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Abstract Numerical simulation of turbulent flows over

different aerofoil configurations are presented in this paper.

The incompressible fluid flow is described by the time-

dependent incompressible Navier–Stokes equations. Fur-

ther, a finite element variational multiscale method is used

to simulate the turbulent flows. Computation over a

cylinder and different variants of aerofoils are presented.

The obtained numerical results demonstrate the capabilities

of variational multiscale methods.

Keywords Turbulent flows � Incompressible

Navier–Stokes � Multiscale method � Finite elements

1 Introduction

Simulations of incompressible fluid flows, in particular tur-

bulent flows, are highly demanded in many applications for

very many reasons. Turbulent flows are highly unsteady

flows, which contain several flow scales and the velocity

field is superimposed by random velocity fluctuations. Both

the laminar and turbulent incompressible fluid flows are

described by the Navier–Stokes equations (NSE), whereas

flowswith lowviscosity and high inertial forces are classified

as turbulent flows. In particular, the Reynolds number, which

is the ratio of inertial forces to viscous forces, in the

dimensionless form of the NSE is used to classify laminar

and turbulent flows. The analytical solution of the NSE is

deficient, in particular, with regard to the turbulent flow

regime. There exist no analytical solutions for turbulent flow

even for a simple flow configuration, and therefore the

numerical approach is the only viable option for the simu-

lation of turbulent flows, see [1, 2]. Despite several advances

made in computational fluid dynamics (CFD), accurate

modeling of turbulent flows is still very challenging.

The numerical simulation of turbulent flows is per-

formed using either the direct numerical simulation (DNS)

or turbulent models such as Reynolds-averaged Navier–

Stokes equations (RANS) or large eddy simulations (LES).

Further details on RANS can be found in [3]. In DNS

approach, the NSE are solved by resolving all flow scales

without any additional modeling for turbulence. The flow

scales in turbulent flows vary in size, and a very fine mesh

is needed in order to resolve all small flow scales, in par-

ticular, up to the Kolmogorov length scale. The very fine

mesh makes the DNS computationally unfeasible for most

of the practical applications. Currently, LES is one of the

popular approaches for turbulence modeling. In LES, the

large flow scales are resolved by the computational mesh

and the effect of the small flow scales are incorporated into

the large scales by turbulent models. The traditional LES

relies on a filter function to separate the resolved and

unresolved scales. However, the filter function induces

commutation error in LES. Moreover an appropriate choice

of filter function itself is very challenging. General over-

views of the classical LES procedure can be found in [4–7].

In this paper we consider a relatively new approach, the

variational multiscale method (VMS), for the turbulence

simulation of fluid flows over an aerofoil. The theoretical

framework of the VMS method has been established in [8]

and was further developed for problems in computational

mechanics in [9]. VMS separates the flow scales into two
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or three different scales, for e.g., resolved large scale and

unresolved small scale in a two level separation, and the

scales are separated as resolved large scale, resolved small

scale and unresolved small scale, in case of a three level

separation. The flow scale separation enables to treat dif-

ferent flows scales with tailor-made numerical schemes.

Two important aspects that characterize the VMS methods

are: (i) variational projection is used to separate flow scales

that avoids the use of filter function as in traditional LES

thereby doing away with the commutation errors involved,

and (ii) the influence/effect of the unresolved scales is

incorporated into the resolved small scales and does not

directly influence the resolved large scales. But due to the

coupling of the scales, the resolved large scales are indi-

rectly influenced by the modelling of the unresolved scales

with the direct effect confined to the resolved small scales,

see [10–15] for an overview, and [16] for an error analysis

of one the schemes.

The paper is organized as follows. The mathematical

model and the variational form of the incompressible fluid

flows are presented in Sect. 2. After that a brief description

of turbulence model including DNS and LES are presented

in Sect. 3. A detailed description of the 3 scale VMS is

presented in Sect. 4. The numerical results are presented in

Sect. 5.

2 Mathematical model

2.1 Governing equations

We consider an incompressible fluid flow over an aerofoil

in a two-dimensional channel, see Fig. 1 for a schematic

view. The incompressible fluid flow in ð0;T� � X is

described by the time-dependent incompressible NSE:

ou

ot
� 2

Re
r � DðuÞ þ ðu � rÞuþrp ¼ 0;

r � u ¼ 0;
ð1Þ

where X is a bounded domain X � R
2 and T is a given

final time. The NSE are closed with the initial condition

uð0; �Þ ¼ u0 in X

and boundary conditions

uðt; xÞ ¼ uD on ð0;T� � Cin;

uðt; xÞ ¼ 0 on ð0;T� � Cwall;

2

Re
DðuÞ � pI

� �
� n ¼ 0 on ð0;T� � Cout:

Here, u is the fluid velocity, p is the pressure, t is the time,

u0 is a given initial velocity, uD is a given inlet velocity, I

is the identity tensor and n is the outward normal to the

boundary Cout. Further, the velocity deformation tensor and

the Reynolds number are defined by

DðuÞ ¼ ruþruT

2
and Re ¼ qUL

l
;

where q is the density of the fluid, l is the dynamic vis-

cosity, U and L are characteristic velocity and length

scales, respectively.

2.2 Variational form

Let L2ðXÞ, H1ðXÞ and ð�; �ÞX be the standard Sobolev

spaces and the inner product in L2ðXÞ and its vector-valued

versions, respectively. Further, the velocity and pressure

spaces are defined as

V :¼ fv 2 H1ðXÞ2 : v ¼ 0 on Cin [ Cwallg; Q :¼ L2ðXÞ:

Now multiplying the momentum and mass balance equa-

tions in (1) with test functions v 2 V and q 2 Q, respec-

tively, and integrate over X. After applying the Gaussian

theorem for the integrals containing the deformation tensor,

and incorporating all boundary conditions, the weak form

of the NSE (1) read:

For given u0 and uD, find ðu; pÞ 2 V � Q such that

ou

ot
; v

� �
þ aðu;u; vÞ � bðp; vÞ þ bðq; uÞ ¼ 0 ð2Þ

for all ðv; qÞ 2 V � Q, where

aðû; u; vÞ ¼ 2

Re

Z
X
DðuÞ; DðvÞ dx

þ
Z
X
û � rð Þu � v dx;

bðq; vÞ ¼
Z
X
qr � v dx:

3 Turbulent flow models

Turbulent flows are generally characterized by chaotic

behavior in the flow dynamics. In common parlance, flows

with high Reynolds number are considered to be turbulent.

One of the main distinctive features of turbulent flows is

Γin
Γwall

Γwall

Γout

Fig. 1 Computational domain for a fluid flow over an obstacle
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the presence of a multitude of scales. Even though several

advances have been made in the flied of computational

fluid dynamics, handling different scales in a turbulent flow

simulation is still challenging. Some of the popular meth-

ods for turbulent flow simulations are the DNS, LES and

more recently the VMS. We briefly discuss these methods

in the next sections.

3.1 Direct numerical simulation

Numerical simulation is the only practical way out for the

solution of turbulent flow problems since analytical solu-

tion is impossible to obtain. As mentioned before, captur-

ing all flow scales in turbulent flow simulations is the most

challenging task. The most straight-forward approach is to

resolve all scales, in particular up to the Kolmogorov

length scale, by the computational mesh. This approach is

the DNS. This approach has two serious limitations:

(i) high computational cost incurred due to a high resolu-

tion mesh and (ii) the effects of small scales that are not

captured by the computational mesh (unresolved small

scales) are lost since no modelling or approximation are

involved to incorporate the effects of unresolved small

scales. Further, there is a complete dependence on the

available computational capabilities. Nevertheless, the

DNS is the most accurate approach if the computing power

at disposal allows to use a fine mesh that resolves flow

scales up to the Kolmogorov length scale. Moreover, DNS

approach does not contain any numerical modeling terms.

3.2 Large eddy simulation

Another popular approach for numerical simulation of

turbulent flow is the large eddy simulation [6, 7]. Contrary

to the DNS, only the large scales are resolved by the

computational mesh in the LES, whereas the effects of

unresolved small scales on the flow dynamics are incor-

porated through a turbulence model. Since the LES mesh is

coarser in comparison to the mesh used in DNS, LES is

computationally inexpensive. In the LES approach, the

separation of the flow scales into a large and small scales

are performed using a filter function with some appropri-

ately chosen filter width. One of the popular filters, often

used in the LES approach is the Gaussian filter,

gdðxÞ ¼
6

d2p

d=2

exp � 6

d2
k x k22

� �
;

where d is the filter width and d is the dimension of the

flow problem. The characteristic properties of filter func-

tions are that they should be linear and commutative with

respect to differentiation, which are required for the

unbounded domains say R
d .

After filtering the NSE (1) with an appropriate filter

function, the filtered incompressible NSE in ð0;T� � R
d

(an unbounded domain) become

ou

ot
� 2

Re
r � DðuÞ þ r � ðuuTÞ þ rp ¼ 0;

r � u ¼ 0;

with uð0; �Þ ¼ u0, where the bar in the above variables

denotes that the variables are filtered with a filter function.

Let u ¼ uþ u0 and p ¼ pþ p0 be a decomposition of the

velocity and pressure respectively, into unresolved small

scale ðu0; p0Þ and resolved large scale ðu; pÞ. Further, using
the linearity of the filter function uþ kv ¼ uþ kv, the

decomposition of the nonlinear convective term can be

written as:

uuT ¼ uuT þ uu0T þ u0uT þ u0u0T :

Applying these decompositions leads to the space averaged

NSE:

ou

ot
� 2

Re
r � DðuÞ þ r � ðuuTÞ þ r � Tðu; uÞ þ rp ¼ 0

in ð0; T � � R
d

r � u ¼ 0 in ð0; T� � R
d

with uð0; �Þ ¼ u0. Here

Tðu; uÞ ¼ uuT � uuT ¼ uu0T þ u0uT þ u0u0T

is known as ‘‘Reynolds stress tensor’’. In the above

equations, the stress tensor term gives rise to a ‘‘closure

problem’’, and thus it needs to be modeled or

approximated. One of the most commonly used model

for the stress tensor term is the Smagorinsky eddy viscosity

model,

Tðu; uÞ � traTðu; uÞ
3

I ¼ �2mTDðuÞ;

where mT is the turbulent viscosity given by

mT ¼ mS k D k¼ cSd
2 k DðuÞ k :

Some of the other popular models proposed in the literature

are the dynamic subgrid scale model, Taylor LES model,

second order and fourth order rational LES model, see [17]

for further details.

4 Variational multiscale method (VMS)

The variational multiscale method for turbulent flows is

also based on the decomposition of the flow scales into

resolved and unresolved scales. But unlike the application

of a filter function in LES, scale separation in VMS is

16 Int J Adv Eng Sci Appl Math (January–June 2015) 7(1–2):14–24
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realized in a different way, for example using projection

into appropriate spaces. The resolved scales are captured

by a standard finite element space, whereas the unresolved

scales, also known as the sub-grid scale field, are modeled

[18–20]. Moreover, the resolved scales can further be

separated into resolved large and resolved small scales [10,

13, 21, 22].

In this work, the three-scale VMS is considered. Let

u ¼ uþ ~uþ bu and p ¼ pþ ~pþ bp ð3Þ

be the decomposition of the unknowns into resolved large

ðu; pÞ, resolved small ð~u; ~pÞ and unresolved small scales

ðbu; bpÞ, respectively. Further, consider a direct sum

decomposition of V and Q as

V ¼ V � ~V � bV and Q ¼ Q� ~Q� bQ ð4Þ

where ðV;QÞ denotes the resolved large scale spaces,

ð ~V; ~QÞ the resolved small scale spaces, and ðbV ; bQÞ the

unresolved small scale spaces. For simplicity, we denote

the variational form (2) as

ou

ot
; v

� �
þ Aðu; ðu; pÞ; ðv; qÞÞ ¼ 0; ð5Þ

where

Aðû; ðu; pÞ; ðv; qÞ ¼ aðû; u; vÞ � bðp; vÞ þ bðq; uÞ:

Using the decompositions (3) and (4), the variational form

(5) can be written as a coupled system of equations, and it

reads:

For given u0 and uD, find ð u; pÞ 2 V � Q, ð~u; ~p Þ 2 ~V�
~Q, and ð bu; bp Þ 2 bV � bQ such that

oð uþ ~uþ bu Þ
ot

; v

� �

þ A u; ð uþ ~uþ bu; pþ ~pþ bp Þ; ðv; qÞð Þ ¼ 0

ð6Þ

oð uþ ~uþ bu Þ
ot

; ~v

� �

þ A u; ð uþ ~uþ bu; pþ ~pþ bp Þ; ð~v; ~qÞð Þ ¼ 0

ð7Þ

oð uþ ~uþ bu Þ
ot

; bv
� �

þ A u; ð uþ ~uþ bu; pþ ~pþ bp Þ; ðbv; bqÞð Þ ¼ 0

ð8Þ

for all ð v; qÞ 2 V � Q, ð~v; ~q Þ 2 ~V � ~Q, ð bv; bq Þ 2 bV � bQ,

and for each t 2 ½0; T �. In the above system (6)–(8), the

following assumptions are made:

– The equation with the test functions from the unre-

solved scales, (8), is ignored, as the unresolved small

scales cannot be captured numerically

– Unresolved scales ðbv; bq Þ do not influence the resolved

large scales directly, that is, the interaction between

ðbu; bpÞ and ðv; qÞ is ignored in the equation (6)

– The effect of the unresolved scales on the resolved

small scales is modeled by an appropriate turbulence

model, that is,

obu
ot

; ~v

� �
þ Aðu; ðbu; bpÞ; ð~v; ~qÞÞ

� Bðu; ðu; pÞ; ð~u; ~pÞ; ð~v; ~qÞÞ;

where the Smagorinsky eddy viscosity model is used in

computations.

Using these assumptions, the three-level variational mul-

tiscale scheme for the NSE reads:

For given u0 and uD, find ð u; pÞ 2 V � Q, and ð~u; ~p Þ 2
~V � ~Q such that

oð uþ ~u Þ
ot

; v

� �
þ A uþ ~u; ð uþ ~u; pþ ~p Þ; ðv; qÞð Þ ¼ 0

ð9Þ
oð uþ ~u Þ

ot
; ~v

� �
þ A uþ ~u; ð uþ ~u; pþ ~p Þ; ð~v; ~qÞð Þ

þ Bðuþ ~u; ðu; pÞ; ð~u; ~pÞ; ð~v; ~qÞÞ ¼ 0

ð10Þ

Unlike the two-scale VMS and the LES, the turbulence

model in three-scale VMS acts only on the resolved small

scale. However, it indirectly affects the resolved large

scales due to the inherent coupling of the resolved small

scales with the resolved large scales. Moreover, in order to

capture the resolved small scales, the finite element for

ð~u; ~p Þ has to be rich enough in comparison to the finite

element space of ð u; pÞ. It can be realized in two ways:

(i) bubble based VMS [23] i.e., choosing a standard finite

element space for ð u; pÞ, and enrich the same space with

polynomial bubble functions for ð~u; ~p Þ, and (ii) projection

based VMS [24], i.e., choosing two different finite element

spaces for ð~u; ~p Þ and ð u; pÞ. In this paper we use a pro-

jection based VMS.

4.1 Discrete form

We first present the temporal discretization and then a finite

element discretization for the projection based VMS model

of the NSE (9) and (10). Let 0 ¼ t0\t1\. . .\tN ¼ T be a

decomposition of the considered time interval ½0;T� and
dt ¼ tnþ1 � tn, n ¼ 0; . . .;N � 1, be the uniform time step.

Further, we use short notation unðxÞ ¼ uðtn; xÞ to denote

the function value at time tn. In computation, the second

order Crank–Nicolson method is used for the temporal

discretization. We next discuss the spatial discretization.

Let Xh be a triangulation of the domain X into cells, where

h denotes the maximum diameter among all cells in the

triangulation. Let Vh � V and Qh � Q to be two con-

forming finite element (finite dimensional) spaces satisfy-

ing the inf-sup condition

Int J Adv Eng Sci Appl Math (January–June 2015) 7(1–2):14–24 17
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inf
qh2Qh

sup
vh2Vh

r � vh; qhð Þ
jjrvhjjL2 jjqhjjL2

	 b[ 0 ð11Þ

i.e., for some positive constant b that is independent of the

mesh parameter h. The Taylor-Hood finite element pair

P2=P1 i.e., continuous piecewise quadratic and continuous

piecewise linear polynomials for the velocity and pressure,

respectively, satisfies the inf-sup condition on tirangles.

Further, let W :¼ L2ðXÞd�d
be a space of d � d symmetric

tensors, that is,

W :¼ W 2 L2ðXÞd�d : W ¼ W
T

n o
:

Let WH � W and further let, PWH
: W ! WH be a L2-pro-

jection from W to WH .

On the application of the Crank–Nicolson and the finite

elements for the temporal discretization and spatial dis-

cretization, respectively, the projection based VMS dis-

crete form of the NSE in the time interval ðtn; tnþ1Þ read:
For given uD and un with u0 ¼ u0; find unþ1

h 2
Vh; pnþ1

h 2 Qh and PWH
D unþ1

h

� �
2 WH such that

unþ1
h � unh; vh

� �
þ dt

2
a unþ1

h ; unþ1
h ; v

� �
� b pnþ1

h ; v
� ��

þ mT I� PWH
ð ÞD unþ1

h

� �
; D vhð Þ

� �
�

¼ dt
2

a unh; u
n
h; v

� �
� b pnh; v

� ��
þ mT I� PWH

ð ÞD unh
� �

; D vhð Þ
� ��

ð12Þ

bðq; unþ1
h Þ ¼ 0 ð13Þ

I� PWH
ð ÞD unþ1

h

� �
; WH

� �
¼ 0 ð14Þ

for all ðvh; qhÞ 2 Vh � Qh and WH 2 WH .

Remark 1 The equation (14) represents a L2 projection

fromW ontoWH . In three-scale VMS, the space Vh contains

functions that resolve both the large and the small scales,

whereas the spaceWH can be thought to be representing the

large scales of the flow. The main difference between the

VMSmethod and the traditional LES is the scale separation.

In the VMS, the scale separation is done by a projection onto

appropriate spaces instead of filtering using filter function,

thereby doing away with the complications arising out of it.

Moreover, instead of L2 projection, other kinds of projec-

tions can also be used. For a more detailed discussion on the

various projection operators the reader is referred to [25].

Remark 2 The large scale space WH and the additional

turbulent model mT have to be chosen suitably, and the

choice of these two determines the turbulence modelling of

the scheme. A popular choice for the turbulent viscosity

model is the Smagorinsky eddy viscosity model. The first

equation (12) essentially means that the turbulent viscosity

is added to all resolved scales, and then it is subtracted

from the large scales, thereby limiting the effects of the

unresolved small scale only on the resolved small scales.

This is the main idea of the VMS [24].

Fig. 2 Pressure contours in the

fluid flow over a circular

cylinder at different instances

t ¼ 5; 10; 15; 20
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Remark 3 The important aspect of implementation of

the scheme is the choice of the space for large scale.

There are broadly two ways of defining the large scale

space WH , the first one is to define WH on a coarser grid

than that of (Vh;Qh), and the second approach is to define

WH on the same grid of (Vh;Qh), but using lower order

polynomials for WH and higher order polynomials for

(Vh;Qh). In computations we chose the latter with WH as a

discontinuous finite element space with L2 orthogonal

basis, as it can be efficiently implemented with minor

changes in an already existing finite element code. For a

detailed description of the algorithm the reader is referred

to [24].

5 Numerical results

In this section, we first present the numerical results for a

flow over a cylinder in a rectangular channel using the

three-scale VMS described in the previous section. The

numerical results are compared with the results proposed in

the literature. After that flows over two different aerofoils

(i) NACA 24012, and (ii) SD7003 in a channel are con-

sidered. A rectangular channel X :¼ ð0; 4:1Þ � ð0; 2:2Þ and
a steady state parabolic inflow profile uD ¼ ðuin; 0Þ with uin
= 6yð1� yÞ is used for the flow over a cylinder example.

For the two examples on the flow over aerofoils of different

Fig. 3 Tangential velocity (x-

axis) contours in the fluid flow

over a circular cylinder at

different instances

t ¼ 5; 10; 15; 20
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Fig. 4 The drag and lift over time for a flow over a circular cylinder
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shapes, our chosen dimensions for the channel is X :¼
ð0; 6:2Þ � ð1:5; 2:5Þ with the steady parabolic inflow profile

uD ¼ ðuin; 0Þ with uin = 4yð1� yÞ. All computations are

performed until the end time T = 20 with dt ¼ 0:01 and

Re ¼ 66667. Moreover, the Smagorinsky turbulence model

for the turbulent viscosity, mT ¼ mS k D k¼ cSd
2 k DðuÞ kF ,

with cS ¼ 0:01, the filter width, d ¼ 0:02 is used. Further,

the Frobenius norm, k �kF is used to calculate the norm of

the deformation tensor.

5.1 Flow over a 2D circular cylinder

In the first test example, we consider a circular cylinder of

radius 0.05 units placed inside the channel at (0.2, 1.1).

The choice of Taylor-Hood finite element pair P2=P1 for

the velocity and pressure, results in 27,232 degrees of

freedom (DOF) for the velocity and 3480 DOF for the

pressure.

The computationally obtained pressure and velocity

contours at different instances t ¼ 5; 10; 15; 20 are

depicted in Figs. 2 and 3, respectively. The flow profile

conforms with the standard high Reynolds number flow

calculations over cylinder. The contours in the Fig. 3,

represent the vorticity in the wake of the cylinder. Further,

the drag and lift induced by the flow on the cylinder are

depicted in Fig. 4. The observed oscillations in the drag

and lift coefficients are consistent with the numerical

results in the literature [24].

5.2 Flow over an aerofoil NACA 24012

We next consider flow over an aerofoil in a rectangular

channel. The standard NACA24012 aerofoil is considered,

and its coordinates are obtained using NACA 5 digit airfoil

generator. The tip of the aerofoil is positioned at (1.5, 2) in

the channel. Moreover, four variants of the NACA24012

aerofoil are considered by varying the tail position of the

aerofoil. The considered variants are (i) tail-up, tip of the

Fig. 6 Pressure contours in the

fluid flow over different variants

of NACA24012 aerofoil at

t ¼ 10. Top to bottom Var. 1–4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06
−0.04
−0.02

0
0.02
0.04
0.06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
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−0.04
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Fig. 5 Shapes of different variants of NACA24012 aerofoil
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tail positioned at (2.5, 2.02), (ii) standard NACA24012

configuration, (iii) tail-down with tip of the tail positioned

at (2.5, 1.96), and (iv) tail-down with tip of the tail posi-

tioned at (2.5, 1.94). The shapes of all these four variants of

NACA24012 aerofoil are shown in Fig. 5.

The variation in the position of the tail induces changes

in the behavior of the flow dynamics. The computationally

obtained pressure contours in all four variants of the

aerofoil at the dimensionless time t ¼ 10 are depicted in

Fig. 6. The pressure distribution under the aerofoil is

negative in the variant 1 due to the upward position of the

tail. As expected, the pressure value is positive under the

aerofoil in all other variants. Further, the pressure value

over the aerofoil becomes more and more negative when

the position of the tail comes down. Next, the contours of

the tangential velocity (x-axis) at the dimensionless time

t ¼ 10 are depicted in Fig. 7. It can clearly be seen that the

flow dynamics changes when the position of the tail is

altered. Moreover, the vorticity is not observed for the

used value of the Reynolds number in the considered flow

configuration. Next, the drag and the lift generated by the

flow over different variants of the NACA24012 aerofoil

are present in Fig. 8. The drag coefficient in variant 1 and

2 are more or the same, whereas the drag increases when

the position of the tail comes down. As expected, the lift

coefficient is negative in the variant 1 due to tail-up

position in the aerofoil. However, the lift coefficient

increases when the tail of the aerofoil is lowered, see

Fig. 8.

Fig. 7 Tangential velocity (x-

axis) contours in the fluid flow

over different variants of

NACA24012 aerofoil at t ¼ 10.
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Fig. 8 The drag and the lift generated by the flow over different

variants of the NACA24012 aerofoil
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5.3 Flow over an aerofoil SD7003

In the final result that we present, we consider the simu-

lation of the flow over another variant of aerofoil, the

SD7003 aerofoil in a rectangular channel of the same

geometry as in the previous example. The surface coordi-

nates of the aerofoil are obtained from the UIUC Airfoil

Coordinates Database. For the purpose of continuity and

comparison, we conduct a set of similar computations as in

the previous one. The tip of the aerofoil is positioned at

(1.5, 2) and (i) tail-up, tip of the tail positioned at (2.5,

2.02), (ii) standard SD7003 configuration, (iii) tail-down

with tip of the tail positioned at (2.5, 1.98), and (iv) tail-

down with tip of the tail positioned at (2.5, 1.96). Fig. 9

outlines these different shapes of the SD 7003 aerofoil.

Figure 10 depicts the computationally obtained pressure

contours in all four variants of the aerofoil at the dimen-

sionless time t ¼ 10. The general behavior of the pressure

and the velocity contours can be seen to be quite similar for

both the aerofoils. The pressure distribution under the

aerofoil is observed to be negative in the variant 1 due to

the upward position of the tail. As expected, we can see the

pressure value is positive under the aerofoil in all other

variants. Moreover, as the tail is bend down, thereby

increasing the camber, the pressure becomes more and

more negative. The tangential velocity (x-axis) of the flow

in all the four variants at t ¼ 10, are depicted in Fig. 11.

The changes in the flow dynamics with altering of the

tail position can easily be observed here. The drag and the

lift generated by the flow over different variants of the SD

7003 aerofoil are present in Fig. 12. The drag coefficient in

the variant 1 and 2 are similar, whereas the drag increases

when the position of the tail comes down. As expected, the

lift coefficient is observed to be negative in the variant 1

due to tail-up position in the aerofoil. However, the lift

coefficient increases when the tail of the aerofoil is low-

ered, see Fig. 12.

Fig. 10 Pressure contours in the

fluid flow over different variants

of SD 7003 aerofoil at t ¼ 10.
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Fig. 9 Shapes of different variants of SD 7003 aerofoil
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6 Summary

Variational multiscale finite element simulation of turbu-

lent flows over different variants of aerofoil are presented.

In particular, the Smagorinsky eddy viscosity model is used

in the VMS method. The numerical results for flow over a

cylinder and different variants of NACA24012 and

SD7003 aerofoils are presented. The drag and lift for the

different variants are also computed.
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