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Abstract. Numerical computations of two-phase flows with surface active agents (surfactants)
are highly demanded in several scientific and engineering applications. Apart from the other
challenges associated with the computation of two-phase flows, the presence of surfactants
increases the complexity. Surfactants alter the flow dynamics significantly by lowering the
surface tension on the interface. Moreover, the concentration of surfactants along the interface
is often not uniform and thus Marangoni forces are induced. Adsorption and desorption of
surfactants between the interface and the bulk phase may take place in the case of soluble
surfactants.
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1 INTRODUCTION

The presence of surface active agents (surfactants) at fluidinterfaces can influence the flow
dynamics considerably. Surfactants are amphiphilic organic compounds, which can be adsorbed
at liquid/gas or liquid/liquid interfaces. They typicallyalter the interface dynamics by a re-
duction of surface tension. Furthermore, a nonuniform distribution produces gradients in the
surface tension leading to tangential forces along the interface (Marangoni effect).

The numerical techniques to handle such complex problems can be roughly classified into
interface tracking and interface capturing methods. Interface tracking methods, e.g. [10], use
a separate grid for the interface or a set of interconnected points to mark the interface. An im-
plicit description of the interface by a level set, color or phase-field function is used in interface
capturing methods, see e.g. [7, 8]. The interface has to be reconstructed but the solution of the
problem in the bulk phases can be done independently on the underlying grid for the interface
and topological changes are simple to handle. In the diffuse-interface or phase-field method
the interface is replaced by a narrow diffuse interface layer in which the phase-field function
rapidly transists from zero on one side of the domain to one onthe other side. The partial dif-
ferential equations in the bulk and on the interface are extended on a larger regular domain with
additional terms approximating the physical boundary condition at the interface. For details we
refer to [11].

In this paper, we present an accurate sharp interface numerical method based on a coupled
arbitrary Lagrangian-Eulerian and Lagrangian approach. It can be considered as an interface
tracking approach. The mesh representing the interface is just a restriction of the mesh in the
bulk phases in each time step. This resolution of the interface allows an accurate and natural
incorporation of surface forces, Marangoni forces and jumps in density and viscosity. Spuri-
ous velocities are successfully suppressed by using isoparametric finite elements, discontinuous
(at least phase-wise) pressure approximations and the Laplace-Beltrami technique for repre-
senting the curvature. The discrete representation of the interface is directly used to discretize
the surface evolution-equation for the surfactant concentration on the interface. In particular,
we discuss ways to extend the 3d-axisymmetric code based on the techniques and algorithms
developed in [5, 6] to the fully 3d case.

2 GOVERNING EQUATIONS AND DISCRETIZATION

Our mathematical model for two-phase flows with soluble surfactants consists of the time-
dependent incompressible Navier-Stokes equations in bothphases,

ρk

(

∂u

∂t
+ (u · ∇)u

)

−∇ · Sk(u, p) = ρke, ∇ · u = 0 in Ωk(t) ⊂ R
3, k = 1, 2,

an evolution-equation for the surfactant concentration inthe outer phase

∂C

∂t
+ (u · ∇)C = Dc∆C in Ω1(t) ⊂ R

3,

and an evolution-equation for the surfactant concentration on the interface between them

∂cΓ

∂t
+ U · ∇cΓ + cΓ∇ · u = Ds∆cΓ + S(cΓ, C) on ΓF (t).

We assume thatΓF (t) = ∂Ω2(t) = ∂Ω2(t)∩∂Ω1(t), i.e. the inner phaseΩ2(t) has no contact to
the remaining part of the boundary of the outer phase. We impose the kinematic, force balancing

2



S. Ganesan, A. Hahn, K. Held, and L. Tobiska

and flux boundary conditions

[u] = 0, ν · [S(u, p)] · ν + σ(cΓ)K = 0 onΓF (t),

u · ν = w, τi · [S(u, p)] · ν − τi · ∇σ(cΓ) = 0 onΓF (t),

−(ν · Dc∇C) = S(cΓ, C) onΓF (t),

on the interfaceΓF (t), and appropriate boundary conditions on the remaining partof the bound-
ary. The coupling termS(cΓ, C) is often modeled by

S(cΓ, C) = kaC

(

1 − cΓ

cΓ,∞

)

− kd

cΓ

cΓ,∞

.

In case of insoluble surfactants, we neglect the surfactantconcentration equation in the bulk
phase and set the source termS(cΓ, C) equal to zero. In the above equations the following
notations have been used:Sk(u, p) = µkD(u) − pI, e = (0, 0,−g), u - velocity,p - pressure,
t - time, ρk - density,µk - dynamic viscosity,σ - surface tension,g - gravity, C - surfactant
in outer phase,Dc - diffusion coefficient ofC, cΓ - surfactant on interface,Ds - diffusion
coefficient ofcΓ, ν - normal andτi - tangential unit vectors of the interface,K - sum of principal
curvatures,U = u− (u ·ν)ν - tangential velocity at the surface,w - velocity of the interface,ka

- adsorption coefficient,kd - desorption coefficient,cΓ,∞ - maximum surface packing surfactant
concentration, and∇ - surface gradient.

The time-dependent Navier-Stokes equations, the bulk and the surface transport equations
are solved simultaneously using the coupled ALE-Lagrangian method in 3d-axisymmetric con-
figuration [5]. Since the interface is resolved in the ALE approach, surface forces, Marangoni
forces and jumps in the material parameters are incorporated accurately into the model. Fur-
ther, the Laplace-Beltrami technique for representing thecurvature is used [3]. An advantage
of using the ALE approach is that a separate lower dimensional interface mesh is not needed
for approximating the surface evolution-equation. Instead, we use the discrete representation of
the interface directly.

The correct choice of finite elements for the spatial discretization is crucial in the simulation
of two-phase flows, since one may expect discontinuous pressures due to the Young-Laplace
law. For the axisymmetric case, the inf-sup stable two-dimensionalP +

2 /P disc
1 - element is suc-

cesfully used. It consists of a discontinuous, piecewise linear pressure space and a continuous,
piecewise quadratic velocity space enriched with one cubicbubble function per cell. Unfortu-
nately, the three-dimensional variant of theP+

2 /P disc
1 - element requires five bubble functions

per cell to be inf-sup stable, which entails a vigorous increase of degrees of freedom. Table 1
and 2 show the increase of degrees of freedom with refinement level of a simplicial mesh in
comparision to the standard Taylor-Hood element (P2/P1).

Table 1: Degrees of freedom in 2d

Level P2/P1 P+
2 /P disc

1

1 347 666
2 1 339 2 626
3 5 267 10 434
4 20 899 41 602

Table 2: Degrees of freedom in 3d

Level P2/P1 P+
2 /P disc

1

1 4 673 16 055
2 32 821 122 365
3 245 254 955 415
4 1 894 568 7 550 827

Therefore, we suggest an extended Taylor-Hood element, which uses a continuous, piecewise
linear pressure space within each fluid phase but allows pressure jumps across the interface. The
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extended Taylor-Hood element is inf-sup stable and shows excellent mass conservation similar
to theP+

2 /P disc
1 - element. In order to reduce the number of needed remeshing steps we applied

an elastic mesh update as in [5, 6].

3 NUMERICAL EXPERIMENTS

We performed several numerical tests to validate the numerical scheme and to demonstrate
the influence of surfactants on the flow dynamics. Here, we concentrate on fully 3d computa-
tions and refer to [5, 6] for the axisymmetric case with insoluble and soluble surfactants.

3.1 Clean oscillating droplet

The first test example is used to validate the Navier-Stokes solver by computing a one-phase
flow with a capillary surface for different Reynolds numbers. At time t = 0 the droplet is in rest
u(x, 0) = 0 and has an ellipsoidal shape with the equatorial radiir1 = 1, r2 = 1, andr3 = 1.2,
whereri corresponds to thexi-axis, i = 1, 2, 3. Close to the tip atx = (0, 0, r3) the surface
tension force is larger and the droplet starts to compensatethe imbalance of forces. Due to the
viscosity of the fluid fort → ∞ the spherical equilibrium shape of the fixed volume droplet is
reached with radiusR

∞
= 1.06266. As proposed in [2], we compute the damping factorδn by

δn := n

√

rmax(tn) − R
∞

rmax(t0) − R
∞

,

wherermax(tn) denotes the maximal elongation of the droplet inx3-direction at timetn for
then-th period. In the following diagrams, we used the relative tip positionrrel = rmax − R

∞

instead of the real tip position(0, 0, x3). The discretization in space leads to an algebraic system
with 19247 degree of freedom; the time step size has been set to 0.01.

In Fig. 1 the influence of the Reynolds number Re= ρU
∞

L/µ on the damping property is
shown for the Weber number We= ρU2

∞
L/σ = 13.5. For small Reynolds numbers we observe
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Figure 1: Relative tip position for We= 13.5 and different Reynolds numbers over time (left). Damping factor for
the second period and Re= 1000 (right).

a fully damped transition of the droplet shape into the equilibrium. As expected, for increasing
Reynolds numbers the periodic behaviour becomes more pronounced and the damping factor is
approaching one. Fig. 2 gives an impression on the velocity field at timet = 0.15 andt = 3.28,
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Figure 2: Velocity field of the clean oscillating droplet forRe= 1000 and We= 13.5 at timet = 0.15 (left) and
t = 3.28 (right).

respectively. We tested the long time behaviour of different time-discretization schemes and
found no visible differences as shown in Fig. 3. Nevertheless, the conservation of volume is
almost one order of magnitude better for the fractional-step-θ-scheme due to its higher compu-
tational effort. In Table 3 the relative error

∆V (t) := (
∣

∣|Ωh(0)| − |Ωh(t)|
∣

∣)/|Ωh(0)|

in the conservation of the discrete volume|Ωh(t)| for the different time discretizations at the
final time t = T = 100 are given. We see that the error in all cases is below0.2% which

time discretization rel. error∆V (T )
backward Euler 1.5811-3
Crank-Nicolson 1.5801-3

frac-step-Θ 5.4226-4

Table 3: Relative error in conservation of volume.

indicates a high accuracy of the scheme.

3.2 Bulk concentration diffusion test

In this test case we verify the diffusion of the bulk concentration and the mass transfer from
the bulk phase to the interface. A similar test has been performed for the front-tracking method
in [10] and in the 3d-axisymmetric case in [6]. We consider aninitially clean sphere with radius
r0 = 1 suspended in a large cylinder. We assume an initial bulk concentrationC0 = 1 and that
the mass transfer is solely due to the molecular diffusion. Moreover, a simplified version of the
source termS(cΓ, C) = kaC is considered, so that the mass transfer takes place only from the
bulk phase to the interface. For a short period of time or in aninfinite domain, an analytical
approximation of the bulk concentration C is given by

C = C0

(

1 − ka

√
πDct/Dc

1 +
√

πDct (1 + kar0/Dc) /r0

r0

r
erfc

(

r − r0

2
√

Dct

))

,

where erfc(x) is the complementary error function. The droplet is placedat the center of the
cylindrical tube that extends 5 and 8 droplet radii in the radial (r-) and axial (z-) directions,
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Figure 3: Long time behaviour of the clean oscillating droplet for Re= 1000 and We= 13.5 with different time
discretizations; backward Euler (be), Crank-Nicolson (cr) and fractional-step-Θ-scheme (fs).

Figure 4: Bulk concentration diffusion test. Isosurfaces at t = 5, 8, 10.

respectively. In our computation, an unstructured tetrahedral grid has been used with 21209
degrees of freedom. Furthermore, we usedka = 1, Dc = 0.1 and the Crank-Nicolson method
with a time step of0.1 for the time discretization. For illustrating the transport of the bulk con-
centration to the interface, contour plots of the bulk surfactant concentration in the(r, z)-cutting
plane at different times are shown in Fig. 4. As qualitatively expected, the contours ofC are
circles around the droplet with centre equal to the droplet centre. For a quantitative comparison
with the analytical approximation above, the bulk concentration profiles are evaluated in radial
direction through the center of the droplet and shown in Fig.5 (left) at different times. The con-
centration in the bulk phase at the interface which appears in the surface evolution equation as a
source term is validated by comparing it with the analyticalapproximation above over a period
of time in Fig. 5 (right). The computational results are in good agreement with the analytical
approximation. Nevertheless, the steep fronts of the concentration near the droplet occuring for
smallt cause an error which is accumulated over time, see Fig. 5 (right).
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Figure 5: Bulk concentration along radial direction at times t = 0.1, t = 1, t = 4, andt = 10 (left) and at the
droplet over time (right). Comparison of numerical and analytical approximation.

3.3 Surface evolution-equation

The next test example has been used to validate the discretization of the surface evolution-
equation. For this we consider the unit sphereΓ = S2 and solve the diffusion problem

∂cΓ

∂t
= ∆ cΓ onΓ, cΓ(x, 0) = x1x2.

We considerΓ as a fixed time-independent surface. There is an analytical solution given by

cΓ(x, t) = x1x2 exp(−6t).

On a sequence of meshes we used three different discretizations in space, the affineP1 finite
element, the affineP2 finite element, and the isoparametricP2 finite element. For the time-
discretization the backward Euler scheme has been used witha time step of0.001 and end time
T = 2. In order to compare the analytical solutioncΓ : Γ → R living on the smooth surfaceΓ
with the numerical solutioncΓ,h : Γh → R living on the approximated surfaceΓh we lift it on
the discrete surface by the projection in radial direction,i.e.

cl(x, t) = c

(

x

‖x‖ , t

)

, x ∈ Γh.

Then, the errore = cl − cΓ,h in the usualL2(H1)- andL2(L2)-norms are computed by means
of a suitable quadrature rule. The results are summarized inTables 4-6. Different from the

h L2(H1) order L2(L2) order
0.5032 4.245 1.0010
0.2562 2.069 1.002 0.2690 1.894
0.1287 1.024 1.014 0.0068 1.984
0.0644 0.511 1.036 0.0017 1.983

Table 4: Approximation with affineP1 finite elements.

case of a flat surface the use of affineP2 elements instead of affineP1 elements does not lead
to improved error estimates. However, isoparametricP2 elements show the optimal order of
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h L2(H1) order L2(L2) order
0.5032 2.1357 0.2024
0.2562 1.1043 0.9516 0.0496 2.029
0.1287 0.5571 0.9871 0.0123 2.009
0.0644 0.2792 0.9966 0.0031 2.005

Table 5: Approximation with affineP2 finite elements.

h L2(H1) order L2(L2) order
0.5032 3.328-1 2.067-2
0.2562 8.571-2 1.9575 2.390-3 3.1126
0.1287 2.169-2 1.9820 2.929-4 3.0287
0.0644 5.453-3 1.9921 3.668-5 2.9975

Table 6: Approximation with isoparametricP2 finite elements.

convergence also in the non-flat case of a sphere.

A further test example describes the distribution of surfactants on a static unit sphere with
convection. The tangential velocity field is given by

u(x, t) = 4π (x2,−x1, 0)

and corresponds to a rotation of the sphere around thex3-axis with two rotations per unit time.
Note that∇ · u = 0. We solve the diffusion-convection problem

∂cΓ

∂t
+ u · ∇cΓ =

1

Pe
∆cΓ onΓ, cΓ(x, 0) = x1x2 + 0.5

where Pe= U
∞

L/Ds denotes the Péclet number. The surfaceΓ and the surface equation
are discretized in space by isoparametricP2 elements on grids with mesh sizesh1 = 0.3249,
h2 = 0.1646, andh3 = 0.0826. The backward Euler scheme has been used for the time
discretization. We consider a case in which convection dominates diffusion and set Pe= 10000.
In Fig. 6 we present the surfactant concentration on the surface at timet = 0 (left) and after
two rotations at timet = 1 (right) for the finest mesh levelh = h3. Due to the low diffusion
the two snapshots are almost identical as expected. We compute the relative error in the mass
conservation

∆m(t) =
∣

∣m(0) − m(t)
∣

∣/m(0), m(t) =

∫

S2

c(x, t) dγ, m(0) = 2π,

and obtained after two rotations on the finest mesh level∆m(1) ≈ 10−8. Even on the coarser
meshh = h1 we still have∆m(1) < 10−5 which demonstrates the high accuracy of the scheme.

3.4 Contaminated oscillating droplet

As the final test example we consider again an oscillating droplet but now contaminated with
surfactants. The Navier-Stokes equations coupled with theevolution-equation for the surfactant
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Figure 6: Surfactant concentration on the surface at timet = 0 (left) and after two rotations at timet = 1 (right)
for a convection dominated test case (Pe= 10000).

concentration on the interface has to be solved. We use the linear Henry’s equation of state
leading to the boundary condition in non-dimensionless form

(

2

Re
D(u) − pI

)

· ν =
1

We
(1 + E(0.5 − cΓ)) Kν − E

We
∇cΓ onΓF (t)

where E denotes the surfactant elasticity [6, 10]. The initial configuration is as in the first
example, i.e. att = 0 the droplet is in rest, has an ellipsoidal shape with the equatorial radii
r1 = r2 = 1 andr3 = 1.2. Additionally a uniform surfactant concentration ofcΓ = 0.5 at t = 0
is assumed. Note that our setting guarantees that a uniform surfactant concentration ofcΓ = 0.5
corresponds to the case of a clean surface with the same Weberand Reynolds number. In Fig.7
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Figure 7: Relative tip position for the clean and contaminated oscillating droplet for We= 13.5, Re = 1000,
Pe = 1, andE = 10. Higher damping rate for the contaminated droplet due to additional Marangoni forces
induced by the non-uniform surfactant concentration.

the relative tip position is shown for the clean and contaminated droplet. The moving surface
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leads to a non-uniform surfactant concentration and Marangoni forces arise which counteract
the change of surfactant concentration. This results, as wecan see in Fig. 7, into higher damping
rates and lower frequences compared to the clean droplet. InFig. 8 (left) the damping factor
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Figure 8: Damping factor versus surface elasticity for Pe= 1 (left) and versus Péclet number forE = 10 (left).
Computations for Re= 1000 and We= 13.5.

for different surface elasticities and Re= 1000, Pe= 1, and We= 13.5 is presented. Note that
the damping factor for the contaminated droplet is always smaller compared with the damping
factor δ2 = 0.9441 for the clean droplet. This agrees with the higher damping rates of the
contaminated droplet in Fig. 7. Nevertheless, for increasing surface elasticity we observe less
damping which on the first glance is surprising. However, thesurface elasticity influences both
the normal and tangential forces and their interplay determines the behaviour of the droplet.
If the diffusion becomes larger (smaller Pe-numbers) we expect an almost uniform surfactant
concentration such that∇cΓ ≈ 0 and the influence of Marangoni forces is less pronounced.
This effect can be clearly seen in Fig. 8 (right). Smaller Pe-numbers cause less damping.

Figure 9: Surfactant concentration on the surface of the oscillating droplet over a fixed scale at timest = 0 (left),
t = 2.3 (middle), andt = 4.5 (right). The concentration is nearly uniform and lower on larger surfaces (left and
right).

However, Fig. 8 (right) shows that the interplay of the normal and Marangoni forces is rather
complex. Instead of decreasing monotonically - as one couldexpect - the damping factor even
develops a minimum. Finally, we show in Fig. 9 the surfactantconcentration on the surface of
the oscillating droplet with a fixed scale at different times. The initial state Fig. 9 (left) has a
uniform surfactant concentration and we observe that the surfactant concentration increases by
shrinking the surface area (middle) and decreases by streching it (right). However, a closer look
with a different scale in Fig. 10 shows that the surfactant concentration is indeed non-uniform
such that the above mentioned Marangoni forces really appear.
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Figure 10: Surfactant concentration on the surface of the oscillating droplet on an adapted scale at timest = 2.3

(left) andt = 4.5 (right). Note that the minimum of concentration on the smaller surface (left) is larger than the
maximum on the larger surface (right).

4 CONCLUSIONS

An accurate finite-element method has been proposed for flowswith surfactants. It is based
on a coupled arbitrary Lagrangian-Eulerian and Lagrangianapproach in which the interface is
resolved by the mesh. The numerical scheme has been validated by a set of simple 3d test
examples completing those of [5, 6] for the 3d-axisymmetriccase.
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