. Habilitationsschrift,
Albert-Ludwigs Universität (2001)

2. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming
finite element methods for solving the stationary Stokes equations
I. R.A.I.R.O. Anal. Numér. 7, 33–76 (1973)

3. Dziuk, G.: An algorithm for evolutionary surfaces. Numer.
Math. 58, 603–611 (1991)

4. Eggers, J., Stone, H.A.: Characteristic lengths at moving contact
lines for a perfectly wetting fluid: the influence of speed on the
dynamic contact angle. J. Fluid Mech. 505, 309–321 (2004)

5. Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos,
D., Megaridis, C.M., Zhao, Z.: Wetting effects on the spreading
of a liquid droplet colliding with a flat surface: experiment and
modeling. Phys. Fluids 7(2), 236–247 (1995)

6. Ganesan, S.: Finite element methods on moving meshes for free
surface and interface flows. Ph.D. Thesis, Otto-von-Guericke-
Universität, Fakultät für Mathematik, Magdeburg (2006)

7. Lauga, E., Brenner, P., Stone, H.A.: Microfluidics: the no-slip
boundary condition. In: Foss, J., Tropea, C., Yarin, A. (eds.)
Handbook of Experimental Fluid Dynamics. Springer, New York
(2007)

8. Matthies, G.: Finite element methods for free boundary value pro-
blems with capillary surfaces. Ph.D. Thesis, Otto-von-Guericke-
Universität, Fakultät für Mathematik, Magdeburg (2002)

9. Renardy, M., Renardy, Y., Li, J.: Numerical simulation of moving
contact line problems using a volume-of-fluid method. J. Comput.
Phys. 171, 243–263 (2001)

10. Ruschak, K.: A method for incorporating free boundaries with sur-
face tension in finite element fluid-flow simulators. Int. J. Numer.
Meth. Eng. 15, 639–648 (1980)

11. Spelt, P.D.M.: A level-set approach for simulations of flows
with multiple moving contact lines with hysteresis. J. Comput.
Phys. 207, 389–404 (2005)

12. S̆ikalo, S̆., Wilhelm, H.D., Roisman, I.V., Jakirlić, S., Tropea, C.:
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