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a  b  s  t  r  a  c  t

A  direct  discretization  approach  and an  operator-splitting  scheme  are  applied  for  the  numerical  simula-
tion  of a population  balance  system  which  models  the  synthesis  of  urea  with  a uni-variate  population.  The
problem  is  formulated  in axisymmetric  form  and  the  setup  is  chosen  such  that  a  steady  state  is reached.
Both  solvers  are  assessed  with  respect  to the  accuracy  of the  results,  where  experimental  data  are  used
for comparison,  and the  efficiency  of  the  simulations.  Depending  on  the  goal  of  simulations,  to  track  the
eywords:
opulation balance systems
irect discretization
perator-splitting
rea synthesis

evolution  of the  process  accurately  or to  reach  the  steady  state  fast, recommendations  for  the  choice  of
the solver  are  given.

© 2015  Elsevier  Ltd. All  rights  reserved.
ni-variate population

. Introduction

Population balance systems (PBSs) model particulate flows
here not the behavior of the individual particles is of interest but

he behavior of the particles in the mean. To this end, the particle
opulation is described with a particle size distribution (PSD) and
n equation for the PSD is derived whose terms model, e.g., trans-
ort, nucleation, growth, and aggregation of particles. Together
ith equations for the energy or mass balance and an equation
hich describes the flow field, the behavior of the particulate flow

s modeled with a so-called PBS.
A major challenge for the numerical simulation of PBSs arises
rom the fact that the PSD does not only depend on time and space,
ike, e.g., the flow field and the temperature, but it depends also on
roperties of the particles, the so-called internal coordinates. After
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having applied a temporal discretization to the PBS, the equation
for the PSD is given in a domain whose dimension is the sum of the
spatial dimension and the number of internal coordinates.

One can find in the literature different proposals for dealing with
the high dimensionality of the equation for the PSD. A direct dis-
cretization of the high-dimensional equation was studied, e.g., in
Bordás et al. (2013), John et al. (2009), John and Roland (2010) and
John and Suciu (2014). This approach is motivated by a potentially
good accuracy of the computed solution, since no simplifications to
the original problem were applied. However, the numerical solu-
tion of an equation in a higher-dimensional domain might be rather
expensive. Motivated by performing more efficient simulations,
other approaches were proposed. Moment-based methods, like
the quadrature method of moments (QMOM) or the direct QMOM
(DQMOM) (Marchisio and Fax, 2005; McGraw, 1997) replace the
equation for the PSD by a system of equations for the first moments,
with respect to the internal coordinates, of the PSD. These methods
are quite popular in the engineering community. But the original
PBS is modified quite strongly and the reconstruction of the PSD
from the first moments is a severely ill-posed problem (John et al.,
2007). Another approach motivated by efficiency, which does not
change the original PBS, is the operator-splitting scheme proposed
in Ganesan (2010). This scheme splits the computation of the solu-

tion into subproblems with respect to the spatial and to the internal
coordinates (Ganesan, 2010; Ganesan and Tobiska, 2012). To the
best of our knowledge, systematic numerical comparisons of these
different schemes have not been performed in the literature so far.
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The goal of this paper consists in performing the first step in the
ystematic assessment of different solvers for PBSs. In this step, a
irect discretization and an operator-splitting scheme are studied.
his choice is motivated by our rich experience with these methods.
y the way, it seems to be the first time that an operator-splitting
ethod is applied for solving a PBS with aggregation.
For an assessment of numerical methods, one needs a prob-

em where some reference values of the solution are known. To
his end, a model of urea synthesis from Hackbusch et al. (2012),
ith a uni-variate population, will be used where some experi-
ental data from Borchert and Sundmacher (2011) are available.

his model will be considered in a comparable simple situation: the
ow domain is a cylindrical pipe, the flow fields are stationary, the
elocity field is given by a Hagen–Poiseuille profile, and the setup
s such that the solution, in cylindrical coordinates, can be assumed
o be independent of the angle. Since the velocity field is known,
here is no need to solve the Navier–Stokes equations. Thus, the
omputing times of the different numerical methods for solving
he equation for the PSD will constitute a large part of the overall
omputing times of the simulations. From the independence of the
ngle, it follows that the PBS can be written in axisymmetric form
hich reduces the spatial dimension from three to two.

The paper is organized as follows. Section 2 presents the popu-
ation balance model of the urea synthesis. The solvers for the PBS
re described in Section 3. Section 4 presents the numerical studies
nd an outlook will be given in Section 5.

. The population balance model of the urea synthesis

This section presents the population balance system which
odels the urea synthesis. It is in principal the same model as

onsidered in Hackbusch et al. (2012). Only, the flow domain
as a different form, hence also the flow field, such that a 3D-
xisymmetric form of this model can be used in the numerical
imulations. It will be explained in Section 4 that the different flow
eld will also change the impact of growth and aggregation on the
rea population compared with Hackbusch et al. (2012).

The model for the considered urea population consists of a sys-
em of equations describing the energy balance, the mass balance
f the dissolved urea, and the behavior of the PSD.

For the flow field u [m/s] in the cylindrical domain  ̋ ⊂ R
3 a

agen–Poiseuille profile is assumed. The boundary � of  ̋ is com-
osed of the inlet � in, the outlet � out, and the wall �wall.

Let mmol = 60.06 × 10−3 [kg/mol] be the molar mass of urea, then
he saturation concentration of the dissolved urea is given by

sat(T) = 35.364 + 1.305(T − 273.15)
mmol

[mol/m3], (1)

here T is the temperature in the system. Further, the growth rate
f the urea particles is modeled by

(c, T) =

⎧⎪⎪⎨
⎪⎪⎩
kg

(
c − csat(T)
csat(T)

)g
, if c > csat(T),

0, else,
[m/s], (2)

ith the growth rate constant kg = 10−7 [m/s] and the growth rate
ower g = 0.5 [·]. Here, c[mol/m3] is the molar concentration of the
olute, and its evolution is described by

∂c
∂t

− D�c  + u · ∇c + H�
mmol

= f�
mmol

in (0,  te) × ˝,  (3)
here

� = 3�dkVG(c, T)

∫ �max

�min

�2f d�, and f� = −�dkV�3
minBnuc.
l Engineering 75 (2015) 95–104

In this equation, D = 1.35 × 10−9[m2/s] is the diffusion coefficient of
urea in ethanol, �d = 1323 [kg/m3] is the density of urea (dispersed
phase), kV = �/6 [·] is the scaling factor from diameters to volume
(where it is assumed that all particles are of spherical shape) and
te [s] is the final time for the simulations. The nucleation rate Bnuc

is defined by

Bnuc =

⎧⎪⎪⎨
⎪⎪⎩
˛nuc exp

(
−ˇnuc

ln2(c/csat(T))

)
, if  c > csat(T),

0, else,

where ˛nuc = 1 ×108 is the nucleation constant and
ˇnuc = 1.66667 × 10−4 is a model constant. The PSD is denoted
by f [1/m4] and the diameter of the particles is � [m], where
�min is the smallest diameter (nuclei size) and �max is an upper
bound for the largest diameter. The last term on the left-hand
side of (3) describes the decrease of dissolved urea due to the
growth of particles and the term on the right-hand side models the
consumption of dissolved urea due to the nucleation of particles.
Eq. (3) has to be equipped with initial and boundary conditions.
The boundary condition is given by⎧⎨
⎩
c(t, x) = csat(Tin), x ∈ �in,

D
∂c
∂n�

= 0, x ∈ �out ∪ �wall,
(4)

where n� is the outward pointing unit normal on � and Tin is the
temperature at the inlet, see (6). In addition, an initial condition is
needed for closing equation (3). Since such a condition is not known
from the experiments, the inlet concentration value is used as the
initial value, that is

c(0, x) = csat(Tin) x ∈ ˝.

The model for the energy balance is of the same type as the
model of the mass balance

�cp

(
∂T
∂t

+ u · ∇T
)

− ��T  + ıhcrystH� = ıhcrystf� in (0, te) × ˝.

(5)

In this energy equation, � = 789 [kg/m3] is the density of ethanol
at 298 K, cp = 2441.3 [J/(kg K)] is the specific heat capacity of
ethanol, � = 0.167 [J/(K m s)] is its thermal conductivity, and
ıhcryst = 2.1645 × 105[J/kg] is the heat of solution (enthalpy change
of solution). The term on the right-hand side of (5) describes the
decrease of temperature resulting from the nucleation of particles
and the last term on the left-hand side the decrease of the tem-
perature due to the consumption of energy by the growth of the
particles. The known boundary conditions from the experiments
are⎧⎪⎪⎨
⎪⎪⎩

T(t, x) = Tin, x ∈ �in,

�
∂T
∂n�

= 0, x ∈ �out,

T(t, x) = Twall, x ∈ �wall,

(6)

with Tin = 301.15 [K] and Twall = 291.15 [K]. Hence, the suspension is
cooled at the wall. The initial condition was used in the same way
as for the mass balance, that is,
T(0, x) = Tin x ∈ ˝.

Finally, the model for the behavior of the PSD is presented. Since
it is assumed that the particles are of spherical shape, they can
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e modeled with their diameter. Then, the equation for the PSD is
iven by

∂f
∂t

+ G(c, T)
∂f
∂�

+ u · ∇f = A+ + A−, (7)

here A+ is the source of the aggregation model and A− is its sink.
he presentation of the model for the aggregation, and also its
mplementation, is simpler if the volume of the particles is used
nstead of the diameter. With respect to the volume V = kV � 3 the
SD is given by

V (V) = fV (kV�3) = f  (�)
kV

1
3L2

[1/m6]. (8)

he source term describes the amount of particles of volume V
hich are created by the aggregation of two particles with volume

′ and V − V′, V′ ∈ (0, V)

+,V = 1
2

∫ V

0

	agg(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′. (9)

he sink term describes the amount of particles of volume V that
anish because they are consumed by aggregations with other par-
icles of volume V′ ∈ (0, Vmax)

A−,V = −
∫ Vmax

0

	agg(V, V ′)fV (V)fV (V ′) dV ′

= −fV (V)

∫ Vmax

0

	agg(V, V ′)fV (V ′) dV ′.

(10)

Thus, the change of particles of volume V due to the aggregation
s given by A+,V + A−,V. The change with respect to the diameter is
hen obtained by

+ + A− = 3kV (A+,V + A−,V ) �2,

ompare (8). The aggregation kernel is the product of two  factors

agg(V, V ′) = pcol(V, V ′)peff(V, V ′) [m3/s].

ere, pcol gives the probability of the collision of particles with
olume V and V′. The efficiency of the collisions, i.e., the amount
f collisions which actually lead to aggregations, is described by
eff. Due to the lack of models, this factor is chosen to be constant.
his constant can be included into scaling factors for the individual
erms of the following kernel

agg(V, V ′) = Cbr
2kBT
3


( 3√
V + 3√

V ′
)(

1
3√V

+ 1
3√V ′

)

+ Csh

kV

√
2∇u : ∇u

( 3√
V + 3√

V ′
)3

[m3/s], (11)

here kB = 1.3806504 × 10−23 [J/K] is the Boltzmann constant,
 = 1.074 × 10−3 [kg/(m s)] is the dynamic viscosity of ethanol at
98 K, and Cbr, Csh are constants that have to be calibrated on the
asis of the experimental data. The first term in (11) is Brownian-
otion-generated. It is important for small particles since in this

ase the last factor becomes large. The second term is shear-induced
Smoluchowski, 1917) and it becomes important if both particles
re large.

The initial condition for the PSD is given by

 (0,  x, �) = 0 in  ̋ × (�min, �max),

.e., there are no particles in the flow domain. Boundary conditions
re necessary at the closure of the inflow boundaries⎧
 (t, x, �) =
⎨
⎩
fin(t, x, �), x ∈ �in,

Bnuc

G(c, T)
, at � = �min, if G(c, T) > 0.
l Engineering 75 (2015) 95–104 97

The PSD at � in is given by experimental data, see Hackbusch et al.
(2012).

In summary, the considered PBS consists of the two
convection–diffusion equations (3) and (5) for the molar concen-
tration and the temperature, respectively, and the integro partial
different equation of transport type (7) for the PSD. The coupling
occurs in the terms H� and f� in (3) and (5), and in the growth term
and the aggregation term in (7).

For performing numerical simulations, the model has to be
transferred into a dimensionless form. Let X∞ = 0.01 m and
�∞ = �max = 5 ×10−3 m,  be the reference lengths of the spatial
domain and the diameter of the particles, respectively. Further, let
U∞ = 0.01 m/s, c∞ = 103 mol/m3, T∞ = 1 K, and f∞ = 10131/m4 be the
reference values of the velocity, concentration, temperature, and
PSD, respectively. Then, dimensionless quantities are defined by

x = x

X∞
, � = �

�∞
, t = tU∞

X∞
, �min = �min

�∞
, �max = �max

�∞
,

T = T

T∞
, c = c

c∞
, f = f

f∞
, Pec = X∞U∞

Dc
, PeT = X∞U∞cp�

�
,

with �min = 2.5 × 10−6 m.  Using these dimensionless variables and
numbers, and omitting the bar afterwards, the dimensionless form
of the multi-dimensional population balance system becomes

∂c
∂t

− 1
Pec
�c  + u · ∇c + Hcgr = f c� in (0,  te) × ˝, (12)

∂T
∂t

− 1
PeT

�T  + u · ∇T + HTgr = f T� in (0,  te) × ˝, (13)

∂f
∂t

+ u · ∇f + X∞
U∞�∞

G
∂f
∂�

= X∞
U∞f∞

(A+ + A−)

in (0,  te) ×  ̋ × ˝�. (14)

Here, ˝� denotes the scaled domain of the internal domain (�min,
�max) and the dimensionless terms are

Hcgr = H�
mmol

= X∞�3∞f∞
U∞c∞

· 3�dkV
mmol

G(c, T)

∫
˝�

�2fd�,

f c
�

= −X∞�3∞
U∞c∞

· �
dkV�3

minBnuc

mmol
,

HTgr = ıhcrystH� = X∞�3∞f∞
U∞T∞

· 3�dkVıhcryst

cp�
G(c, T)

∫
˝�

�2fd�,

f T
�

= −X∞�3∞
U∞T∞

· ıhcryst�dkV�3
minBnuc

cp�
.

The dimensionless initial and boundary conditions become

f (t, x, �min) =

⎧⎨
⎩
Bnuc

Gf∞
, if G > 0,

0, else,

c = 1.1972, T = 301.15, f = fin
f∞

on �in,

∂c
∂n�

= 0, T = Twall

T∞
, on �wall,

∂c
∂n�

= 0,
∂T
∂n�

= 0, on �out.

3. The studied solvers of the population balance system
In this section, the two  solvers that will be compared in the sim-
ulations are presented. Then the transform of the dimensionless
system (12)–(14) into an axisymmetric form is described. Finally,
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he algorithm for computing the aggregation term is briefly dis-
ussed.

The challenges of the numerical simulation of the PBS (12)–(14)
rise from several issues. First, all equations are strongly coupled.
econd, all equations are convection-dominated which requires the
se of stabilized discretizations. A major difficulty is that the equa-
ion for the PSD (14) is defined in a higher-dimensional domain and
herefore its direct discretization will require much more degrees
f freedom than the discretization of the other equations, cf. Table 1,
r one has to use alternative methods. And finally, the simulation
f the aggregation requires the evaluation of non-local integrals of
onvolution type.

Let 0 = t0 < t1 < · · · < tN = te be a decomposition of the considered
ime interval [0, te] and let � = tn − tn−1, 1 ≤ n ≤ N, denote the uni-
orm time steps. For brevity, the superscript n is used to denote a
ariable at time tn, e.g., cn( x) : = c(tn, x).

.1. The direct discretization

A detailed description of the general approach can be found in
ackbusch et al. (2012). Consider the time tn. In the first step of

he direct discretization, the concentration equation (12) and the
nergy equation of (13) are solved as a coupled system. In this sys-
em, the particle size distribution is used explicitly, i.e., fn−1 is used
n Hcgr and HTgr. The system is still coupled, since the growth rate and
ucleation rate depend on both the concentration and the temper-
ture. As in Hackbusch et al. (2012), numerical simulations were
erformed where the coupled system was solved iteratively, using

 fixed point iteration. Since in the considered processes of urea
ynthesis there are usually only small changes from one time step
o the next one, it turned out that generally one iteration per time
tep was sufficient to satisfy the stopping criterion with respect
o the smallness of the residual. Therefore, the number of itera-
ions was set to be one for all numerical simulations presented in
ection 4.

In the second step, the equation for the particle size distribution
14) is discretized on  ̋ × ˝�. Thus, a discretization in a high-
imensional (spatial dimension + number of internal coordinates)
omain is applied. For computing G, A+, and A−, the concentration
nd the temperature obtained in the first step are used.

With the above mentioned simplification for the solution of the
oupled system for temperature and concentration, the algorithm
sed for the direct discretization has the following concrete form.

Algorithm at discrete time tn for the direct discretization:
Given the solution Tn−1, cn−1, fn−1 of the previous discrete time.

Step 1(a) compute Tn by solving (13) using cn−1 and fn−1 for the
coupling terms,

Step 1(b) compute cn by solving (12) using Tn and fn−1 for the cou-
pling terms,

aggr. compute the aggregation terms using Tn, cn, and fn−1,
Step 2 compute fn by solving (14) using Tn and cn for the cou-

pling terms.

In both types of equations, one can apply different discreti-
ations. Extensive numerical studies were performed in (Bordás
t al., 2013; John et al., 2009; John and Roland, 2010; John and Suciu,
014) to assess a number of possible discretizations. For the sim-
lations presented in this paper, those discretizations were used
hich performed best in these studies. Thus, for discretizing (12)

nd (13), a Crank–Nicolson time integrator in combination with
 linear FEM-FCT scheme (Kuzmin, 2009) was applied. The equa-

ion for the particle size distribution (14) was discretized with an
xplicit third order total variation diminishing (TVD) Runge–Kutta
cheme in time and an essentially non-oscillatory (ENO) finite dif-
erence method in space. For the sake of brevity, it is referred to
l Engineering 75 (2015) 95–104

Bordás et al. (2013), John and Novo (2012) for detailed descriptions
of these schemes.

3.2. The operator-splitting scheme

The splitting scheme for the PBS has first been proposed in
(Ganesan, 2010), and two practical finite element algorithms have
been presented in Ganesan and Tobiska (2011, 2012). Later, this
splitting scheme has been studied for different discretization and
applications, see for example (Ahmed et al., 2013, 2011; Ganesan,
2012; Ganesan and Tobiska, 2013; Krasnyk et al., 2012). One of
the main advantages, besides the splitting of a high-dimensional
equation into a system of low-dimensional equations, is that the
operator-splitting scheme allows to use different discretizations for
each equation in the low-dimensional system. Here, the operator-
splitting scheme is presented briefly, it is referred to (Ganesan,
2010; Ganesan and Tobiska, 2013) for more details.

Consider the time interval (tn−1, tn], and the solution of (12)–(14)
at tn has to be computed from the given or computed solution
at tn−1. In the splitting scheme, the numerical solution of the
coupled multi-dimensional system (12)–(14) is obtained in two
steps. A splitting is applied to the concentration equation (12)
and the energy equation (13) to decouple each other, whereas the
PSD equation (14) is split into two equations, one in the spatial
space (X-direction) and another in the internal space (L-direction),
respectively. After having applied the splitting scheme to (12)–(14),
it reads:

X-direction (Step 1)
For given ĉn−1 = cn−1(x), T̂n−1 = Tn−1(x), and f̂ n−1 = f n−1(x, �),

find ĉ, T̂ and f̂ in such that for all � ∈ ˝�

∂ĉ
∂t

+ u · ∇ ĉ = 1
Pec
�ĉ  in (tn−1, tn) × ˝,

∂T̂
∂t

+ u · ∇T̂ = 1
PeT

�T̂ in (tn−1, tn) × ˝,

∂f̂
∂t

+ u · ∇ f̂ = 0 in (tn−1, tn) × ˝,

(15)

by considering the internal space variable � as a parameter.
L-direction (Step 2)
For given c̃n−1 = ĉn, T̃n−1 = T̂n, and f̃ n−1 = f̂ n, find c̃, T̃ and f̃ such

that for all x ∈  ̋ \ �in

dc̃

dt
+ Hcgr = f c� in (tn−1, tn),

dT̃

dt
+ HTgr = f T� in (tn−1, tn),

∂f̃
∂t

+ X

UL
G
∂f̃
∂�

= X∞
U∞f∞

(A+ + A−) in (tn−1, tn) × ˝�

(16)

by considering the spatial variable x as a parameter. Note that the
system of equations in (15) is decoupled. The concentration and the
energy equations have to be solved once, whereas the PSD equation
in (15) has to be solved for all � ∈ ˝� by considering � as a parame-
ter. Next, the solutions obtained in Step 1 have to be transferred to
Step 2 as the initial solutions. Two variants of algorithms based on
the nodal points of finite elements and the quadrature points have
been proposed in Ganesan and Tobiska (2011, 2013). Even though
both variants are of same accuracy, it has been shown that the nodal
point based algorithm is very efficient (Ganesan and Tobiska, 2013).
Thus, the nodal point based algorithm was  used in the simulations

presented in Section 4. After having transferred the X-direction
solutions to the L-direction, two  ordinary differential equations
and a PSD equation in the internal space (one-dimensional) have
to be solved in the second step (16). Since the equations in (16) are
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oupled, an iteration of fixed point type is used to solve this sys-
em for all x ∈  ̋ \ �in. To be consistent with the direct approach,
nly the first step of the fixed point iteration is applied. Neverthe-
ess, the iterative procedure is not expensive as the iteration has
o be applied between the one-dimensional PSD equation and two
rdinary differential equations.

In the splitting scheme, the backward Euler method is used for
he temporal discretization of (12)–(14). Since the splitting scheme
llows to use different spatial discretizations in Step 1 and Step
, respectively, the standard Galerkin discretization is used for all
calar equations in (15), whereas the Ilin-Allen-Southwell finite dif-
erence scheme is used for the PSD equation in (16). Even though
he Ilin-Allen-Southwell scheme is uniformly stable and second
rder consistent for an equation with fixed diffusion, the scheme
hifts automatically to a simple first order upwind scheme for equa-
ions with zero diffusivity as in (16), see Roos et al. (2008) for more
etails.

.3. Axisymmetric formulation

The transformation to an axisymmetric form will be presented
xemplary for the equation for the concentration. It proceeds in the
ame way for the other equations. Before applying the axisymmet-
ic transformation, the variational forms of the equations (12)–(14)
re derived and the boundary conditions are incorporated. Next, to
btain an axisymmetric form, volume and surface integrals in the
ariational forms have to be transformed into area and line inte-
rals, respectively. Apart from the advantage of reducing one space
imension of the model equations, the derivation of the axisym-
etric form from the variational formulation leads naturally to the

oundary condition along the ‘artificial rotational axis’. For details,
t is referred to Ganesan and Tobiska (2008).

Let u(x, y, z) = (u1, u2, u3) and uc(r, z, �) = (ur, u� , uz) be the
epresentation of the velocity in the Cartesian and cylindrical
oordinates, respectively. It will be assumed that the velocity is
ndependent of � and u� = 0. The scalar quantities concentration of
he solute, temperature, and the PSD are also assumed to be inde-
endent of � and they are denoted by c = c(t, r, z), T = T(t, r, z), and

 = f(t, r, z, �), with

(x, y) =
√
x2 + y2 and �(x, y) = arctan(y/x), 0 ≤ �(x, y) < 2�.

Since finite element methods are used for discretizing the equa-
ion for the concentration one needs a variational formulation of
his equation. To this end, considering (12), multiplying it with a
est function  ,  applying integration by parts, and incorporating
he boundary condition yields

˝

∂c
∂t
 dx + 1

Pec

∫
˝

∇c · ∇ dx +
∫
˝

(u · ∇) c dx

+
∫
˝

Hcgr dx =
∫
˝

f c�  dx.

his equation can be rewritten in the following form, using the
2(˝) inner product ( · , · )˝,

∂c
∂t
,  

)
˝

+ ac
(
c,  

)
= fc

(
 

)
,

here ac(c,  )  is a bilinear form and fc
(
 

)
is the source integral

iven by

( ) 1
∫ ( ) ( )
ac c,  :=
Pec ˝

∇c · ∇ dx + (u · ∇) c,  
˝

+ Hcgr,  
˝
,

fc
(
 

)
:=

(
f c
�
,  

)
˝
.
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Now, the integrals have to be transformed to the two-dimensional
domain  ̊ spanned by (r, z). For the solute concentration c and their
test function  , one has

c(x, y, z) = c(r(x, y), z),
∂c
∂x

= ∂c
∂r

cos �,
∂c
∂y

= ∂c
∂r

sin �,

∂c
∂z

= ∂c
∂z
,

 (x, y, z) =  (r(x, y), z),
∂ 
∂x

= ∂ 
∂r

cos �,
∂ 
∂y

= ∂ 
∂r

sin �,

∂ 
∂z

= ∂ 
∂z
.

Applying these relations, one obtains

∫ ∫ ∫
˝

c dx = 2�

∫ ∫
˚

c rdrdz.

Next, the bilinear form ac(c,  ) and the source integral become

ac(c,   )  =  2�

∫ ∫
˚

[
1
Pec

(
∂c

∂r

∂ 

∂r
+ ∂c
∂z

∂ 

∂z

)
+
(
ur
∂c

∂r
+  uz

∂c

∂r
+  Hcgr

)
 

]
rdrdz,

fc( ) =  2�

∫ ∫
˚

f c
�
 rdrdz.

The symmetry condition at the (artificial) axial boundary, i.e., at
r = 0, is given by

∂c
∂n

|r=0 = 0,

which is a natural boundary condition. Note that, in comparison
with the two-dimensional integrals in Cartesian coordinates, only
an additional factor ‘r’ has to be used in the implementation of the
axisymmetric form, whereas the factor 2� gets canceled on both
sides of the equation.

In the direct discretization, the equation for the PSD is dis-
cretized with a finite difference method. The application of the
axisymmetric approach could have only an impact on the last term
on the left-hand side of (7). But since u2 = u3 = u� = uz = 0, it turns out
that in the considered setup nothing changes in comparison with
the formulation in Cartesian coordinates.

3.4. Computing the aggregation

The difficulty in the computation of the aggregation term comes
from the double integral in (9). To compute this integral accu-
rately, special numerical methods have to be applied. The method
used in the simulations presented below is described in Hackbusch
(2006, 2007). This state-of-the-art method exploits the separable
structure of the aggregation kernel. The application of this method
requires the use of special grids, which are piecewise equidistant
with respect to the volume of the particles. In the simulations,
the grid is refined towards the smallest particles because there
are much more small particles in the system than larger ones. To
avoid the decrease of mass, a correction to the aggregation term is
computed as follows:

2

A(V) := A(V) − mass(A(V))

V2
max − V2

min

, (17)

where Vmax, Vmin are the largest and smallest volumes of the par-
ticles.
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Fig. 1. Two-dimensional axisymmetric computational domain.

. Numerical studies

.1. Setup of the simulations

The non-dimensional flow domain is a cylindrical pipe of length
10 and radius 0.5. This domain is somewhat longer than the
ipe in the experiments (200). The reason for extending the pipe
as that boundary conditions at the outlet � out are not known

rom the experiments. Possible differences between the actual
oundary conditions and the boundary conditions presented in
ection 2 should not influence the numerical results at z = 200,
here the behavior of the PBS was monitored. This goal is achieved

y choosing the computational domain a little bit longer than the
ctual domain. In the axisymmetric formulation, the computational
omain is  ̊ = (0, 210) × (0, 0.5), see Fig. 1.

From the experiments, data at z = 2 m are known for two  flow
ates, namely Vr = 30 ml/min and Vr = 90 ml/min. These flow rates
orrespond to Hagen–Poiseuille profiles of the form

 = Uin, ·
(

1
4

− r2, 0
)

ith Uin,30 = 5.09296 for 30 ml/min and Uin,90 = 15.27887 for
0 ml/min. Experimental data fseed(�) for the PSD at the inlet � in
re available. Their form and their conversion for utilizing them in

umerical simulations is described in detail in (Hackbusch et al.,

able 1
umber of degrees of freedom (including Dirichlet nodes).

Coarse grid Fine grid

Temperature 1521 5729
Concentration 1521 5729
PSD  (direct discretization) 142,974 538,526

Fig. 2. Normalized space-averaged volume fraction at the outlet with optima
l Engineering 75 (2015) 95–104

2012, Section 4). Following Hackbusch et al. (2012), the non-
dimensional inlet condition at z = 0 has the form

fin(t, r, 0, �) = 1
f∞

6 × 107

300 Vr
fseed(�), t ∈ [0,  1000],

where te = 1000 is the final computation time. In contrast to the
setup in Hackbusch et al. (2012), there is a continuous entering of
particles into the domain and for both considered flow regimes one
obtains finally a steady-state solution. This situation facilitates the
assessment of the studied solvers.

The experimental reference data to compare with is the nor-
malized time-space-averaged volume fraction q3. The normalized
volume fraction is defined by

q3(t, r, z, �) = �3f (t, r, z, �)∫ �max

�min
�3f (t, r, z, �) d�

.

At the final time te = 1000, where the steady state was reached, a
spatial averaging of the PSD for z = 200 was performed, for each dis-
crete particle diameter �i, i = 1, . . . 94, and then the volume fraction
was computed as a function of the diameter. Finally, the normal-
ization was  applied.

Equidistant time steps of length � = 0.01 were used in the com-
putations. The domain  ̊ was triangulated with uniform grids
(equidistant in each direction) consisting of rectangles. On the
coarser grid 168 × 8 rectangles were used and on the finer grid
336 × 16 rectangles. On both grids, Q1 finite elements were applied.
For the grid with respect to the internal coordinate, the same grid as
in Hackbusch et al. (2012) was applied. It satisfies the requirements
for applying the method for computing the aggregation terms and
it has 94 nodes. The corresponding numbers of degrees of freedom
for the two  grids are presented in Table 1.

All simulations were performed with the research code
MooNMD (John and Matthies, 2004).

For completing the model of the PBS, the parameters in the
aggregation kernel have to be found. They were determined by cal-
ibrating the numerical results for the normalized space-averaged
volume fraction with the experimental data. For Uin,30, a good
calibration of the curve could be obtained with Csh = 8.5 × 10−5

and Cbr = 7 ×103, see Fig. 2. In the other case Uin,90, the val-
ues which were found to be appropriate are Csh = 7 ×10−5 and
Cbr = 7 ×103. This value for Csh is slightly smaller than in the case
Uin,30. A decrease of this value for faster flows was  also observed in
Hackbusch et al. (2012), but the difference is smaller in the setup

considered here.

Comparing the values of Csh and Cbr with those of Hackbusch
et al. (2012), one can observe that in the present setup both val-
ues are smaller by almost two  orders of magnitude. This means

l aggregation parameters for both solvers, left for Uin,30, right for Uin,90.
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hat the aggregation has less influence on the behavior of the PSD
nd consequently that the growth of particles has a much stronger
mpact to fit the reference curves, compared with the setup con-
idered in Hackbusch et al. (2012). This difference in the behavior
an be explained with the different ways the concentration and
he particles are injected into the flow domain in both setups. In
ackbusch et al. (2012), the injection is performed only in the cen-

er of the inlet plane. Following mainly the flow direction, there is
ittle influence of the walls in this setup. In the model considered
ere, both concentration and particles are injected uniformly at the
omplete inlet plane. The cool wall leads to a relatively small satu-
ation concentration, see (1), such that the growth rate (2) becomes
arge. Since also a lot of particles are near the wall, the growth of
articles is stimulated. In addition, particles near the wall have a

ower speed and thus have a much longer residence time (in which
hey can continue to grow) than particles in the center of the chan-
el. Altogether, growth is a much more important mechanism in
he considered setup than in Hackbusch et al. (2012).

.2. Computational results

The curves for the normalized space-averaged volume fraction
t the outlet in the steady state are shown in Fig. 2. It can be
bserved that both solvers give almost indistinguishable results for
in,90. In case of the lower velocity Uin,30, the curve of the operator-
plitting scheme is shifted somewhat to the right. That means, this
cheme predicts a higher amount of larger particles than the direct
iscretization. In our opinion, the explanation for this behavior
omes from the different orders of the numerical schemes for com-
uting the growth of the particles. The direct discretization uses

 third order scheme, whereas a first order method, which is con-
iderably more diffusive, is used in the operator-splitting scheme.
his numerical diffusion leads to a smearing of the results and
ence to the prediction of a higher amount of larger particles. A
imilar observation was made in John and Suciu (2014). It shall be
mphasized that in the case of the fast flow, and with that of a short
esidence time of the particles, no impact of the numerical diffusion
n the normalized space-averaged volume fraction is visible.

Having a detailed look on individual points at the outlet, Fig. 3,
ne can see that the results between the two solvers for Uin,30 differ
onsiderably in the center of the channel and that they are similar
way from the center. From the curve at the center it can be clearly
een that the operator-splitting scheme predicts larger particles.
or the case Uin,90, the presentation of curves for the individual
oints is omitted for the sake of brevity. Like for the space-averaged
urves in Fig. 2, there are almost no differences in the curves for the
ndividual points.

Considering the PSD at the center of the outlet, Fig. 4, one can
ee clearly the smearing effect of the first order scheme used in
he operator-splitting scheme. The peak of the corresponding curve
s somewhat smaller than for the direct discretization and there
re more larger particles with �≥500 �m,  which have a notable
mpact on the volume fraction. It can be also observed that the
irect discretization predicts particles from nucleation whereas the
perator-splitting scheme does not. Obviously, the concentration
n the center of the outlet is below the saturation concentration in
he numerical simulations performed with the operator-splitting
cheme. This situation corresponds with the considerably greater
mount of large particles in the center of the channel, see Fig. 3.
hese particles had to consume dissolved urea for growing and
ventually the concentration of dissolved urea dropped below the
aturation concentration.
In Fig. 5, the PSD in different points at the outlet for the direct
iscretization is presented. It can be seen that there is a notable
mount of larger particles also away from the center, which is in
ontrast to the results from Hackbusch et al. (2012, Figure 8) and
l Engineering 75 (2015) 95–104 101

which supports the explanation concerning the greater importance
of the growth in the present setup.

The convergence to the steady state is illustrated with the evo-
lution of the mean temperature, the mean concentration, and the
mean PSD, see Figs. 6–8. The mean values are given by

∫
˚
Tr drdz∫

˚
r drdz

,

∫
˚
cr drdz∫

˚
r drdz

,

∫ �max

�min

∫
˚
�3fr drdzd�∫ �max

�min

∫
˚
r drdzd�

.

It can be observed that the simulations with the operator-
splitting scheme attain the steady state much faster than the
simulations with the direct discretization. At the final time, the
results are similar. The largest difference can be observed for the
mean PSD. Probably, the main reason is again the different order
of the schemes used for computing the growth. The fineness of the
grid has only a slight impact for both solvers. The differences of the
mean PSD between both schemes are smaller on the finer grid, i.e.,
a grid convergence can be already observed. Since the direct dis-
cretization applies a higher order scheme, it can be expected that
the evolution of the mean values is predicted by this scheme more
accurately than with the operator-splitting scheme. A better accu-
racy of higher order schemes for solving PBSs has been observed
also in John and Suciu (2014). The numerical diffusion contained
in the operator-splitting scheme leads right from the beginning of
the simulation to relatively large particles, which consume imme-
diately a lot of energy and concentration for continuing to grow.
Thus, the mean values for temperature and concentration decrease
faster than for the direct discretization and the mean value for the
PSD increases faster.

4.3. Efficiency

In the direct discretization scheme, the solution of the PBS is
computed in two steps, see Section 3.1. The linear systems of equa-
tions obtained form the discretization of the concentration and
energy equations are solved with the sparse direct solver umfpack
(Davis, 2004). The system matrices for the discretization of (12) and
(13) are constant in time. Thus, they need to be assembled and fac-
torized only once and these factorizations can be used in all time
steps. After having computed the aggregation term, the solution of
the PSD equation is obtained with an explicit scheme. Hence, the
solution of a large system of algebraic equations is not necessary in
the used direct discretization.

The solution of the PBS with the operator-splitting scheme also
consists of two steps, see Section 3.2. Since the coupled terms
including the growth rate are handled in the second step of the
operator-splitting scheme, the system matrices of the scalar equa-
tions in the first step (15) do not change in time. Therefore, the
system matrices are assembled and factorized (LU) once at the first
time step, and the same LU factorization is used in the sparse direct
solver umfpack in the subsequent time steps. In the second split-
ting step (16), the system of algebraic equations is solved also with
umfpack.

All simulations were performed using a HP SL390s computer
with 3467 MHz  Xeon processors and 96 GB RAM. The average
computing times taken by the direct discretization and by the
operator-splitting scheme for one time step are presented in
Table 2. For both schemes and on both grids, the computation of
the aggregation is very expensive, around 85–90% of the total com-
puting time. Further, it has to be noted that the average computing
time per time step increases four times when the grid is uni-

formly refined. Excluding the computing time of the aggregation,
the times taken by the two solvers are comparable, with the oper-
ator splitting scheme being a little bit faster. On the one hand, this
scheme gains efficiency by avoiding the solution of a problem in a
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Fig. 3. Normalized volume fraction at different points at the outlet for Uin,30, fine grid.

Fig. 4. PSD in the center of the outlet for Uin,30, fine grid, left: linear scale for the internal coordinate, right: logarithmic scale for the internal coordinate to highlight the
results  for small particles.

Fig. 5. PSD in different points at the outlet for Uin,30 and the direct discretization, fine grid, left: linear scale for the internal coordinate, right: logarithmic scale for the internal
coordinate to highlight the results for small particles. For the smallest particles, the values in the red curve are zero.

Fig. 6. Temporal evolution of the mean temperature for both solvers, left Uin,30, right Uin,90.
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Fig. 7. Temporal evolution of the mean concentration for both solvers, left Uin,30, right Uin,90.

Fig. 8. Temporal evolution of the mean PSD 

Table 2
Average computing time per time step.

Direct discretization Operator-splitting

Step 1 Aggr. Step 2 Total Step 1 Aggr. Step 2 Total

h
o
z
t
g
s
s

4

a

•

•

•

Coarse grid 0.05 1.43 0.20 1.68 0.036 1.43 0.17 1.64
Fine  grid 0.20 5.88 0.84 6.92 0.156 5.92 0.67 6.73

igher-dimensional domain. But on the other hand, the application
f an explicit scheme for the PSD equation in the direct discreti-
ation turned out to be also quite efficient. Overall, the computing
imes are dominated by the times needed for computing the aggre-
ation. Hence, the improvement of the efficiency of the aggregation
tep is the key for improving the overall performance of both
olvers.

.4. Summary of the numerical studies

The main results and conclusions from the numerical studies
re summarized below.

Both solvers led to qualitatively the same results in the steady
state, with small quantitative differences. The differences were
larger for the situation that the particles have a long residence
time in the flow domain.
Considerable differences could be observed between the schemes
in the prediction of the transition from the initial to the steady

state.
The operator-splitting scheme attained the steady state with
much less time steps. Thus, if one is interested only in the steady
state, this approach should be preferred.
for both solvers, left Uin,30, right Uin,90.

• Because of the use of a higher order method in the direct dis-
cretization, it is expected that the direct discretization predicts
the evolution from the initial to the steady state more accurately.
Thus, if one is interested in the evolution of the process, the appli-
cation of this scheme is recommended.

• The overall computing times for both solvers and on both grids
were dominated by the time for computing the aggregation.

• Excluding the time needed for computing the aggregation,
both solvers were similarly efficient, with the operator-splitting
scheme being a little bit faster in our implementation.

5. Outlook

We will pursue two main directions of research in the near
future. First, moment-based methods will be incorporated into the
systematic numerical studies. And second, more complex models
will be considered. In these models, the simulation of the flow field
might be necessary, the solution of the PBS will not converge to a
steady state, and, certainly most important, the PSD will be multi-
variate.

From the results presented in this paper one can conclude that
the low order discretization of (16) in the operator-splitting scheme
should be replaced by a higher order method if the evolution of the
PSD is studied. For increasing the efficiency, above all the com-
putation of the aggregation term needs to be performed faster.

Since this computation in each spatial node is independent of the
computation in the other nodes, some sort of parallelization can
be done in a straightforward way and will be certainly very help-
ful.
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