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Summary
A three-field local projection stabilized (LPS) finite element method is devel-
oped for computations of a three-dimensional axisymmetric buoyancy driven
liquid drop rising in a liquid column where one of the liquid is viscoelas-
tic. The two-phase flow is described by the time-dependent incompress-
ible Navier-Stokes equations, whereas the viscoelasticity is modeled by the
Giesekus constitutive equation in a time-dependent domain. The arbitrary
Lagrangian-Eulerian (ALE) formulation with finite elements is used to solve the
governing equations in the time-dependent domain. Interface-resolved moving
meshes in ALE allows to incorporate the interfacial tension force and jumps
in the material parameters accurately. A one-level LPS based on an enriched
approximation space and a discontinuous projection space is used to stabilize
the numerical scheme. A comprehensive numerical investigation is performed
for a Newtonian drop rising in a viscoelastic fluid column and a viscoelastic drop
rising in a Newtonian fluid column. The influence of the viscosity ratio, Newto-
nian solvent ratio, Giesekus mobility factor, and the Eötvös number on the drop
dynamics are analyzed. The numerical study shows that beyond a critical Capil-
lary number, a Newtonian drop rising in a viscoelastic fluid column experiences
an extended trailing edge with a cusp-like shape and also exhibits a negative
wake phenomena. However, a viscoelastic drop rising in a Newtonian fluid col-
umn develops an indentation around the rear stagnation point with a dimpled
shape.

K E Y W O R D S

ALE approach, finite elements, Giesekus model, local projection stabilization, rising drop
dynamics, viscoelastic fluids

1 INTRODUCTION

Multiphase flows of two immiscible fluids are encountered in many industrial processes such as enhanced oil recov-
ery, emulsions in colloid and interface science, polymer blends, droplet-based microfluidics, plastic profile extrusion, and
medical applications in the case of blood pumps. Viscoelasticity plays a prominent role in the aforementioned applica-
tions. The fundamental understanding of the effects of viscoelasticity in multiphase flows is crucial as these effects directly
impact the design and optimization of engineering processes subjected to complex interfacial flow dynamics. Therefore,
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scientific studies on a single liquid drop rising in a fluid column due to buoyancy with viscoelastic effects are highly
demanded.

Due to the inherent complexity of viscoelastic fluids and the resulting analytic intractability of the mathematical
models, theoretical predictions of rising viscoelastic drop behavior are very challenging or nearly impossible to obtain.
The effects of viscoelasticity on the drop behavior have been investigated experimentally by a few researchers.1-5 With
recent advancement in numerical techniques and computational capabilities using high-performance computing, the use
of high-fidelity numerical simulations is a useful and viable tool to understand the complex flow dynamics.

In spite of significant progress made in the development of numerical schemes for simulation of viscoelas-
tic single-phase flows, computational methods for viscoelastic two-phase flows is gaining rapid attention only
very recently.6-10 Numerical computations of incompressible viscoelastic flows involve simultaneous solution of the
Navier-Stokes equations and an equation for the evolution of viscoelastic stresses. Mathematical models for the evolution
of viscoelastic stresses can be classified into two categories: kinetic theory models and continuum mechanics models.
The kinetic theory approach attempts to model the polymer dynamics by using a coarse-grained description of poly-
mer chains by representing them as chains of springs or rods, which eventually lead to the Fokker-Planck equation.
Continuum approach attempts to provide constitutive differential equations, where the microproperties are obtained
empirically. Oldroyd-B,11 Giesekus,12 finitely extensible nonlinear elastic (FENE-P,13 FENE-CR14), Phan-Thien-Tanner,15

and eXtended Pom-Pom16 are the commonly used continuum models in the literature. In this study, we use the contin-
uum models and in particular we consider the Giesekus constitutive model as it models shear thinning and elasticity
together.

In addition to the challenges associated with the viscoelastic flows, the main challenge in the numerical simula-
tion of interface flows is the tracking/capturing of the moving interface. Popular interface tracking/capturing methods
in the literature are volume-of-fluid,17 level set,18,19 front-tracking,20 boundary integral,21 immersed boundary,22 diffuse
interface,23 and arbitrary Lagrangian-Eulerian (ALE).24-26 Furthermore, precise inclusion of the interfacial tension force
and the local curvature on the interface is very challenging. Moreover, care needs to be taken to handle the jumps in the
material properties (viscosity, density, relaxation time of polymers) across the interface. Most importantly the numerical
scheme should not induce spurious velocities and should conserve the mass. Furthermore, the advective nature of the
viscoelastic constitutive equation becomes dominant when the Weissenberg number (measure of the elasticity of fluid) is
high. It necessitates the use of an accurate and robust stabilized numerical scheme to avoid oscillations in the numerical
solution.

We now briefly review some of the numerical schemes used to simulate viscoelastic two-phase flows and the list is
not exhaustive. Pillapakkam et al27,28 developed a finite element code based on level-set method to examine the tran-
sient motion of drops rising in a viscoelastic liquid modeled by the Oldroyd-B equation. Furthermore, Chinyoka et al29

investigated an Oldroyd-B droplet deforming under simple shear using volume-of-fluid and finite difference method. In
addition, Habla et al30 developed a volume-of-fluid methodology using the OpenFOAM CFD toolbox to simulate transient
and steady-state viscoelastic droplet flow in shear and elongational flows. Furthermore, Harvie et al31 studied the dynam-
ics of an Oldroyd-B droplet passing through a microfluidic contraction using volume-of-fluid and finite volume method.
Moreover, Yue et al32,33 introduced a phase-field method for computing interfacial dynamics in viscoelastic fluids using
finite elements. In addition, Zhang et al34 proposed a moving finite element method based on phase-field method to sim-
ulate interfacial dynamics of two-phase viscoelastic flows. You et al35,36 proposed a finite volume based boundary-fitted
grid method for computations of an axisymmetric bubble rising in viscoelastic fluids using FENE-CR model. Further-
more, Chung et al37,38 implemented a finite element-front tracking method to understand the effects of viscoelasticity
using Oldroyd-B model on drop deformation in simple shear and 5:1:5 planar contraction/expansion microchannels. In
addition, Mukherjee and Sarkar39,40 numerically investigated the deformation of an Oldroyd-B drop in a Newtonian fluid
using a front-tracking finite difference method. Moreover, Zainali et al9 presented an improved smoothed particle hydro-
dynamics method for simulation of a buoyancy driven Newtonian bubble rising in an Oldroyd-B fluid. Furthermore,
Vahabi and Kamkari10 developed a weakly compressible smoothed particle hydrodynamics method for simulating bubble
rising in Giesekus fluids. In addition, Lind and Phillips41 used a boundary element method to study the dynamics of ris-
ing gas bubbles. Moreover, Walters and Phillips8 developed a nonsingular boundary element method for modeling bubble
dynamics in viscoelastic fluids. Recently, Izbassarov and Muradoglu6,42 proposed a front tracking method for the simula-
tion of viscoelastic two-phase flow systems in a buoyancy and pressure driven flow through a capillary tube with/without
sudden contraction and expansion using Oldroyd-B, FENE-CR, and FENE-MCR models.

In this article, we present an ALE based finite element scheme for computations of a buoyancy driven
three-dimensional (3D)-axisymmetric drop rise in a fluid column with viscoelastic effects using Giesekus model. The
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choice of ALE approach avoids fast distortion of meshes, which is the case in Lagrangian method. Since, the interface is
resolved by the computational mesh, the interfacial force, and the different material properties in different phases can
be incorporated very accurately in the ALE approach. The spurious velocities, which might arise due to the approxima-
tion errors of the pressure and the interfacial force including the curvature approximation, can be suppressed by using
this approach.43 Furthermore, we use the tangential gradient operator technique to treat the local curvature in a semi-
implicit manner44 and it avoids explicit computation of the curvature. Moreover, in contrast to the standard approach
of using the differential equations in the cylindrical coordinates and seeking a suitable variational form, we derive the
3D-axisymmetric weak form directly from the weak form in 3D-Cartesian coordinates, refer.24,45 Since the advective
nature of the viscoelastic constitutive equation becomes dominant when the Weissenberg number is high, an appropri-
ate stabilized numerical scheme needs to be used. In the context of stabilization schemes for viscoelastic flows, several
schemes such as the streamline upwind Petrov-Galerkin (SUPG) method,46 discrete elastic viscous stress splitting,47,48

discontinuous Galerkin method,49 Galerkin least squares,50 and variational multiscale method51,52 have been proposed
in the literature. Furthermore, log-conformation reformulation method53 has also been used in several computations of
viscoelastic two-phase flows. For a detailed literature survey on the various stabilization schemes proposed for the com-
putations of viscoelastic fluid flows, we refer to Reference 54. Recently, a three-field local projection stabilized (LPS)
finite element scheme for simulation of viscoelastic fluid flows in fixed domains has been presented by Venkatesan and
Ganesan.54 Furthermore, the LPS scheme proposed in Reference 54 was extended for simulation of impinging viscoelastic
droplet (free-surface flow).45 Later, LPS scheme was used for simulation of viscoelastic two-phase flows with insolu-
ble surfactants.55 In this work, we extend the LPS scheme proposed in Reference 54 for finite element computations of
3D-axisymmetric viscoelastic two-phase flows. LPS is used in the numerical scheme to handle the convective nature of the
viscoelastic constitutive equation and to use equal order interpolation spaces for the velocity and the viscoelastic stress.

The novelty of the present work can be summarized as follows :

1. ALE approach with finite elements for 3D-axisymmetric viscoelastic two-phase flows
2. LPS method to handle the advective nature of viscoelastic flows with moving interface
3. The Giesekus constitutive model is used for understanding the rising drop phenomena with shear thinning and elastic

effects
4. Comprehensive numerical investigation of the rising drop dynamics is performed with viscoelastic effects using the

following metrics : drop shape, sphericity of drop, diameter of the drop at the axis of symmetry, kinetic energy, elastic
energy, rise velocity, center of mass of the drop, and viscoelastic stress contours.

The numerical results based on the defined metrics can be used for benchmarking purposes similar to the Newtonian
two-phase flows article.56

The article is organized as follows. The governing equations for buoyancy driven viscoelastic two-phase flows and its
dimensionless form are presented in Section 2. Section 3 describes the proposed numerical scheme. We first introduce
the ALE formulation for time-dependent domains and the governing equations are rewritten in the ALE frame. Further-
more, we derive the variational form of the model equations and its axisymmetric form using cylindrical coordinates. The
spatial and temporal discretization used in the numerical scheme are then outlined. The linearization strategy and the
linear elastic mesh update technique for handling the inner mesh points in the computational domain is then explained.
Section 4 is concerned with the computational results. The numerical scheme is first validated for a Newtonian drop ris-
ing in a Newtonian fluid column using a benchmark configuration. Then, we perform a grid independence test for the
same benchmark configuration. Furthermore, a comprehensive numerical investigation on the Newtonian drop rising in
a viscoelastic fluid column and a viscoelastic drop rising in a Newtonian fluid column is presented. We examine the influ-
ence of the viscosity ratio, Newtonian solvent ratio, Giesekus mobility factor, and the Eötvös number on the rising drop
dynamics. Finally, a brief summary of the proposed numerical scheme and the key observations are presented in Section 5.

2 MATHEMATICAL MODEL

2.1 Governing equations

We consider a two-phase viscoelastic flow (either phase can be viscoelastic) in a bounded domain Ω ⊂ R3 with a Lipschitz
continuous boundary 𝜕Ω. We assume that the fluid is incompressible, immiscible, and the material properties such as
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F I G U R E 1 Computational model of viscoelastic two-phase
flow

density, viscosity, and relaxation time of polymers in each fluid phase are constant. The schematic representation of the
computational model is shown in Figure 1. The computational domain is denoted by Ω(t) ∶= Ω1(t)∪ΓF(t)∪Ω2(t), where
a liquid droplet filling Ω1(t) is completely surrounded by another liquid filling the domain Ω2(t). Furthermore, the inter-
face between the two liquids is denoted by ΓF(t), whereas ΓAxial, ΓD, and ΓN denote the symmetry of axis, Dirichlet and
Neumann boundaries, respectively. Note that the boundary of the computational domain Ω(t) is fixed over time. Herein,
t is the time in a given time interval [0, I] with an end time I.

The fluid flow in Ω(t) is described by the time-dependent incompressible Navier-Stokes equations:

𝜌k

(
𝜕u
𝜕t

+ (u ⋅ ∇)u
)
− ∇ ⋅ Tk(u, p, 𝝉p) = 𝜌k g e in Ωk(t) × (0, I],

∇ ⋅ u = 0 in Ωk(t) × (0, I], (1)

for k = 1, 2. Herein, u is the fluid velocity, p is the pressure in the fluid, 𝝉p is the viscoelastic conformation stress, g is the
gravitational constant, e is an unit vector in the direction of the gravitational force, and 𝜌k is the density of fluid in Ωk(t),
k = 1, 2, respectively. For an incompressible viscoelastic fluid, the stress tensor Tk(u, p, 𝝉p), and the velocity deformation
tensor D(u) are given by

Tk(u, p, 𝝉p) = 2𝜇s,kD(u) − pI +
𝜇p,k

𝜆k

(
𝝉p − I

)
, D(u) = 1

2
(
∇u + (∇u)T) ,

where 𝜇s,k is the Newtonian solvent viscosity, 𝜇p,k is the polymeric viscosity, 𝜇0,k = 𝜇s,k + 𝜇p,k is the total viscosity, I is the
identity tensor, and 𝜆k is the relaxation time of the polymers in Ωk(t), k = 1, 2, respectively.

The Giesekus model12 is adopted as a constitutive equation for the viscoelastic stresses and it is given by

𝜕𝝉p

𝜕t
+ (u ⋅ ∇) 𝝉p − (∇u)T ⋅ 𝝉p − 𝝉p ⋅ ∇u + 1

𝜆k

[(
𝝉p − I

)
+ 𝛼k

(
𝝉p − I

)2
]
= 0 in Ωk(t) × (0, I], (2)

for k = 1, 2, where 𝛼k is the Giesekus mobility factor. Note that, one can obtain the Oldroyd-B constitutive equation11

by setting the Giesekus mobility parameter to zero, that is, 𝛼k = 0 in (2). The coupled Navier-Stokes (1) and Giesekus
constitutive (2) equations are closed with initial and boundary conditions. At time t = 0, we specify the conformation
stress tensor 𝝉p,0 and the divergence-free velocity field u0 over the entire computational domain Ω0, that is,

Ω(0) = Ω0, u(⋅, 0) = u0 in Ω0, 𝝉p(⋅, 0) = 𝝉p,0 in Ω0.

On the interface ΓF(t), we impose the kinematic condition

u ⋅ 𝝂F = w ⋅ 𝝂F on ΓF(t) × (0, I], (3)
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and force balancing conditions

[|u|] = 0, [|T(u, p, 𝝉p)|] ⋅ 𝝂F = ∇ΓF ⋅ SΓF on ΓF(t) × (0, I].

Herein, w is the domain velocity, 𝝂F is an unit normal vector on ΓF(t), and [| ⋅ |] denotes the jump of a function at
the interface. Furthermore, we define the surface gradient of a scalar function 𝜓 and the surface divergence of a vector
function v on the interface ΓF(t) by

∇Γ
𝝂F
𝜓 = P𝝂F∇𝜓, ∇Γ

𝝂F
⋅ v = tr

(
P𝝂F∇v

)
,

where P𝝂F = I − 𝝂F ⊗ 𝝂F is the projection onto the tangential plane of ΓF(t). The interface stress tensor SΓF is modeled by
SΓF = 𝜎P𝝂F , where 𝜎 is the interfacial tension.44 Next, we assume that the boundary 𝜕Ω := ΓD∪ΓN of the computational
domain Ω(t) is fixed in time and we impose the no-slip condition

u = 0 on ΓD × (0, I],

and the free-slip condition

𝝉N ⋅ T2(u, p, 𝝉p) ⋅ 𝝂N = 0, u ⋅ 𝝂N = 0 on ΓN × (0, I], (4)

where 𝝉N and 𝝂N are unit tangential and normal vectors, respectively, on ΓN .

2.2 Nondimensional form of the governing equations

Let L and U∞ be the characteristic values of the length and velocity, respectively. We now define the following
dimensionless variables

x̃ = x
L
, ũ = u

U∞
, w̃ = w

U∞
, t̃ = tU∞

L
, p̃ =

p
𝜌2U2

∞
, Ĩ = IU∞

L
, 𝝉̃p = 𝝉p, 𝜀 =

𝜇0,2

𝜇0,1
.

Herein, 𝜀 is the ratio between the total viscosity of outer and inner phases. In addition, we define the nondimensional
density 𝜌, Newtonian solvent ratio 𝛽, Giesekus mobility factor 𝛼, Reynolds number Re, and Weissenberg number Wi as

𝜌(x) =

{
𝜌1∕𝜌2 ∀ x ∈ Ω1(t),
1 ∀ x ∈ Ω2(t),

𝛽(x) =

{
𝛽1 = 𝜇s,1∕𝜇0,1 ∀ x ∈ Ω1(t),
𝛽2 = 𝜇s,2∕𝜇0,2 ∀ x ∈ Ω2(t),

𝛼(x) =

{
𝛼1 ∀ x ∈ Ω1(t),
𝛼2 ∀ x ∈ Ω2(t),

Re(x) =

{
𝜀Re2 ∀ x ∈ Ω1(t),
Re2 ∀ x ∈ Ω2(t),

Re2 = 𝜌2U∞L
𝜇0,2

, Wi(x) =

{
Wi1 = 𝜆1U∞∕L ∀ x ∈ Ω1(t),
Wi2 = 𝜆2U∞∕L ∀ x ∈ Ω2(t),

.

Using these nondimensional parameters in the governing equations and omitting the tilde afterward, we obtain the
dimensionless form of the governing equations for the two-phase viscoelastic flow as

𝜌

(
𝜕u
𝜕t

+ (u ⋅ ∇)u
)
− ∇ ⋅ T(u, p, 𝝉p) =

𝜌 e
Fr

in Ω(t) × (0, I],

∇ ⋅ u = 0 in Ω(t) × (0, I],
𝜕𝝉p

𝜕t
+ (u ⋅ ∇) 𝝉p − (∇u)T ⋅ 𝝉p − 𝝉p ⋅ ∇u + 1

Wi

[(
𝝉p − I

)
+ 𝛼

(
𝝉p − I

)2
]
= 0 in Ω(t) × (0, I],

u ⋅ 𝝂F = w ⋅ 𝝂F , [|T(u, p, 𝝉p)|] ⋅ 𝝂F = 1
We

∇Γ
𝝂F
⋅ P𝝂F , [|u|] = 0 on ΓF(t) × (0, I],

u = 0 on ΓD × (0, I],
𝝉N ⋅ T2(u, p, 𝝉p) ⋅ 𝝂N = 0, u ⋅ 𝝂N = 0 on ΓN × (0, I], (5)
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with the dimensionless numbers (Froude and Weber numbers, respectively)

Fr =
U2

∞

Lg
, We =

𝜌2U2
∞L
𝜎

,

and the dimensionless stress tensor

T(u, p, 𝝉p) =
2𝛽
Re

D(u) − pI + (1 − 𝛽)
ReWi

(
𝝉p − I

)
.

Often the characteristic value of the velocity in interface flows is chosen as U∞ =
√

Lg and in this case, the Weber
number will become Eötvös number,

Eo =
𝜌2gL2

𝜎
,

and the Froude number will reduce to one.

3 NUMERICAL SCHEME

3.1 ALE formulation for time-dependent domain

The time-dependent subdomains and the interface are tracked using the ALE approach with moving meshes. Let Ω̂ ∶=
Ω̂1 ∪ Γ̂F ∪ Ω̂2 be a reference domain of Ω(t) and then, we define a family of ALE mappings

t ∶ Ω̂ → Ω(t), t(Y) = X(Y, t), t ∈ (0, I),

where X ∈ Ω(t) and Y ∈ Ω̂ are the Eulerian and ALE coordinates, respectively. In computations, we take the previous
time-step domain as the reference domain. To rewrite the model equations into a nonconservative ALE form, the time
derivative has to be replaced with the time derivative on the reference frame and it results in an addition of convective
mesh velocity term in the equations, for more details we refer to References 24,44,45. Incorporating it, the ALE form of
the time-dependent Navier-Stokes equations can be written as:

∇ ⋅ u = 0, 𝜌

(
𝜕u
𝜕t

|Ω̂ + ((u − w) ⋅ ∇)u
)
− ∇ ⋅ T(u, p, 𝝉p) =

𝜌 e
Fr

in Ω(t) × (0, I], (6)

whereas, the ALE form of the Giesekus constitutive equation is given by

𝜕𝝉p

𝜕t
||||Ω̂ + ((u − w) ⋅ ∇) 𝝉p − (∇u)T ⋅ 𝝉p − 𝝉p ⋅ ∇u + 1

Wi

[(
𝝉p − I

)
+ 𝛼

(
𝝉p − I

)2
]
= 0 in Ω(t) × (0, I]. (7)

Furthermore, we assume that the topology of the computational domain does not change during the computations.

3.2 Variational formulation

Let L2(Ω(t)) and H1(Ω(t)) be the standard Sobolev spaces and (⋅, ⋅) be the inner product in L2(Ω(t)) and its
vector/tensor-valued versions, respectively. We define the velocity, pressure, and viscoelastic stress57,58 spaces as

V(Ω(t)) ∶=
{

v ∈ H1(Ω(t))3 ∶ v ⋅ 𝝂N = 0 on ΓN , v = 0 on ΓD
}
,

Q(Ω(t)) ∶=
{

q ∈ L2(Ω(t)) ∶ ∫Ω
q dx = 0

}
,

S(Ω(t)) ∶=
{
𝝍 = [𝜓ij], 1 ≤ i, j ≤ 3 ∶ 𝜓ij ∈ L2(Ω(t)), 𝜓ij = 𝜓ji, v ⋅ ∇𝝍 ∈ L2(Ω(t))3×3

sym ∀ v ∈ V
}
.
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We now multiply the ALE form of the mass and momentum balance Equation (6) by test functions q ∈ Q and v ∈ V,
respectively and integrate over the computational domain Ω(t). Then, applying integration by parts to the stress tensor
term over the subdomain Ω1(t), we get

−∫Ω1(t)
∇ ⋅ T1(u, p, 𝝉p) ⋅ v dx = ∫Ω1(t)

2𝛽
Re

D(u) ∶ D(v) dx − ∫Ω1(t)
p (∇ ⋅ v) dx

+ ∫Ω1(t)

(1 − 𝛽)
ReWi

𝝉p ∶ D(v) dx + ∫ΓF (t)
v ⋅ T1(u, p, 𝝉p) ⋅ 𝝂F d𝛾F , (8)

and over the subdomain Ω2(t), we obtain

−∫Ω2(t)
∇ ⋅ T2(u, p, 𝝉p) ⋅ v dx = ∫Ω2(t)

2𝛽
Re

D(u) ∶ D(v) dx − ∫Ω2(t)
p (∇ ⋅ v) dx

+ ∫Ω2(t)

(1 − 𝛽)
ReWi

𝝉p ∶ D(v) dx − ∫
𝜕Ω2(t)

v ⋅ T2(u, p, 𝝉p) ⋅ 𝝂 d𝛾. (9)

Rewriting the boundary integral in (9) into integral over ΓD, ΓN , and ΓF(t), we get

−∫
𝜕Ω2(t)

v ⋅ T2(u, p, 𝝉p) ⋅ 𝝂 d𝛾 = −∫ΓD

v ⋅ T2(u, p, 𝝉p) ⋅ 𝝂D d𝛾D − ∫ΓN

v ⋅ T2(u, p, 𝝉p) ⋅ 𝝂N d𝛾N

− ∫ΓF (t)
v ⋅ T2(u, p, 𝝉p) ⋅ 𝝂F d𝛾F . (10)

Since the velocity space is chosen such that v = 0 on ΓD, the integral over ΓD in (10) vanishes. Furthermore, using the
orthonormal decomposition, we split the test function v as

v = (v ⋅ 𝝂N) 𝝂N + (v ⋅ 𝝉N)𝝉N ,

in the integral over ΓN in (10) and the integral becomes,

−∫ΓN

v ⋅ T2(u, p, 𝝉p) ⋅ 𝝂N d𝛾N = −∫ΓN

(v ⋅ 𝝂N)
(
𝝂N ⋅ T2(u, p, 𝝉p) ⋅ 𝝂N

)
d𝛾N

− ∫ΓN

(v ⋅ 𝝉N)
(
𝝉N ⋅ T2(u, p, 𝝉p) ⋅ 𝝂N

)
d𝛾N . (11)

Since the velocity space is chosen such that v ⋅ 𝝂N = 0 on ΓN , the first integral in (11) vanishes and further, incorpo-
rating the free slip condition (4), the second integral in (11) also vanishes. After summing up the interface ΓF(t) integrals
in Equations (8) and (9), and further incorporating the force balancing condition (fourth equation in (5)) and applying
integration by parts, we obtain

∫ΓF (t)
v ⋅ T1(u, p, 𝝉p) ⋅ 𝝂N d𝛾F − ∫ΓF (t)

v ⋅ T2(u, p, 𝝉p) ⋅ 𝝂N d𝛾F

= −∫ΓF (t)
v ⋅ [|T(u, p, 𝝉p)|] ⋅ 𝝂N d𝛾F = − 1

We∫ΓF (t)
v ⋅

(
∇Γ

𝝂F
⋅ P𝝂F

)
d𝛾F = 1

We∫ΓF (t)
P𝝂F ∶

(
∇Γ

𝝂F
v
)

d𝛾F . (12)

Thus, the variational form of the Navier-Stokes equations read:
For given Ω0, u0∕U∞, w, 𝝉p,0, find (u, p) ∈ V × Q such that(

𝜌
𝜕u
𝜕t
, v
)
Ω̂
+ a(û − w;u, v) − b(p, v) + c(𝝉p, v) = f1(v),

b(q,u) = 0, (13)
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for all (v, q) ∈ V × Q , where

a(û − w;u, v) = ∫Ω(t)
𝜌 (((û − w) ⋅ ∇)u) ⋅ v dx + ∫Ω(t)

2𝛽
Re

D(u) ∶ D(v) dx

b(q, v) = ∫Ω(t)
q (∇ ⋅ v) dx

c(𝝉p, v) = ∫Ω(t)

(1 − 𝛽)
ReWi

𝝉p ∶ D(v) dx

f1(v) =
1
Fr∫Ω(t)

𝜌 (e ⋅ v) dx − 1
We∫ΓF (t)

P𝝂F ∶
(
∇Γ

𝝂F
v
)

d𝛾F .

Next, to derive a variational form of the Giesekus equation, we multiply the ALE form of Giesekus Equation (7)
by a test function 𝝍 ∈ S and integrate over the computational domain Ω(t). The variational form of the Giesekus
equation read:

For given Ω0, u0∕U∞, w, 𝝉p,0, find 𝝉p ∈ S such that(
𝜕𝝉p

𝜕t
,𝝍

)
Ω̂
+ d(û − w; 𝝉p,𝝍) + e(𝝉̂p; 𝝉p,𝝍) = f2(𝝍), (14)

for all 𝝍 ∈ S, where

d(û − w; 𝝉p,𝝍) = ∫Ω(t)

(
((û − w) ⋅ ∇) 𝝉p

)
∶ 𝝍 dx − ∫Ω(t)

(
(∇û)T ⋅ 𝝉p + 𝝉p ⋅ (∇û)

)
∶ 𝝍 dx

e(𝝉̂p; 𝝉p,𝝍) = ∫Ω(t)

𝛼

Wi
(
𝝉̂p ⋅ 𝝉p

)
∶ 𝝍 dx + ∫Ω(t)

(1 − 2𝛼)
Wi

𝝉p ∶ 𝝍 dx

f2(𝝍) = ∫Ω(t)

(1 − 𝛼)
Wi

I ∶ 𝝍 dx.

Since the coupled two-phase viscoelastic flow system is solved in a monolithic approach, we rewrite the variational
formulations (13) and (14) as follows:

For given Ω0, u0∕U∞, w, and 𝝉p,0, find (u, p, 𝝉p) ∈ V × Q × S such that

(
𝜌
𝜕u
𝜕t
, v
)
Ω̂
+
(
𝜕𝝉p

𝜕t
,𝝍

)
Ω̂
+ A(((û − w), 𝝉̂p); (u, p, 𝝉p), (v, q,𝝍)) = f1(v) + f2(𝝍), (15)

for all (v, q,𝝍) ∈ V × Q × S , where

A(((û − w), 𝝉̂p); (u, p, 𝝉p), (v, q,𝝍)) = a(û − w;u, v) − b(p, v) + c(𝝉p, v) + b(q,u) + d(û − w; 𝝉p,𝝍) + e(𝝉̂p; 𝝉p,𝝍).

3.3 3D-axisymmetric formulation

The considered domain is rotational symmetric and thus we consider a two-dimensional (2D) meridian domain Φ(t)
of Ω(t) with a 3D-axisymmetric configuration. The axisymmetric formulation allows us to reduce the space dimension
of the problem by one and hence, we use 2D finite elements for approximating the velocity, pressure, and viscoelastic
stress. Furthermore, the computational cost and complexity of mesh movement will drastically be reduced by using the
3D-axisymmetric formulation. In the meridian domain Φ(t), the unknown components of the velocity and the symmetric
viscoelastic conformation stress tensor are given by

u = (ur,uz)T and 𝝉p =
[
𝜏rr 𝜏rz
𝜏zr 𝜏zz

]
with 𝜏zr = 𝜏rz.
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The boundary of the meridian domain Φ(t) is given by 𝜕Φ1(t) ∶= ΓF(t) ∪ ΓAxial and 𝜕Φ2(t) ∶= ΓF(t) ∪ ΓAxial ∪ ΓD ∪ ΓN . By
contrast to the standard approach of starting with the differential equations in cylindrical coordinate form and deriving a
suitable variational formulation, we derive the 3D-axisymmetric weak form in the meridian domainΦ(t) directly from the
weak form (15) defined in 3D-Cartesian coordinates. To achieve this, we transform the volume and surface integrals in (15)
into area and line integrals by introducing cylindrical coordinates and imposing irrotational, axisymmetric conditions as
described in References 24,45. This approach leads naturally to boundary conditions along the rotational axis

ur = 0,
𝜕uz

𝜕r
= 0 on ΓAxial(t), (16)

which are already partly included in the weak form. Furthermore, we define the velocity, pressure and viscoelastic
conformation stress spaces in the 2D meridian domain Φ(t) as

Ṽ(Φ(t)) ∶=
{

v ∈ H1(Φ(t))2 ∶ v ⋅ 𝝂N = 0 on ΓN , v = 0 on ΓD, vr = 0 on ΓAxial
}
,

Q̃(Φ(t)) ∶=
{

q ∈ L2(Φ(t)) ∶ ∫Ω
q dx = 0

}
,

S̃(Φ(t)) ∶=
{
𝝍 = [𝜓ij], 1 ≤ i, j ≤ 2 ∶ 𝜓ij ∈ L2(Φ(t)), 𝜓ij = 𝜓ji v ⋅ ∇𝝍 ∈ L2(Ω(t))2×2

sym ∀ v ∈ V
}
.

3.4 Spatial and temporal discretization

Let {h} be a partition of the meridian domain Φ(t) into an interface-resolved triangular mesh using the mesh generator
Triangle.59,60 The diameter of a cell K ∈ h is denoted by hK . The mesh parameter h is defined by h = max{hK | K ∈ h}.
The discrete form of the meridian domain Φ is given by Φh ∶= ∪K∈h K, whereas Φ̂h denotes the reference domain of Φh.
Furthermore, let Vh ⊂ Ṽ , Qh ⊂ Q̃, and Sh ⊂ S̃ be the conforming finite element spaces on h. The standard Galerkin finite
element approximation of the variational problem (15) reads:

For given Φ0, u0∕U∞, wh, and 𝝉p,0, find (uh, ph, 𝝉p,h) ∈ Vh × Qh × Sh such that(
𝜌
𝜕uh

𝜕t
, vh

)
Φ̂h

+
(
𝜕𝝉p,h

𝜕t
,𝝍h

)
Φ̂h

+ A(((ûh − wh), 𝝉̂p,h); (uh, ph, 𝝉p,h), (vh, qh,𝝍h)) = f1(vh) + f2(𝝍h), (17)

for all (vh, qh,𝝍h) ∈ Vh × Qh × Sh. Herein, (⋅, ⋅) denotes the inner product in L2 (Φ(t)) and its vector/tensor valued versions,
respectively. The choice of finite element spaces for the velocity, pressure, and viscoelastic stress is subject to the following
two inf-sup conditions,

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ ⋅ vh)||qh||Qh ||vh||Vh

≥ 𝜁1 > 0, inf
vh∈Vh

sup
𝝉p,h∈Sh

(
𝝉p,h,D(vh)

)
||𝝉p,h||Sh ||vh||Vh

≥ 𝜁2 > 0. (18)

The standard Galerkin approach for solving the coupled Navier-Stokes and Giesekus constitutive problem may suffer
in general from two shortcomings. First, the constitutive equation is highly advection dominated at high Weissenberg
numbers. Second, the finite element spaces should satisfy these two discrete inf-sup conditions (18) simultaneously to
have a control over ph and D(uh). One way to overcome these difficulties is to use a stabilized formulation. In this work,
we add symmetric stabilization terms to the standard Galerkin formulation (17) by using one-level LPS method. LPS
was initially proposed for the Stokes problem by Becker and Braack,61 and later it has been extended for transport62

and Oseen63 problems. Recently, LPS technique has been used by Venkatesan and Ganesan45,54 for the simulation of
viscoelastic fluid flows. The one-level LPS scheme54,64-66 is based on enrichment of approximation spaces and it allows
us to perform the computations on a single mesh as the approximation and the projection spaces are defined on the
same mesh. We use mapped finite element spaces in the computations, where the enriched approximation spaces on the
reference cell K̂ are given by

Pbubble
r

(
K̂
)
∶= Pr

(
K̂
)
⊕

(
b̂△ ⋅ Pr−1

(
K̂
))
,
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with r ≥ 2. Herein, b̂△ is a cubic polynomial bubble function on the reference triangle and Pr is a conforming finite
element space of polynomial of degree r on K̂.

Let Yh denote the approximation space and Dh be the discontinuous projection space defined on h. Let Dh(K) ∶=
{dh|K ∶ dh ∈ Dh} and 𝜋K ∶ Yh(K) → Dh(K) be the local L2-projection into Dh(K). Furthermore, we define the global pro-
jection 𝜋h ∶ Yh → Dh by (𝜋hy)|K ∶= 𝜋K(y|K). The fluctuation operator 𝜅h ∶ Yh → Yh is given by 𝜅h ∶= id − 𝜋h, where id is
the identity mapping. We apply these operators to vector/tensor valued functions in a component-wise manner. Adding
symmetric stabilization terms to the variational problem (17), leads to the following variational form:

For given Φ0, u0∕U∞, wh, and 𝝉p,0, find (uh, ph, 𝝉p,h) ∈ Vh × Qh × Sh such that(
𝜌
𝜕uh

𝜕t
, vh

)
Φ̂h

+
(
𝜕𝝉p,h

𝜕t
,𝝍h

)
Φ̂h

+ A(((ûh − wh), 𝝉̂p,h); (uh, ph, 𝝉p,h), (vh, qh,𝝍h))

+ S1(uh, vh) + S2(𝝉p,h,𝝍h) = f1(vh) + f2(𝝍h), (19)

for all (vh, qh,𝝍h) ∈ Vh × Qh × Sh, where

S1(uh, vh) =
∑

K∈h

𝜍1⟨𝜅hD(uh), 𝜅hD(vh)⟩K ,

S2(𝝉p,h,𝝍h) =
∑

K∈h

𝜍2
⟨
𝜅h

(
∇ ⋅ 𝝉p,h

)
, 𝜅h

(
∇ ⋅ 𝝍h

)⟩
K +

∑
K∈h

𝜍3
⟨
𝜅h∇𝝉p,h, 𝜅h∇𝝍h

⟩
K .

Herein, 𝜍1 = (1 − 𝛽)c1hK , 𝜍2 = c2hK , 𝜍3 = c3hK , with c1, c2, and c3 being user-chosen constants. There are a few expres-
sions for optimal choice of stabilization parameters in SUPG-based stabilization for convection-diffusion problems,
refer.67 However, there is not any expression for the choice of stabilization constants in LPS-based stabilization in the
literature and it needs a detailed theoretical investigation. In computations, we choose these constants based on sta-
bility considerations and observations from numerical results. The term S1(uh, vh) provides control when the elastic
contribution is high, that is, when 𝛽 is small. The first term in S2(𝝉p,h,𝝍h) provides control on the divergence of the
conformation stress and it allows to use equal order interpolation spaces for the velocity and the conformation stress.
The second term in S2(𝝉p,h,𝝍h) ensures the stability of the constitutive equation in advection dominated case. Fur-
thermore, we use inf-sup stable finite element pairs for the velocity and pressure spaces, thereby ensuring we do not
require an additional stabilizing term for the pressure. For more details on LPS for viscoelastic fluid flows we refer to
References 45,54.

The finite elements should be chosen in such a way that the mass should be conserved well and spurious velocities, if
there are any should be suppressed.43 Hence, we use the following triplet (Vh,Qh, Sh) =

(
Pbubble

2 ,Pdisc
1 ,Pbubble

2
)
, see Figure 2.

The set of nodal functionals for the finite element space Pdisc
1 is given by

N̂disc
K =

{
N̂disc

1 , N̂disc
2 , N̂disc

3
}

N̂disc
1 (p) = 1|K̂|∫K̂p(X̂) dX̂ , N̂disc

2 (p) = 1|K̂|∫K̂

(
x̂ − 1

3

)
p(X̂) dX̂ , N̂disc

3 (p) = 1|K̂|∫K̂

(
ŷ − 1

3

)
p(X̂) dX̂ . (20)

F I G U R E 2 Degrees of freedom of conforming
Pbubble

2 (left) and discontinuous Pdisc
1 (right) finite

element on a reference triangle
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Furthermore, the local shape functions for the space Pdisc
1 are given by

{1, x̂ + ŷ∕2 − 1∕2, x̂∕2 + ŷ − 1∕2} .

By using discontinuous pressure approximation on interface-resolved meshes, spurious velocities can be avoided during
the computations.43 Moreover, the first integral moments of the divergence of velocity field vanishes element wise with
discontinuous pressure approximation and it leads to a better mass conservation. Furthermore, in order to suppress the
spurious velocities generated by the curvature approximation error, we use the tangential gradient operator technique
with isoparametric finite elements for velocity approximation.

Let 0 = t0 < t1 <… < tN = I be a decomposition of the time interval [0, I], and 𝛿t = tn+1 − tn, n = 0,… ,N − 1, be a
uniform time step. We use the first-order implicit Euler method for the time discretization of the coupled system (19) in
the time interval

(
tn, tn+1). An implicit handling of the curvature term (12) is needed to obtain unconditional stability and

however, it is too complicated as well. Thus, as in Reference 68, we use a semiimplicit approximation of the curvature

− 1
We∫Γn+1

F

P𝝂n+1
F

∶
(
∇Γ

𝝂F
vh

)
d𝛾F = − 1

We∫Γn
F

[
P𝝂n

F
+ 𝛿t∇Γ

𝝂F
un+1

h

]
∶
(
∇Γ

𝝂F
vh

)
d𝛾F

= − 1
We∫Γn

F

P𝝂n
F
∶
(
∇Γ

𝝂F
vh

)
d𝛾F − 𝛿t

We∫Γn
F

(
∇Γ

𝝂F
un+1

h

)
∶
(
∇Γ

𝝂F
vh

)
d𝛾F .

The first term in the above equation is an explicit term and it stays on the right-hand side of the weak formulation,
whereas the second term is an implicit term and it goes to the left-hand side. Note that the implicit term is symmetric and
positive semidefinite and thus it improves the stability of the discrete system compared with a fully explicit approach.

3.5 Linearization and mesh movement

In each time step (tn, tn+1), the nonlinear terms in (19) are handled by an iteration of fixed point type. Let un+1
h,0 = un

h,
𝝉

n+1
p,h,0 = 𝝉n

p,h, and wn+1
h,0 = wn

h. In computations, we adopt the following linearization strategy:

a
(
un+1

h − wn+1
h ;un+1

h , vh
)
≈ a

(
un+1

h,m−1 − wn+1
h,m−1;un+1

h,m , vh

)
,

d
(

un+1
h − wn+1

h ; 𝝉n+1
p,h ,𝝍h

)
≈ d

(
un+1

h,m−1 − wn+1
h,m−1; 𝝉

n+1
p,h,m,𝝍h

)
+ d

(
un+1

h,m ; 𝝉n+1
p,h,m−1,𝝍h

)
− d

(
un+1

h,m−1; 𝝉
n+1
p,h,m−1,𝝍h

)
,

e
(
𝝉

n+1
p,h ; 𝝉n+1

p,h ,𝝍h

)
≈ e

(
𝝉

n+1
p,h,m−1; 𝝉

n+1
p,h,m,𝝍h

)
,

where, m = 1, 2,… ,M, with M being the maximum allowed number of nonlinear iterations. The linearized system of
algebraic equations are solved using the multifrontal massively parallel sparse direct solver.69,70 In computations, the
nonlinear iterations are continued until the residual of the monolithic system (19) becomes less than the threshold value
of 10−7.

For the mesh movement, we use the linear elastic mesh update technique. Let Zn
k be the vertices on the boundary 𝜕Φn

k .
We first advect the boundary vertices using the computed flow velocity as follows:

Zn+1
k = Zn

k + 𝛿t un+1
k .

Then, based on the displacement of the boundary vertices dn+1
k = Zn+1

k − Zn
k , the inner points are displaced in a pre-

scribed way to preserve the mesh quality in each domain separately. The displacement 𝚿n+1
k of the inner mesh points in

both the phases are obtained by solving the following linear elasticity problem with the displacement of boundary vertices
as a Dirichlet boundary condition, that is,

Find 𝚿n+1
k ∈ H1 (Φn

k

)
, such that

∇ ⋅ S(𝚿n+1
k ) = 0 in Φn

k ,

𝚿n+1
k = dn+1

k on 𝜕Φn
k , (21)
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for k = 1,2, where S(𝚿) = 𝜆L1(∇ ⋅𝚿)I + 2𝜆L2D(𝚿). Herein, 𝜆L1 and 𝜆L2 are Lame constants, and in computations we use
𝜆L1 = 𝜆L2 = 1. Continuous piecewise linear P1 elements on the same triangular mesh as for solving the flow equations
are used for the solution of (21). Once the displacement vector 𝚿n+1

k is known for each phase, the mesh velocity is then
computed as wn+1

k = 𝚿n+1
k ∕𝛿t.

Even though the elastic mesh update technique is used to preserve the mesh quality, the quality of the mesh becomes
poor after several time steps due to large deformation in each subdomain. In such an instant, we need to remesh the
domain. We have implemented an automatic remeshing algorithm to remesh the domain when the minimum angle of
any triangular cell in the mesh is less than 15◦. During remeshing, the points on the interface are equally redistributed
and a new mesh is generated using the mesh generator triangle.59,60 The solutions are then interpolated from the old to
the newly generated mesh. Furthermore, to minimize the interpolation error, we solve the monolithic system (19) with
the interpolated values as initial guess and w = 0 before moving to the next time step. The proposed numerical scheme
for the simulation of viscoelastic two-phase flows is implemented in our in-house finite element code ParMooN.71

4 NUMERICAL RESULTS

In this section, we present the numerical results of 3D-axisymmetric buoyancy driven viscoelastic two-phase flows using
the proposed numerical scheme. In order to validate the numerical scheme, computations are performed with 2D planar
configuration for buoyancy driven Newtonian drop rising in a Newtonian fluid column and compared with the bench-
mark results.56 We simultaneously perform a grid independence test for the benchmark configuration. Furthermore, we
had validated the numerical scheme in our previous study55 by comparison of the computational results for a buoyancy
driven 2D planar Newtonian drop rising in a Giesekus fluid column with the results of Vahabi and Kamakari.10 Next, we
present a detailed numerical investigation for a buoyancy driven Newtonian drop rising in a viscoelastic fluid column.
We examine the effects of viscosity ratio (𝜀), Newtonian solvent ratio (𝛽), Giesekus mobility factor (𝛼), and Eötvös num-
ber (Eo) on the flow dynamics of the rising drop. Furthermore, we also investigate the flow dynamics of a viscoelastic
drop rising in a Newtonian fluid column. Key flow features are explained using the visualization of viscoelastic stress pro-
files. Furthermore, to assist in describing the temporal evolution of the rising drop dynamics quantitatively, we use the
following metrics: drop shape, diameter of drop at the axis of symmetry (D|r=0), sphericity, kinetic energy, elastic energy,
center of mass (z coordinate), and rise velocity. Let |Ω1(t)| ∶= 2𝜋∫Φ1(t)

r dr dz be the volume of the drop. The sphericity of
the drop is given by

Sphericity =
Surface area of the volume equivalent sphere

Surface area of the drop
= Ae

A
.

The surface area of volume-equivalent sphere and surface area of the drop are calculated as follows:

Ae = 4𝜋
( 3

4𝜋
|Ω1(t)|)2∕3

, A = 2𝜋∫
𝜕Φ1(t)

r dl.

For a perfectly spherical drop, the sphericity will be one and for any other deformed drop it will be less than one. It is a
good quantitative measure of the drop deformation. The kinetic and elastic energies of the drop are computed as follows:

Ekinetic =
2𝜋|Ω1(t)|∫Φ1(t)

(u ⋅ u) r dr dz, Eelastic =
2𝜋|Ω1(t)|∫Φ1(t)

tr(𝝉p) r dr dz.

Furthermore, the rise velocity and center of mass (z coordinate) of the drop are given by:

Rise velocity = 2𝜋|Ω1(t)|∫Φ1(t)
uz r dr dz, Center of mass = 2𝜋|Ω1(t)|∫Φ1(t)

z r dr dz.
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4.1 Grid independence test and validation

In this section, we first perform a grid independence test for the proposed numerical scheme and then validate the numer-
ical results using benchmark solutions56 of a 2D planar rising drop. We consider a Newtonian drop rising in a Newtonian
fluid column with the following benchmark parameters (refer test case-1 in table 1 of Reference 56): 𝜌1 = 100, 𝜌2 = 1000,
𝜇0,1 = 1, 𝜇0,2 = 10, g = 0.98, 𝜎 = 24.5, D = 0.5, and hc = 2.0. Using the characteristic length L = 1 and characteristic velocity
U∞ =

√
Lg, we get the following dimensionless quantities Re2 = 99, Eo = 40, 𝜌1∕𝜌2 = 0.1, 𝜀 = 10, 𝛽1 = 1, and 𝛽2 = 1. In

order to identify a grid that provides a grid-independent solution, we consider five different meshes of varying mesh sizes.
In particular, we vary the number of degrees of freedom (DOFs) on the interface. The characteristics of these meshes are
tabulated in Table 1 . The time-step length is set as 𝛿t = 0.0005 and the computations are performed till I = 3.0.

Figure 3 depicts the convergence behavior of the temporal evolution of circularity, rise velocity, and center of mass of
the rising bubble with different meshes. From the zoomed plots (refer Figure 3D-F), we can observe that the considered
flow variables gradually tend to a grid-independent value when the mesh becomes finer. In particular, the numerical
results obtained with the mesh L4 is quite close to those obtained with the mesh L5, which shows the grid independence
of the numerical solution. In order to have a fine balance between the computational cost and the accuracy, all numerical

T A B L E 1 Grid independence test:
characteristics of triangular meshes

Mesh DOFs on 𝚪F h0 Cells Total DOFs

L1 100 0.015705380 1837 16 793

L2 200 0.007853659 2576 23 454

L3 400 0.003926950 3767 34 183

L4 600 0.002617982 4980 45 094

L5 800 0.001963490 6237 56 425

Abbreviation: DOFs, degrees of freedom.

(A) (B) (C)

(D) (E) (F)

F I G U R E 3 Grid independence test and validation: temporal evolution of circularity (A), (D), rise velocity (B), (E), and center of
mass (C), (F) of a Newtonian drop rising in a Newtonian fluid column using five different meshes compared with benchmark solutions56

[Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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T A B L E 2 Newtonian drop rising in a Newtonian fluid column: Comparison of results with the benchmark
solutions in the literature56

Metric/Reference L5 (Current Work) TP2D56 FreeLIFE56 MooNMD56

min(Circularity) 0.9015 0.9013 0.9011 0.9013

t|min(Circularity) 1.9005 1.9041 1.8750 1.9000

max(Rise velocity) 0.2418 0.2417 0.2421 0.2417

t|max(Rise velocity) 0.9214 0.9213 0.9313 0.9239

Center of mass at t = 3.0 1.0822 1.0813 1.0799 1.0817

Metric/Time Step 0.002 0.001 0.0005 0.00025

min(Circularity) 0.9022 0.9017 0.9015 0.9015

t|min(Circularity) 1.8980 1.8996 1.9005 1.9007

max(Rise velocity) 0.2415 0.2417 0.2418 0.2418

t|max(Rise velocity) 0.9225 0.9218 0.9214 0.9213

Center of mass at t = 3.0 1.0830 1.0825 1.0822 1.0822

T A B L E 3 Time-step convergence test
for a Newtonian drop rising in a Newtonian
fluid column

results in the following sections are obtained with the mesh L4. Note that we have presented the grid independence
test for a 2D Planar configuration. However, the same convergence behavior is also observed with L4 and L5 meshes in
3D-axisymmetric configuration. Furthermore, the benchmark solutions are also plotted in Figure 3 and our results agree
well with the benchmark results. In order to quantitatively compare our numerical solutions with the benchmark results,
the minimum circularity, time at minimum circularity, maximum rise velocity, time at maximum rise velocity, and center
of mass at t = 3.0 are tabulated in Table 2. We can observe that our results agree well with those in the literature.56 Since
it is a moving domain problem, we need to choose a smaller time step to capture the physics (the dynamics of moving
interface) though the implicit time discretization allows larger time step. Moreover, we performed a time-step convergence
and the results for different time-step lengths 0.002, 0.001, 0.0005, and 0.00025 with L4 mesh are tabulated in Table 3. We
can observe that the numerical values with time-step lengths 0.0005 and 0.00025 converge to a time-step independent
value. Furthermore, for the order of convergence of the proposed LPS scheme for computations of viscoelastic fluid flows,
we refer to our previous study.54 Using the method of manufactured solutions we observed that if r is the polynomial order
of the finite element basis function, then the optimal order of convergence for the velocity and pressure in L2-norm is of
the order r + 1, whereas the optimal order of convergence for the viscoelastic conformation stress in L2-norm is expected
to be r + 1∕2.

4.2 Newtonian drop rising in a viscoelastic fluid column

In this section, we consider a 3D-axisymmetric Newtonian drop rising in a viscoelastic fluid column due to buoyancy.
We designate a base case to systematically examine the effects of various flow parameters. The base case is defined as:
Re2 = 10, Eo = 400, Wi2 = 25, 𝜌1∕𝜌2 = 0.1, 𝜀 = 10, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, D = 0.5, and hc = 2.0. The computa-
tional domain is triangulated into an interface-resolved mesh using the mesh generator Triangle59,60 based on constrained
Delaunay triangulation. We limit the maximum nondimensional area of each cell in the mesh to 0.001 during the tri-
angulation (initially and as well as during the remeshing). This results in 1835 and 3111 cells in the initial inner and
outer domains, respectively. The finite element spaces used in computations for the velocity/pressure/viscoelastic stress
are Pbubble

2 / Pdisc
1 / Pbubble

2 . This choice of initial mesh and finite element spaces results in 49742 velocity, 14838 pressure,
and 74613 viscoelastic DOFs. Furthermore, we use a constant time step 𝛿t = 0.0005 and 600 DOFs on the interface with
h0 = 0.002617982, where h0 is the mesh size at t = 0. In computations, the number of cells and the number of DOFs might
change during the remeshing. Furthermore, the stabilization constants used in computations are c1 = 0.005, c2 = 0.005,
and c3 = 0.005. In order to avoid the effect of the presence of the wall at the top of the domain, simulations were stopped
when the drop reaches a constant velocity or when its velocity begins to decrease due to the proximity of the top surface.
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Figure 4 presents the viscoelastic stress profiles for the base case flow parameters at dimensionless time instances
t = 1.0, 4.0, 6.0, and 9.0. At time t = 0, the drop is of a spherical shape with initial velocities of the drop and the bulk fluid
column assumed to be zero and the viscoelastic conformation stress tensor is set as 𝝉p,0 = I. Initially, the buoyancy force
generated by the density difference between two fluids accelerates the drop in the opposite direction of the gravity, that is,
the drop rises up in the bulk fluid column. The transient behavior of a buoyant drop accelerating from rest in a viscoelastic
fluid column depends on its volume and the magnitudes of the viscous and viscoelastic stresses, which themselves depend
on the fluid properties such as the viscosity and the relaxation time. The drop is driven by the force of buoyancy, while the
viscous and viscoelastic stresses resist its motion. If the deforming stresses at the interface are sufficiently smaller than
the interfacial tension force, the drop shape remains approximately spherical. However, when these deforming stresses
are significant the interface deforms and the drop shape changes depending on the properties of the bulk fluid: it deforms
to an oblate shape in inertia-dominated flows and to a prolate shape with or without a cusp-like trailing end in flows, in
which viscoelasticity is important.

At t = 1.0, we can observe that the maximum values of viscoelastic stress component 𝜏rr starts to accumulate at the
front stagnation point, while 𝜏rz gets built up along the entire circumference of the bubble. However, the maximum values
of 𝜏zz are concentrated at the rear stagnation point. The initial motion of the drop is dominated by viscous stresses as the
viscoelastic stresses take some time to build up. Furthermore, along the interface, the interfacial tension force dominates
compared with the viscous and viscoelastic stresses. Hence, the shape of the drop is more spherical at t = 1.0, similar to
a Newtonian drop rising in a Newtonian fluid column. At t = 4.0, we can observe that the peak magnitude of viscoelastic
stresses have increased, but still the viscous stresses continue to dominate the flow dynamics and hence, the drop shape
remains more spherical.

At time t = 6.0, the drop starts to become prolate and this is an indication that the viscoelastic stresses are starting
to dominate the flow dynamics. In particular, the viscous and viscoelastic stresses overcome the interfacial tension. Fur-
thermore, the maximum values of 𝜏zz and minimum values of 𝜏rr are concentrated at the rear stagnation point. Hence,
the polymers near the trailing end of the drop get stretched along the z direction. The extensional viscoelastic stresses in
general being large in a thin section at the trailing end of the drop can surmount the interfacial tension, hence forming a
cusp-like trailing end. The cusp-like trailing end becomes more and more obvious as the time progresses. Since, the max-
imum values of 𝜏rr and minimum values of 𝜏zz occur at the front stagnation point, the upstream axial flow experiences
a strong turn tangential to the drop surface so that the polymers are greatly extended in the radial directions. Thus, the
drop does not experience noticeable deformation in the vicinity of its front end. With further advancement in time, the
viscoelastic stresses completely dominate the rising drop dynamics. At t = 9.0, 𝜏zz gets concentrated only in the rear stag-
nation point resulting in the trailing end of the drop being extremely pulled out. Next, we perform a parametric study to
examine the effects of viscosity ratio, Newtonian solvent ratio, Giesekus mobility factor, and Eötvös number on the rising
drop dynamics in a viscoelastic fluid column.

4.2.1 Influence of viscosity ratio on the drop dynamics

To study the influence of viscosity ratio on the rising drop dynamics, we consider the base case flow parameters and
vary only the viscosity ratio. In particular, we vary only the total viscosity of the inner phase and keep all other parameters
the same. The following five different viscosity ratios are used in this study: (i) 𝜀 = 1, (ii) 𝜀 = 2, (iii) 𝜀 = 3, (iv) 𝜀 = 5,
and (v) 𝜀 = 10. Figure 5 presents the computational results for all the five variants of viscosity ratios. By increasing the
viscosity ratio, in principle we only increase the Reynolds number of the drop while other parameters remain the same.
Hence, with an increase in the Reynolds number of the drop, it forces the drop to rise with a higher velocity and the
same can be observed in Figure 5F. Initially, the motion is inertia dominated due to buoyancy and hence, the rise velocity
increases tremendously till about t = 0.3. After that, the viscous and viscoelastic stresses resist the buoyant force and we
can observe an upward movement of the drop with a steady rise velocity. The kinetic energy of the drop increases with an
increase in the viscosity ratio, since it is accompanied by an increase in the rise velocity. We can observe from Figure 5D,
that after the initial acceleration the temporal evolution of the kinetic energy of the drop curves seem to be parallel with
an increase in the viscosity ratio. Furthermore, the drop also rises higher with increased rise velocity and kinetic energy
in the drop and thus, the center of mass of the drop is higher with an increase in the viscosity ratio, see Figure 5E.

Figure 5A depicts the drop shapes at t = 9. For high viscosity ratios, the drop surface close to the trailing end becomes
concave and a very long and narrow tail develops. This is due to the fact that, with an increase in the Reynolds number of
the drop, there is increased generation and accumulation of extensional viscoelastic stresses at the rear stagnation point.
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F I G U R E 4 Viscoelastic conformation stress profiles for a Newtonian drop rising in a viscoelastic fluid column with flow parameters
Re2 = 10, Eo = 400, Wi2 = 25, 𝜌1∕𝜌2 = 0.1, 𝜀 = 10, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, D = 0.5, and hc = 2.0 at dimensionless times t = 1.0, 4.0, 6.0,
and 9.0 [Color figure can be viewed at wileyonlinelibrary.com]
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(A) (B) (C)

(D) (E) (F)

F I G U R E 5 Influence of viscosity ratio for a Newtonian drop rising in a viscoelastic fluid column: (A) drop shape at t = 9, (B) diameter
of the drop at r = 0, (C) sphericity, (D) kinetic energy, (E) center of mass, and (F) rise velocity of the drop for different viscosity ratios (i) 𝜀 = 1,
(ii) 𝜀 = 2, (iii) 𝜀 = 3, (iv) 𝜀 = 5, and (v) 𝜀 = 10 with flow parameters Re2 = 10, Eo = 400, Wi2 = 25, 𝜌1∕𝜌2 = 0.1, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1,
D = 0.5, and hc = 2.0 [Color figure can be viewed at wileyonlinelibrary.com]

Hence, at a given time the drop with higher viscosity ratio will show greater extended trailing edge characteristics in the
drop and the same in observed in Figure 5A. However, for low viscosity ratios, the drop does have an extended trailing
edge, but occurs at a later time as the viscoelastic stresses are accumulated slowly. Furthermore, Figure 5B presents
the temporal evolution of the diameter of the drop at the axis of symmetry. We can observe that till around t = 4, the
drop rises with almost the same diameter, which indicates that the interfacial tension dominated over the viscous and
viscoelastic stresses till t = 4. However, after t = 4, the diameter of the drop increases with an increase in the viscosity
ratio, as viscoelastic stresses start to dominate the drop shapes. Furthermore, Figure 5C depicts the temporal evolution of
the sphericity of the drop. It is a good indicative of the drop deformation. As expected, we can observe that the sphericity
of the drop at t = 9 decreases with an increase in the viscosity ratio.

The drop rising in a viscoelastic fluid column reveals an interesting flow phenomenon such that in the wake of the
rising drop, the velocity field very close to the trailing end is in the direction of the motion of the drop, whereas it reverses
its direction at a small distance away from the trailing end, which is commonly referred to as negative wake.72 In the
case of Newtonian fluids, the fluid velocity behind the drop is always in the same direction as the drop's motion. Figure 6
depicts the negative wake phenomenon. At t = 13.25, the fluid velocity behind the drop is in the same direction as the
drop's motion. However, immediately after t = 13.25 the flow direction starts to reverse in the wake region and at t = 16.0,
we can observe that the flow direction has completely reversed at a small distance away from the trailing end.

4.2.2 Influence of Newtonian solvent ratio on the drop dynamics

In this section, we study the influence of Newtonian solvent ratio on the rising Newtonian drop dynamics in a vis-
coelastic fluid column. We consider the base case flow parameters and vary only the Newtonian solvent ratio of the bulk
fluid column. In particular, we vary the Newtonian solvent viscosity and polymeric viscosity of the bulk fluid, but keep the
total viscosity constant. Four different values are used for the Newtonian solvent ratio in this study, which are as follows:

http://wileyonlinelibrary.com
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(i) 𝛽2 = 0.625, (ii) 𝛽2 = 0.75, (iii) 𝛽2 = 0.875, and (iv) 𝛽2 = 1.0. Lower the Newtonian solvent ratio, greater is the polymeric
viscosity and lesser is the Newtonian viscosity, thereby increasing the viscoelastic character of the fluid column. Figure 7
presents the numerical results for different Newtonian solvent ratios. Note that the case 𝛽2 = 1.0 represents a Newto-
nian drop rising in a Newtonian fluid column. From Figure 7A, we can observe that the drop shape at the trailing end
develops a longer and narrower tail and also rises higher with decrease in the Newtonian solvent ratio. With increased
viscoelasticity in the bulk fluid, the extensional stresses at the rear stagnation point increases leading to a longer and
narrower tail. The greater rise in the drop is accompanied by a higher center of mass, see Figure 7E. Furthermore, the
kinetic energy and the rise velocity of the drop increases with a decrease in the Newtonian solvent ratio, refer Figure 7E,F.

F I G U R E 6 Magnitude of velocity
profiles and velocity vectors at dimensionless
times t = 13.25 and 16.0 for a Newtonian
bubble rising in a viscoelastic fluid column
with flow parameters: Re2 = 10, Eo = 400,
Wi2 = 25, 𝜀= 2, 𝜌1∕𝜌2 = 0.1, 𝛽1 = 1.0, 𝛽2 = 0.75,
𝛼2 = 0.1, D = 0.5, and hc = 2.5 [Color figure
can be viewed at wileyonlinelibrary.com]

(A) (B) (C)

(D) (E) (F)

F I G U R E 7 Influence of Newtonian solvent ratio for a Newtonian drop rising in a viscoelastic fluid column: (A) drop shape at t = 7.5,
(B) diameter of the drop at r = 0, (C) sphericity, (D) kinetic energy, (E) center of mass, and (F) rise velocity of the drop for different
Newtonian solvent ratios (i) 𝛽2 = 0.625, (ii) 𝛽2 = 0.75, (iii) 𝛽2 = 0.875, and (iv) 𝛽2 = 1.0 with flow parameters Re2 = 10, Eo = 400, Wi2 = 25,
𝜀 = 10, 𝜌1∕𝜌2 = 0.1, 𝛽1 = 1.0, 𝛼2 = 0.1, D = 0.5, and hc = 2.0 [Color figure can be viewed at wileyonlinelibrary.com]
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The curves become parallel after the viscous and viscoelastic stresses start to overcome the interfacial tension. In
Figure 7B, we can observe that the diameter of the drop at the axis of symmetry increases to a greater extent with a
decrease in the Newtonian solvent ratio. This occurs since with an increase in the viscoelastic character of the outer fluid
column, the drop develops a longer trailing edge due to greater extensional viscoelastic stresses near the rear stagnation
point. Furthermore, the sphericity of the drop decreases to a greater extent with a decrease in the Newtonian solvent ratio
due to increased deformation at the rear end, see Figure 7C.

4.2.3 Influence of Giesekus mobility factor on the drop dynamics

To examine the influence of Giesekus mobility factor on the Newtonian drop rising in a viscoelastic fluid column,
we consider the following five different Giesekus factors: (i) 𝛼2 = 0.1, (ii) 𝛼2 = 0.2, (iii) 𝛼2 = 0.5, (iv) 𝛼2 = 0.75, and
(v) 𝛼2 = 1.0. The other flow parameters are the same as the base case. Figure 8 presents the computational results for
different Giesekus factors. With an increase in the Giesekus factor, the shear thinning effects increases. Hence, with
increased shear thinning, the drop is expected to have higher rise velocity and eventually greater kinetic energy. From
Figure 8D,F, we can observe that there is not much visible effect of Giesekus factor. However, from the zoomed plots, we
can observe the shear thinning effect very clearly. Increasing the Giesekus factor leads to a decrease in the magnitude of
the viscoelastic stresses generated in the bulk fluid column. Hence, from Figure 8A, we can observe that the trailing end
of the drop becomes flatter and the tail becomes shorter with an increase in the Giesekus factor. Since the tail becomes
shorter, the magnitude of the increase of the diameter of the drop at the axis of symmetry decreases with an increase in
the Giesekus factor, see Figure 8B. The sphericity of the drop decreases to a greater extent with a decrease in the Giesekus
factor due to large deformation at the tail end of the drop. Furthermore, from Figure 8E, we can observe that the center
of the mass of the drop is higher for larger values of Giesekus factor as the tail end of the drop becomes shorter and less
extended out.

(A) (B) (C)

(D) (E) (F)

F I G U R E 8 Influence of Giesekus mobility factor for a Newtonian drop rising in a viscoelastic fluid column: (A) drop shape at t = 9,
(B) diameter of the drop at r = 0, (C) sphericity, (D) kinetic energy, (E) center of mass, and (F) rise velocity of the drop for different Giesekus
mobility factors (i) 𝛼2 = 0.1, (ii) 𝛼2 = 0.2, (iii) 𝛼2 = 0.5, (iv) 𝛼2 = 0.75, and (v) 𝛼2 = 1.0 with flow parameters Re2 = 10, Eo = 400, Wi2 = 25,
𝜀 = 10, 𝜌1∕𝜌2 = 0.1, 𝛽1 = 1.0, 𝛽2 = 0.75, D = 0.5, and hc = 2.0 [Color figure can be viewed at wileyonlinelibrary.com]
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4.2.4 Influence of Eötvös number on the drop dynamics

In this section, we study the influence of Eötvös number on the rising Newtonian drop dynamics in a viscoelastic fluid
column. We consider the base case flow parameters and vary only the Eötvös number, that is, vary the interfacial ten-
sion. Five different values are used for the Eötvös number in this study, which are as follows: (i) Eo = 25, (ii) Eo = 50,
(iii) Eo = 100, (iv) Eo = 200, and (v) Eo = 400. Increasing the Eötvös number, decreases the interfacial tension, thereby
making the interface more easily deformable and thus increases the degree of interface stretching by the polymer stress.
In Figure 9A, we can observe that at low Eötvös numbers, the drop shapes are more similar to a Newtonian drop ris-
ing in a Newtonian fluid column. In fact, with further advancement in time, they still do not deform as observed with
high Eötvös numbers. This phenomenon can be explained by the fact that there exists a critical capillary number, beyond
which the drop experiences unsteady deformations in the form of an extended trialing edge. For interface flows, cap-
illary number is the ratio of Eötvös number to the Reynolds number. Hence, by increasing the Eötvös number, we
actually increase the capillary number. From Figure 9A, we can comment that the critical Eötvös number for unsteady
drop shapes for the considered flow parameters is between 50 and 100 as drops beyond Eo = 100 become cusp-like
shaped.

Since, the extended trailing edge behavior increases with an increase in the Eötvös number, the diameter of the drop
at the axis of symmetry increases when the viscoelastic stresses start to overcome the interfacial tension, refer Figure 9B.
However, till the motion is inertia dominated, there is not much effect of Eötvös number on the diameter of the drop.
Furthermore, Figure 9C presents the temporal evolution of the sphericity of the drop. It quite natural that, with increase
in the Eötvös number, the interface becomes more deformable and hence, the sphericity decreases to a greater extent.
Next, Figure 9D,F depicts the kinetic energy and rise velocity of the drop. We can observe that they increase to a greater
extent with an increase in the Eötvös number. Furthermore, the center of mass of the drop is higher for larger Eötvös
numbers, see Figure 9E, as the drop rises higher with greater rise velocity.

(A) (B) (C)

(D) (E) (F)

F I G U R E 9 Influence of Eötvös number for a Newtonian drop rising in a viscoelastic fluid column: (A) drop shape at t = 7.75,
(B) diameter of the drop at r = 0, (C) sphericity, (D) kinetic energy, (E) center of mass, and (F) rise velocity of the drop for different Eötvös
numbers (i) Eo = 25, (ii) Eo = 50, (iii) Eo = 100, (iv) Eo = 200, and (v) Eo = 400 with flow parameters Re2 = 10, Wi2 = 25, 𝜀 = 10, 𝜌1∕𝜌2 = 0.1,
𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, D = 0.5, and hc = 2.0 [Color figure can be viewed at wileyonlinelibrary.com]
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4.3 Viscoelastic drop rising in a Newtonian fluid column

In this section, we consider a buoyancy driven 3D-axisymmetric viscoelastic drop rising in a Newtonian fluid column.
The base case parameters for studying the effects of various flow variables are defined as follows: Re2 = 10, Eo = 400,
Wi1 = 10, 𝜌1∕𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 0.5, 𝛽2 = 1.0, 𝛼1 = 0.1, D = 0.5, and hc = 2.5. During the triangulation, we limit
the maximum area of each cell in the mesh to 0.001, which leads to 1198 and 2954 cells in the initial inner and outer
domains, respectively. The finite element spaces used in computations for the velocity/pressure/viscoelastic stress are
Pbubble

2 /Pdisc
1 /Pbubble

2 . This choice of initial mesh and finite element spaces results in 41854 velocity, 12456 pressure, and
62781 viscoelastic DOFs. Furthermore, we use a constant time step 𝛿t = 0.0005 and 400 DOFs on the interface with initial
mesh size h0 = 0.00392695. The stabilization constants used in computations are c1 = 0.05, c2 = 0.05, and c3 = 0.05.

Figure 10 presents the viscoelastic stress profiles in the drop for the base case flow parameters at dimensionless time
instances t = 2, 6, 10, and 20. Initially, the drop is of a spherical shape with u0 = 0 and 𝝉p,0 = I. The viscoelastic drop rises
up in the bulk fluid column due to buoyancy force generated by the density difference between the two immiscible fluids.

F I G U R E 10 Viscoelastic conformation stress profiles for a viscoelastic drop rising in a Newtonian fluid column with flow parameters
Re2 = 10, Eo = 400, Wi1 = 10, 𝜌1∕𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 0.5, 𝛽2 = 1.0, 𝛼1 = 0.1, D = 0.5, and hc = 2.5 at dimensionless times t = 2, 6, 10, and 20
[Color figure can be viewed at wileyonlinelibrary.com]
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As the drop rises, the initial motion of the drop is inertia dominated as viscoelastic stresses take some time to build up.
Thus, at t = 2, we can observe that the drop shape is still more spherical. However, at t = 6, the drop at the tail end
starts to deform and it attains a cylindrical shape with a dimpled trailing end. The viscous and viscoelastic stresses start
to overcome the interfacial tension. The maximum values of viscoelastic stress component 𝜏rr are concentrated in the top
end of the drop, while 𝜏zz is built up more near the tail end of the drop. The polymers inside the drop is stretched along
the flow direction. Since the local flow direction is normal to the interface at the rear stagnation point, the polymer stress
component 𝜏zz reaches its maximum value at the tail end of the drop and pulls the interface inward. Since, the maximum
values of 𝜏rr and minimum values of 𝜏zz occur at the top end of the drop, the upstream axial flow experiences a strong turn
tangential to the drop surface so that the polymers are greatly extended in the radial directions. Thus, the drop does not
experience noticeable deformation at its front end. With further advancement in time, the viscoelastic stresses increases
and hence the drop at the trailing end is more pulled up inward. The simulations were stopped at t = 20, as beyond that
the drop shall start to split and the assumption of no topological change in the computational domain shall fail when the
drop splits.

4.3.1 Influence of viscosity ratio on the drop dynamics

In this section, we study the influence of viscosity ratio on the rising viscoelastic drop dynamics. We consider the base
case flow parameters and vary only the viscosity ratio. The following five different viscosity ratios are used in this study:
(i) 𝜀 = 1.5, (ii) 𝜀 = 2.0, (iii) 𝜀 = 2.5, (iv) 𝜀 = 3.0, and (v) 𝜀 = 4.0. Figure 11 presents the numerical results for different
viscosity ratios. With an increase in the viscosity ratio, the Reynolds number of the drop increases and it forces the drop
to rise with a higher rise velocity and the same can be observed in Figure 11F. Since, the drop rises with a higher velocity,
the kinetic energy will also be higher, refer Figure 11D. Figure 11E presents the temporal evolution of elastic energy in
the drop. The elastic energy in the drop depends on the viscoelastic stresses in the drop. Since, the viscoelastic stresses

(A) (B) (C)

(D) (E) (F)

F I G U R E 11 Influence of viscosity ratio for a viscoelastic drop rising in a Newtonian fluid column: (A) drop shape at t = 17,
(B) diameter of the drop at r = 0, (C) sphericity, (D) kinetic energy, (E) elastic energy, and (F) rise velocity of the drop for different viscosity
ratios (i) 𝜀 = 1.5, (ii) 𝜀 = 2.0, (iii) 𝜀 = 2.5, (iv) 𝜀 = 3.0, and (v) 𝜀 = 4.0 with flow parameters Re2 = 10, Eo = 400, Wi1 = 10, 𝜌1∕𝜌2 = 0.1, 𝛽1 = 0.5,
𝛽2 = 1.0, 𝛼1 = 0.1, D = 0.5, and hc = 2.5 [Color figure can be viewed at wileyonlinelibrary.com]
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are generated in regions of high gradients in the velocity field, more viscoelastic stresses would be generated for drops
with higher Reynolds number. Hence, with an increase in the viscosity ratio, we observe that the elastic energy in the
drop also increases. Since, the drop rises with a higher rise velocity, the position of the drop shall also be higher and
we observe the same in Figure 11A. Figure 11B presents the temporal evolution of the diameter of the drop at the axis
of symmetry. We can observe that the effects of viscosity ratio is negligible till around t = 5. After that, the diameter of
the drop decreases more at lower viscosity ratios and the same phenomenon is observed in the sphericity of the drop in
Figure 11C.

4.3.2 Influence of Newtonian solvent ratio on the drop dynamics

To study the influence of Newtonian solvent ratio on the rising drop dynamics, we consider the base case flow parameters
and vary only the Newtonian solvent ratio of the drop. We consider the following five different Newtonian solvent ratios
in this study: (i) 𝛽1 = 0.5, (ii) 𝛽1 = 0.625, (iii) 𝛽1 = 0.75, (iv) 𝛽1 = 0.875, and (v) 𝛽1 = 1.0. The case 𝛽1 = 1.0, represents a
Newtonian drop rising in a Newtonian fluid column. Figure 12 presents the computational results for different Newtonian
solvent ratios. Lower the Newtonian solvent ratio, greater is the polymeric viscosity and lesser is the Newtonian viscosity,
thereby increasing the viscoelastic character of the drop. Hence with an increase in the viscoelastic character of the drop,
it deforms more at the trailing end. In Figure 12A, we can observe that the degree of dimpleness increases with decreasing
Newtonian solvent ratio. Thus, the diameter of the drop at the axis of symmetry as well decreases with a decrease in the
Newtonian solvent ratio, see Figure 12B. Similar behavior is also observed in the sphericity of the drop. Furthermore,
initially the kinetic energy and rise velocity of the drop increases with a decrease in the Newtonian solvent ratio. However,
after around t = 17, the trend reverses. Figure 12E presents the temporal evolution of the elastic energy in the drop. Till
t = 8.0, the magnitude of increase in the elastic energy in the drop increases with a decrease in the Newtonian solvent
ratio. However, after t = 8.0 the trend reverses.

(A) (B) (C)

(D) (E) (F)

F I G U R E 12 Influence of Newtonian solvent ratio for a viscoelastic drop rising in a Newtonian fluid column: (A) drop shape at t = 20,
(B) diameter of the drop at r = 0, (C) sphericity, (D) kinetic energy, (E) elastic energy, and (F) rise velocity of the drop for different Newtonian
solvent ratios (i) 𝛽1 = 0.5, (ii) 𝛽1 = 0.625, (iii) 𝛽1 = 0.75, (iv) 𝛽1 = 0.875, and (v) 𝛽1 = 1.0 with flow parameters Re2 = 10, Eo = 400, Wi1 = 10,
𝜌1∕𝜌2 = 0.1, 𝜀 = 2, 𝛽2 = 1.0, 𝛼1 = 0.1, D = 0.5, and hc = 2.5 [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 Influence of Giesekus mobility factor for a viscoelastic drop rising in a Newtonian fluid column: (A) drop shape at t = 20,
(B) diameter of the drop at r = 0, (C) sphericity, (D) kinetic energy, (E) elastic energy, and (F) rise velocity of the drop for different Giesekus
factors (i) 𝛼1 = 0.1, (ii) 𝛼1 = 0.2, (iii) 𝛼1 = 0.3, (iv) 𝛼1 = 0.5, and (v) 𝛼1 = 0.75 with flow parameters Re2 = 10, Eo = 400, Wi1 = 10, 𝜌1∕𝜌2 = 0.1,
𝜀 = 2, 𝛽1 = 0.5, 𝛽2 = 1.0, D = 0.5, and hc = 2.5 [Color figure can be viewed at wileyonlinelibrary.com]

4.3.3 Influence of Giesekus mobility factor on the drop dynamics

In this section, we study the influence of Giesekus mobility factor on the viscoelastic drop rising in a Newtonian fluid
column. We consider the base case flow parameters and use the following five different Giesekus factors: (i) 𝛼1 = 0.1,
(ii) 𝛼1 = 0.2, (iii) 𝛼1 = 0.3, (iv) 𝛼1 = 0.5, and (v) 𝛼1 = 0.75. Figure 13 presents the numerical results for different Giesekus
factors. Initially, the motion of the drop is inertia dominated and the Giesekus factor comes into play only when the
viscoelastic stresses dominate the flow. Hence, there is no effect of Giesekus factor on the drop dynamics till about t = 3.0.
However, after that the rise velocity and kinetic energy in the drop increases with an increase in the Giesekus factor, as
shear thinning effects increases. Increasing the Giesekus factor leads to a decrease in the magnitude of the viscoelastic
stresses generated in the drop. Hence, from Figure 13E we can observe that the magnitude of increase in the elastic energy
decreases with an increase in the Giesekus factor. Furthermore, from Figure 13A we can observe that at low Giesekus
factor, the effect of dimpleness is higher. Thus, the diameter and sphericity of the drop decreases more with a decrease in
the Giesekus factor, refer Figure 13B,C, respectively.

4.3.4 Influence of Eötvös number on the drop dynamics

In this section, we study the influence of Eötvös number on the rising viscoelastic drop dynamics in a Newtonian fluid
column. We consider the base case flow parameters and vary only the Eötvös number, that is, vary the interfacial ten-
sion. Six different values are used for the Eötvös number in this study, which are as follows: (i) Eo = 100, (ii) Eo = 175,
(iii) Eo = 250, (iv) Eo = 300, (v) Eo = 400, and (vi) Eo = 600. Increasing the Eötvös number, decreases the interfacial ten-
sion, thereby making the interface more easily deformable. Thus, from Figure 14A we can observe that at high Eötvös
numbers, the drop is more dimpled. In fact at low Eötvös numbers, the drop shapes are more similar to a Newtonian
drop rising in a Newtonian fluid column. With further advancement in time, drops with low Eötvös numbers still do not
deform as observed with high Eötvös numbers. This is due to the fact that there exists a critical capillary number, beyond

http://wileyonlinelibrary.com


VENKATESAN and GANESAN 25

(A) (B) (C)

(D) (E) (F)

F I G U R E 14 Influence of Eötvös number for a viscoelastic drop rising in a Newtonian fluid column: (A) drop shape at t = 20,
(B) diameter of the drop at r = 0, (C) sphericity, (D) kinetic energy, (E) elastic energy, and (F) rise velocity of the drop for different Eötvös
numbers (i) Eo = 100, (ii) Eo = 175, (iii) Eo = 250, (iv) Eo = 300, (v) Eo = 400, and (vi) Eo = 600 with flow parameters Re2 = 10, Wi1 = 10,
𝜌1∕𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 0.5, 𝛽2 = 1.0, 𝛼1 = 0.1, D = 0.5, and hc = 2.5 [Color figure can be viewed at wileyonlinelibrary.com]

which the drop experiences unsteady deformations in the form of a dimpled shape. From Figure 14A, we can comment
that the critical Eötvös number for unsteady drop shapes is between 175 and 250 for the considered flow parameters. Since
the trailing end of the drop is pulled more with an increase in the Eötvös number, the diameter of the drop at the axis of
symmetry and the sphericity of the drop decreases, see Figure 14B,C, respectively. Furthermore, Figure 14E presents the
temporal evolution of the elastic energy in the drop. Till around t = 6, there is no effect of Eötvös number on the elas-
tic energy in the drop. However, after that the magnitude of increase in the elastic energy of the drop decreases with an
increase in the Eötvös number.

5 SUMMARY AND OBSERVATIONS

A finite element scheme using the ALE approach is presented for computations of 3D-axisymmetric viscoelastic
two-phase flows. The coupled Navier-Stokes and the Giesekus constitutive equations, which describe the viscoelastic
flow dynamics is solved monolithically using the proposed numerical scheme. The highlights of the numerical scheme
for viscoelastic two-phase flows are the tangential gradient operator technique for the curvature approximation with
semiimplicit treatment, ALE approach with moving meshes to track the interface, 3D-axisymmetric variational form
using cylindrical coordinates, and the three-field LPS formulation. This stabilized scheme allows to use equal order
interpolation for the velocity and the viscoelastic stress, whereas inf-stable finite elements is used for the velocity and
the pressure. First-order implicit Euler method is used for the time discretization. Furthermore, the linear elastic mesh
update technique is used to displace the inner mesh points of the computational domain and it avoids quick distortion of
the mesh.

The numerical scheme is first validated for a 2D planar Newtonian drop rising in a Newtonian fluid column using
benchmark results in the literature. Next, a grid independence test is performed for the benchmark configuration to
obtain a suitable mesh for grid-independent numerical solutions. A comprehensive numerical investigation is performed
for a Newtonian drop rising in a viscoelastic fluid column and a viscoelastic drop rising in a Newtonian fluid column.
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The effects of the viscosity ratio, Newtonian solvent ratio, Giesekus mobility factor, and Eötvös number on the rising drop
dynamics are analyzed.

The observations are summarized as follows. It is observed that beyond a critical Eötvös number, a Newtonian drop
rising in a viscoelastic fluid column experiences an extended trailing edge with a cusp-like shape. For interface flows with
high viscosity ratios or low Newtonian solvent ratios or low Giesekus mobility factors or high Eötvös numbers, the effect
of viscoelasticity in the bulk fluid column increases leading to an even longer and sharper trailing edge. Furthermore, a
negative wake phenomena, where the velocity at the vicinity of the trailing end is in the direction of the drop, but slightly
further away from the trailing end the velocity reverses its direction is observed in this study. Next, an indentation around
the rear stagnation point with a dimpled shape is observed when a viscoelastic drop rises in a Newtonian fluid column.
With low viscosity ratios or low Newtonian solvent ratios or low Giesekus mobility factors or high Eötvös numbers, the
effect of viscoelasticity in the drop increases leading to the rear end of the drop being pulled up more.

NOMENCLATURE
𝛼 Giesekus mobility factor
𝛽 Newtonian solvent ratio
ΓAxial Symmetry of axis
ΓD Dirichlet boundary
ΓF Interface between two liquids
ΓN Neumann boundary
𝛿t Time-step length
𝜀 Ratio between total viscosity of outer and inner phases
𝜅h Fluctuation operator
𝜆 Relaxation time of polymers
𝜇0 Total dynamic viscosity
𝜇s Newtonian solvent viscosity
𝜇p Polymeric viscosity
𝝂D Unit outward normal vector on Dirichlet boundary
𝝂F Unit outward normal vector on interface
𝝂N Unit outward normal vector on Neumann boundary
𝜋h Global projection operator
𝜋K Local projection operator
𝜌 Density of fluid
𝜎 Interfacial tension
𝝉N Unit tangential vector on Neumann boundary
𝝉p Viscoelastic conformation stress
Φ 2D meridian computational domain of Ω
Φ1 Inner fluid computational domain in 2D
Φ2 Outer fluid computational domain in 2D
𝜕Φ Boundary of Φ
Φ̂ Reference meridian domain in 2D
𝝍 Viscoelastic stress space test function
Ψ Displacement of inner mesh points
Ω Computational domain in 3D
Ω0 Initial computational domain in 3D
Ω1 Inner fluid computational domain in 3D
Ω2 Outer fluid computational domain in 3D
Ω̂ Reference computational domain in 3D
h Computational mesh
t ALE mappings
D Deformation tensor
I Identity tensor
P𝝂F Projection operator onto the tangential plane of ΓF
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S Stress tensor in linear elasticity problem
SΓF Interface stress tensor
T Stress tensor of fluid
∇Γ𝜈F

Interface gradient operator on ΓF
id Identity mapping
tr Trace
Eo Eötvös number
Fr Froude number
Re Reynolds number
We Weber number
Wi Weissenberg number
b̂△ Cubic polynomial bubble function on the reference triangle
g Gravitational constant
hK Diameter of a cell
h0 Initial mesh size
p Pressure
q Pressure space test function
t Time
D Diameter of the drop at symmetry axis
Dh Discontinuous projection space
Eelastic Elastic energy in the drop
Ekinetic Kinetic energy in the drop
K Cell
K̂ Reference cell
I Given end time
L Characteristic length
Q̃ Pressure space in Φ(t)
Q Pressure space in Ω(t)
S̃ Viscoelastic stress space in Φ(t)
S Viscoelastic stress space in Ω(t)
U∞ Characteristic velocity
Ṽ Velocity space in Φ(t)
V Velocity space in Ω(t)
Yh Approximation space
d Displacement of boundary vertices
e Unit vector in the direction of gravitational force
u Fluid velocity
v Velocity space test function
w Domain velocity
X Eulerian coordinate
Y ALE coordinate
Z Boundary vertices in computational mesh
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