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Abstract. Numerical computations of two-phase flows with surfacera@gents (surfactants)

are highly demanded in several scientific and engineeringieations. Apart from the other

challenges associated with the computation of two-phasesflthe presence of surfactants
increases the complexity. Surfactants alter the flow dyoarsignificantly by lowering the

surface tension on the interface. Moreover, the conceininaif surfactants along the interface
is often not uniform and thus Marangoni forces are inducedisakption and desorption of

surfactants between the interface and the bulk phase maypkice in the case of soluble
surfactants.
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1 INTRODUCTION

The presence of surface active agents (surfactants) atifiiéidaces can influence the flow
dynamics considerably. Surfactants are amphiphilic agg@mpounds, which can be adsorbed
at liquid/gas or liquid/liquid interfaces. They typicalgjter the interface dynamics by a re-
duction of surface tension. Furthermore, a nonunifornrithstion produces gradients in the
surface tension leading to tangential forces along thefatte (Marangoni effect).

The numerical techniques to handle such complex problem$&eaoughly classified into
interface tracking and interface capturing methods. fatertracking methods, e.g. ]10], use
a separate grid for the interface or a set of interconnead@ttpto mark the interface. Anim-
plicit description of the interface by a level set, color biape-field function is used in interface
capturing methods, see e.gl [7, 8]. The interface has todmmstructed but the solution of the
problem in the bulk phases can be done independently on therlying grid for the interface
and topological changes are simple to handle. In the dHiotssface or phase-field method
the interface is replaced by a narrow diffuse interfacerdayavhich the phase-field function
rapidly transists from zero on one side of the domain to ontherother side. The partial dif-
ferential equations in the bulk and on the interface arensléd on a larger regular domain with
additional terms approximating the physical boundary domat the interface. For details we
refer to [11].

In this paper, we present an accurate sharp interface ncahenethod based on a coupled
arbitrary Lagrangian-Eulerian and Lagrangian approaticam be considered as an interface
tracking approach. The mesh representing the interfacesisajrestriction of the mesh in the
bulk phases in each time step. This resolution of the intertdlows an accurate and natural
incorporation of surface forces, Marangoni forces and jsimnpdensity and viscosity. Spuri-
ous velocities are successfully suppressed by using isopric finite elements, discontinuous
(at least phase-wise) pressure approximations and theteyeltrami technique for repre-
senting the curvature. The discrete representation ofntieeface is directly used to discretize
the surface evolution-equation for the surfactant comeéinh on the interface. In particular,
we discuss ways to extend the 3d-axisymmetric code baseldearethniques and algorithms
developed inll5,16] to the fully 3d case.

2 GOVERNING EQUATIONSAND DISCRETIZATION

Our mathematical model for two-phase flows with solubleattents consists of the time-
dependent incompressible Navier-Stokes equations ingiwhkes,

0 :
o (6_1;+(uV)u) —VSk(u,p) = pre, V-u=0 1In Qk(t) CR3, k= ]_,2,

an evolution-equation for the surfactant concentratioéouter phase

oC :
o T VIO =DAC in () C R?,
and an evolution-equation for the surfactant concentnaiiothe interface between them
0
% +U-Ver + oV -u= D,Acr + S(er,C) on T'g(t).

We assume thdtz(t) = 0Q9(t) = 0Q:(t) N0 (1), i.e. the inner phase, () has no contact to
the remaining part of the boundary of the outer phase. We s&fite kinematic, force balancing
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and flux boundary conditions

ul =0, v-[S(u,p)-v+olcr)L=0 onT'k(t),
u-v=w, 7;-[S(up)l-v—m-Volcr)=0 onTr(t),
—(v-D.NVC) = S(cr,C) onT'k(t),

on the interfacé’(¢), and appropriate boundary conditions on the remaininggdaine bound-
ary. The coupling tern¥(cr, C) is often modeled by

S(er, O) = kaC (1 - C—F) B
Cr,c0

In case of insoluble surfactants, we neglect the surfacantentration equation in the bulk
phase and set the source tefitrr, C) equal to zero. In the above equations the following
notations have been use®; (u, p) = pD(u) — pl, e = (0,0, —g), u - velocity, p - pressure,
t - time, p;. - density,u, - dynamic viscosityg - surface tensiong - gravity, C' - surfactant
in outer phaseD, - diffusion coefficient ofC, cr - surfactant on interfacel), - diffusion
coefficient ofcr, v - normal andr; - tangential unit vectors of the interfadé,- sum of principal
curvatureslU = u— (u-v)v - tangential velocity at the surface,- velocity of the interfacek,
- adsorption coefficient;,; - desorption coefficienty ., - maximum surface packing surfactant
concentration, an¥ - surface gradient.

The time-dependent Navier-Stokes equations, the bulk madurface transport equations
are solved simultaneously using the coupled ALE-Lagramgiathod in 3d-axisymmetric con-
figuration [5]. Since the interface is resolved in the ALE aqgeh, surface forces, Marangoni
forces and jumps in the material parameters are incormbeateurately into the model. Fur-
ther, the Laplace-Beltrami technique for representingctin@ature is used [3]. An advantage
of using the ALE approach is that a separate lower dimenkioteaface mesh is not needed
for approximating the surface evolution-equation. Indf@ee use the discrete representation of
the interface directly.

The correct choice of finite elements for the spatial diszaéibn is crucial in the simulation
of two-phase flows, since one may expect discontinuous pressiue to the Young-Laplace
law. For the axisymmetric case, the inf-sup stable two-disi@nal 2, / Pdi* - element is suc-
cesfully used. It consists of a discontinuous, piecewisedr pressure space and a continuous,
piecewise quadratic velocity space enriched with one coibible function per cell. Unfortu-
nately, the three-dimensional variant of tRg / PZ*¢ - element requires five bubble functions
per cell to be inf-sup stable, which entails a vigorous inseeof degrees of freedom. Table 1
and[2 show the increase of degrees of freedom with refinereeet éf a simplicial mesh in
comparision to the standard Taylor-Hood elemént/ ;).

Table 1: Degrees of freedom in 2d Table 2: Degrees of freedom in 3d
Level P,/P, Py /Pt Level P/ P, P/ pise

1 347 666 1 4673 16055

2 1339 2626 2 32821 122 365

3 5267 10434 3 245254 955415

4 20899 41602 4 1894568 7550827

Therefore, we suggest an extended Taylor-Hood elementhwisies a continuous, piecewise
linear pressure space within each fluid phase but allowspregumps across the interface. The
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extended Taylor-Hood element is inf-sup stable and showsliext mass conservation similar
to the ;" / Pdisc - element. In order to reduce the number of needed remesteipg we applied
an elastic mesh update aslinllb, 6].

3 NUMERICAL EXPERIMENTS

We performed several numerical tests to validate the nwalescheme and to demonstrate
the influence of surfactants on the flow dynamics. Here, weeatnate on fully 3d computa-
tions and refer ta]9,16] for the axisymmetric case with inidé and soluble surfactants.

3.1 Clean oscillating droplet

The first test example is used to validate the Navier-Stoék®sby computing a one-phase
flow with a capillary surface for different Reynolds numbekstime ¢ = 0 the droplet is in rest
u(z,0) = 0 and has an ellipsoidal shape with the equatorial radi 1, r, = 1, andr; = 1.2,
wherer; corresponds to the;-axis,i = 1,2,3. Close to the tip at = (0,0, r3) the surface
tension force is larger and the droplet starts to compernbkatenbalance of forces. Due to the
viscosity of the fluid fort — oo the spherical equilibrium shape of the fixed volume drogdet i
reached with radiug,, = 1.06266. As proposed in]2], we compute the damping fagtpby

5 . n rmaa}(tn) - Roo
" Tmam(t(]) - Roo’
wherer,,..(t,) denotes the maximal elongation of the dropletciadirection at timet,, for
then-th period. In the following diagrams, we used the relatipgoositionr,.; = 74 — Roo
instead of the real tip positidi®, 0, z3). The discretization in space leads to an algebraic system
with 19247 degree of freedom; the time step size has beean 8t

In Fig.[ the influence of the Reynolds number RepU,, /1. on the damping property is
shown for the Weber number We pU2 L /o = 13.5. For small Reynolds numbers we observe

e = 1000 1

=100
e =50
e =10

relative tip position
damping factor 62
o
~

o
o

e
13

10 15 :
dimensionless time 10 10
Reynolds number

Figure 1: Relative tip position for We- 13.5 and different Reynolds numbers over time (left). Dampirgdafor
the second period and Re 1000 (right).

a fully damped transition of the droplet shape into the e@piiim. As expected, for increasing
Reynolds numbers the periodic behaviour becomes more pnzed and the damping factor is
approaching one. Fifl 2 gives an impression on the veloeiky &t timet = 0.15 andt = 3.28,
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Figure 2: Velocity field of the clean oscillating droplet fee = 1000 and We= 13.5 at timet = 0.15 (left) and
t = 3.28 (right).

0.0060%

respectively. We tested the long time behaviour of diffetene-discretization schemes and
found no visible differences as shown in Hifj. 3. Neverthelése conservation of volume is
almost one order of magnitude better for the fractiongb-stscheme due to its higher compu-
tational effort. In Tabl€l3 the relative error

AV (1) = (||n(0)] = [24(6)1])/1924(0)]

in the conservation of the discrete volunt®,(¢)| for the different time discretizations at the
final timet = T = 100 are given. We see that the error in all cases is bel@ which

time discretization rel. errahV (7))

backward Euler 1.5811-3
Crank-Nicolson 1.5801-3
frac-step© 5.4226-4

Table 3: Relative error in conservation of volume.

indicates a high accuracy of the scheme.

3.2 Bulk concentration diffusion test

In this test case we verify the diffusion of the bulk concatitm and the mass transfer from
the bulk phase to the interface. A similar test has been peadd for the front-tracking method
in [210] and in the 3d-axisymmetric case in [6]. We consideirgimally clean sphere with radius
ro = 1 suspended in a large cylinder. We assume an initial bulkeatnationC, = 1 and that
the mass transfer is solely due to the molecular diffusioarédver, a simplified version of the
source ternS(cr, C') = k,C' is considered, so that the mass transfer takes place omiytfre
bulk phase to the interface. For a short period of time or inndinite domain, an analytical
approximation of the bulk concentration C is given by

B kav/ 7Dt/ D, To orfc ( r—rp ))
1+ /7Dt (1 + kyro/D.) [1o T 2v/Dt) )’

where erfcg) is the complementary error function. The droplet is plaaethe center of the
cylindrical tube that extends 5 and 8 droplet radii in theiah¢-) and axial ¢-) directions,

C:CQ(l
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Figure 3: Long time behaviour of the clean oscillating detior Re= 1000 and We= 13.5 with different time
discretizations; backward Euler (be), Crank-Nicolson &rd fractional-stef®-scheme (fs).
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Figure 4: Bulk concentration diffusion test. Isosurfaces=a 5, 8, 10.

respectively. In our computation, an unstructured tetleddegrid has been used with 21209
degrees of freedom. Furthermore, we usgd= 1, D, = 0.1 and the Crank-Nicolson method
with a time step of).1 for the time discretization. For illustrating the trandpafrthe bulk con-
centration to the interface, contour plots of the bulk sttefat concentration in the:, z)-cutting
plane at different times are shown in Hg. 4. As qualitativetpected, the contours 6f are
circles around the droplet with centre equal to the drometre. For a quantitative comparison
with the analytical approximation above, the bulk concatitn profiles are evaluated in radial
direction through the center of the droplet and shown inEigdeft) at different times. The con-
centration in the bulk phase at the interface which appeatsei surface evolution equation as a
source term is validated by comparing it with the analytaggbroximation above over a period
of time in Fig.[3 (right). The computational results are irnodagreement with the analytical
approximation. Nevertheless, the steep fronts of the agretgon near the droplet occuring for
smallt cause an error which is accumulated over time, sed Fig. Bt)rig
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Figure 5: Bulk concentration along radial direction at time= 0.1, ¢ = 1, ¢t = 4, andt = 10 (left) and at the
droplet over time (right). Comparison of numerical and gtiedl approximation.

3.3 Surface evolution-equation

The next test example has been used to validate the disdretiof the surface evolution-
equation. For this we consider the unit sphEre S? and solve the diffusion problem

0
% =Acr onT, cr(z,0) = 217,

We considet” as a fixed time-independent surface. There is an analybdatien given by
cr(x,t) = z129 exp(—6t).

On a sequence of meshes we used three different discretigati space, the affing, finite
element, the affing>, finite element, and the isoparametiits finite element. For the time-
discretization the backward Euler scheme has been use@witie step 0.001 and end time
T = 2. In order to compare the analytical solutign: I' — R living on the smooth surfacE
with the numerical solutiorr , : I';, — R living on the approximated surfadg, we lift it on
the discrete surface by the projection in radial directian,

(x,t) =c (Hi—”,t) , x €Ty

Then, the erroe = ¢! — cr, in the usualL?(H')- and L?(L?)-norms are computed by means
of a suitable quadrature rule. The results are summarizddbted2-b. Different from the

h L2(H1) order L2(L2) order
0.5032 4.245 1.0010
0.2562 2.069 1.002 0.2690 1.894
0.1287 1.024 1.014 0.0068 1.984
0.0644 0511 1.036 0.0017 1.983

Table 4: Approximation with affiné; finite elements.

case of a flat surface the use of affiRgelements instead of affing, elements does not lead
to improved error estimates. However, isoparametielements show the optimal order of
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h L2(H1) order L2(L2) order
0.5032 2.1357 0.2024
0.2562 1.1043 0.9516 0.0496 2.029
0.1287 0.5571 0.9871 0.0123 2.009
0.0644 0.2792 0.9966 0.0031 2.005

Table 5: Approximation with affiné> finite elements.

h L2(H1) order L2(L2) order
0.5032 3.328-1 2.067-2
0.2562 8.571-2 1.9575 2.390-3 3.1126
0.1287 2.169-2 1.9820 2.929-4 3.0287
0.0644 5.453-3 1.9921 3.668-5 2.9975

Table 6: Approximation with isoparametrig, finite elements.

convergence also in the non-flat case of a sphere.

A further test example describes the distribution of sudats on a static unit sphere with
convection. The tangential velocity field is given by

u(x,t) = 4m (x9, —x1,0)

and corresponds to a rotation of the sphere arounddfaxis with two rotations per unit time.
Note thatV - u = 0. We solve the diffusion-convection problem

% +u-Ver = Pieéq onT, cr(z,0) = xy29 + 0.5

where Pe= U, L/D, denotes the Péclet number. The surficand the surface equation
are discretized in space by isoparamefficelements on grids with mesh sizks = 0.3249,

hoy = 0.1646, andh; = 0.0826. The backward Euler scheme has been used for the time
discretization. We consider a case in which convection dates diffusion and set Pe 10000.

In Fig.[@ we present the surfactant concentration on theaserét timet = 0 (left) and after

two rotations at time = 1 (right) for the finest mesh levél = hs;. Due to the low diffusion

the two snapshots are almost identical as expected. We dertipurelative error in the mass
conservation

Am(t) = |m(0) — m(t)|/m(0), m(t) = /52 c(x,t) dy, m(0) = 2,

and obtained after two rotations on the finest mesh lével1) ~ 10~%. Even on the coarser
meshh = h,y we still haveAm(1) < 10~° which demonstrates the high accuracy of the scheme.
3.4 Contaminated oscillating droplet

As the final test example we consider again an oscillatinglétdut now contaminated with
surfactants. The Navier-Stokes equations coupled witkb&ition-equation for the surfactant
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Figure 6: Surfactant concentration on the surface at time0 (left) and after two rotations at time= 1 (right)
for a convection dominated test case 2&0000).

concentration on the interface has to be solved. We usenbarliHenry’s equation of state
leading to the boundary condition in non-dimensionlessifor

(ie]D)(u) - p]I) V= V\—lle (14+E(0.5—¢r)) Kv— WEGZCF onl'p(t)
where E denotes the surfactant elasticify[[6, 10]. Theahitbnfiguration is as in the first
example, i.e. at = 0 the droplet is in rest, has an ellipsoidal shape with the iz radii
r1 = ro = 1 andrz = 1.2. Additionally a uniform surfactant concentration@f= 0.5 att = 0
is assumed. Note that our setting guarantees that a unifofacsant concentration ef- = 0.5
corresponds to the case of a clean surface with the same \Alethéteynolds number. In Hig.7

—clean
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Figure 7: Relative tip position for the clean and contanedatscillating droplet for We= 13.5, Re = 1000,
Pe = 1, and E = 10. Higher damping rate for the contaminated droplet due tataeeél Marangoni forces
induced by the non-uniform surfactant concentration.

the relative tip position is shown for the clean and contat@d droplet. The moving surface
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leads to a non-uniform surfactant concentration and Mamanfprces arise which counteract
the change of surfactant concentration. This results, asawsee in Fid.7, into higher damping
rates and lower frequences compared to the clean dropldtiglff (left) the damping factor

0.93

0.945[

54
©
N
33}

~ 0.94F

0.935[

damping factor 52
damping factor ,

o
©
N
o
©
]
T

0.915

i i
0 20 107 10° 10" 10° 10* 10°
surface elasticity Peclet number

Figure 8: Damping factor versus surface elasticity for-Pé (left) and versus Péclet number far= 10 (left).
Computations for Re= 1000 and We= 13.5.

for different surface elasticities and Re1000, Pe= 1, and We= 13.5 is presented. Note that
the damping factor for the contaminated droplet is alwayalncompared with the damping
factor 6, = 0.9441 for the clean droplet. This agrees with the higher dampirnigsraf the
contaminated droplet in Figl 7. Nevertheless, for incregasurface elasticity we observe less
damping which on the first glance is surprising. However silnéace elasticity influences both
the normal and tangential forces and their interplay detegmthe behaviour of the droplet.

If the diffusion becomes larger (smaller Pe-numbers) weseipn almost uniform surfactant
concentration such thadfcr ~ 0 and the influence of Marangoni forces is less pronounced.
This effect can be clearly seen in FIg. 8 (right). SmallerfReibers cause less damping.

C c
0,504 f 0,504

 § §

—0.503 —0.508

0,504
—0.508

+0,502 +0,502 0,502

—0.501 —0.501 —0.501

0,500

0.500 0,500

Figure 9: Surfactant concentration on the surface of thélatseg droplet over a fixed scale at times= 0 (left),

t = 2.3 (middle), andt = 4.5 (right). The concentration is nearly uniform and lower omgé&x surfaces (left and
right).

However, Fig[B (right) shows that the interplay of the ndrarad Marangoni forces is rather
complex. Instead of decreasing monotonically - as one cexpect - the damping factor even
develops a minimum. Finally, we show in FIg. 9 the surfactamtcentration on the surface of
the oscillating droplet with a fixed scale at different tim@#e initial state Figl19 (left) has a
uniform surfactant concentration and we observe that tHagant concentration increases by
shrinking the surface area (middle) and decreases by siteitifright). However, a closer look

with a different scale in Fig._10 shows that the surfactamicentration is indeed non-uniform
such that the above mentioned Marangoni forces really appea
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- Lo 50000
050272 049998

Figure 10: Surfactant concentration on the surface of te#lasng droplet on an adapted scale at tinies 2.3
(left) andt = 4.5 (right). Note that the minimum of concentration on the sevadlurface (left) is larger than the
maximum on the larger surface (right).

4 CONCLUSIONS

An accurate finite-element method has been proposed for flothssurfactants. It is based
on a coupled arbitrary Lagrangian-Eulerian and Lagrangproach in which the interface is
resolved by the mesh. The numerical scheme has been vdlidgta set of simple 3d test
examples completing those i [5, 6] for the 3d-axisymmetase.
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