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A comprehensive numerical investigation on the impingement and spreading of a non-isothermal liquid
droplet on a solid substrate with heterogeneous wettability is presented in this work. The time-dependent
incompressible Navier–Stokes equations are used to describe the fluid flow in the liquid droplet, whereas
the heat transfer in the moving droplet and in the solid substrate is described by the energy equation. The
arbitrary Lagrangian–Eulerian (ALE) formulation with finite elements is used to solve the time-dependent
incompressible Navier–Stokes equation and the energy equation in the time-dependent moving domain.
Moreover, the Marangoni convection is included in the variational form of the Navier–Stokes equations
without calculating the partial derivatives of the temperature on the free surface. The heterogeneous wet-
tability is incorporated into the numerical model by defining a space-dependent contact angle. An array of
simulations for droplet impingement on a heated solid substrate with circular patterned heterogeneous
wettability are presented. The numerical study includes the influence of wettability contrast, pattern
diameter, Reynolds number and Weber number on the confinement of the spreading droplet within the
inner region, which is more wettable than the outer region. Also, the influence of these parameters on
the total heat transfer from the solid substrate to the liquid droplet is examined. We observe that the equi-
librium position depends on the wettability contrast and the diameter of the inner surface. Consequently,
the heat transfer is more when the wettability contrast is small and/or the diameter of inner region is large.
The influence of the Weber number on the total heat transfer is more compared to the Reynolds number,
and the total heat transfer increases when the Weber number increases.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behavior of droplets and sprays impinging on a
solid substrate is of great importance in many industrial applica-
tions such as spray cooling, spray forming, flow boiling, ink-jet
printing, thermo-syphons, fuel injection, engines with internal
combustion and jet impingement cooling. Most of the industrial
applications involve droplets or spray impact on solid substrate
with heat transfer and phase change, which are mainly influenced
by the droplet dynamics. The spray-wall interactions and the heat
transfer process are very complex and our understanding is far
from being complete. The insight into the fundamental mecha-
nisms responsible for the wetting and heat transfer in two-phases
is indispensable for optimal results and therefore scientific studies
on single droplet impact on hot solid substrate, including heteroge-
neous wettability are highly demanded.
Although investigations involving a droplet wetting on non-ho-
mogenous surfaces are in the early stages of research, droplet
impinging on heterogeneous substrate has a variety of potential
applications. For example smart surfaces with artificially designed
wettability, spatially controlled fluidic transport in microfluidic
and lab-on-a chip devices and engines with internal combustion
use dynamic wetting properties, see [1] for an overview. In these
applications, the droplet has to be confined within a specified area
and the interaction with the adjacent droplets has to be avoided
when the deposited droplets are in close proximity to each other.
To confine the spreading of an impinging droplet within a specified
area, chemical surface coating with a pattern of high wettability
contrast is often used in industrial applications. In addition, the
temperature (also the magnetic or the electric) field can also be
used to enhance the control on the dynamics of the droplet [1].

A number of experiments and numerical simulations have been
reported in the literature for the equilibrium shape of the droplet on
heterogeneous surfaces, see the recent review [1] and the refer-
ences therein. Most of the numerical simulations have been per-
formed to identify the equilibrium shape of the droplet on a
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Nomenclature

aF convection heat transfer coefficient on liquid–gas inter-
face

b� slip number
CF free surface
CN non-wetting part of the solid phase
CS liquid–solid interface
cref reference surface tension
ĉ surface tension factor
f contact line
hc dynamic contact angle

hin
e equilibrium contact angle of inner surface

hout
e equilibrium contact angle of outer surface

kF thermal conductivity of fluid
kS thermal conductivity of solid
l dynamic viscosity of fluid
mF unit outward normal vector on free surface
mS unit outward normal vector on liquid-solid interface
mf co–normal vector at the contact line
q density of fluid
qS density of solid
sF unit tangential vector on free surface
sS unit tangential vector on liquid–solid interface
X computational domain for energy equation
XF fluid domain
XS solid domain
X̂ reference domain of ALE mapping
D deformation tensor of fluid velocity
I identity tensor
S stress tensor of fluid
rC tangential gradient operator on the free surface
� tensor product
idC identity mapping
At ALE mapping
C1 negative rate of change of surface tension with

temperature

tr trace
Bi Biot number
Fr Froude number
PeF fluid Peclet number
PeS solid Peclet number
Re reynolds number
We weber number
cF

p specific heat of fluid

cS
p specific heat of solid

Din
p pattern diameter of the inner surface

T1 temperature in surrounding gas

TF temperature in fluid
Tref reference temperature
TS temperature in solid
d0 initial droplet diameter
d=d0 dimensionless wetting diameter
uimp impact speed
g gravitational constant
p pressure
q test function in pressure space
t time
I end time
L characteristic length
Q pressure space
U characteristic velocity
V velocity space
e unit vector in the direction opposite to gravitational

force
n unit outward normal on non-wetting part of solid phase
u fluid velocity
v test function in velocity space
w domain velocity
X Eulerian coordinate
Y ALE coordinate
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heterogeneous wetting surface by minimizing the free energy with
the volume constraint. The equilibrium shape of a three-
dimensional (3D) droplet has been computed in [2] using the
public-domain software ‘‘Surface-Evolver’’. The authors varied the
contact angle in the free energy minimization calculation to incor-
porate the heterogeneous wettability effect and studied the contact
angle hysteresis through the displacement of the contact line by
increasing the volume of the droplet. However, the gravitational
effect has not been considered in [2]. A similar approach by varying
the contact angle through a position dependent interfacial energy
model with gravitational effect has been presented in [3]. In partic-
ular, the authors extended the earlier model to treat chemically
heterogeneous substrates with ‘‘mesa’’ defects. Another numerical
study on the contact angle hysteresis using the free energy mini-
mization algorithm has been presented in [4]. Recently, an analytic
expression for the equilibrium droplet aspect ratio on a heteroge-
neous surface has been proposed in [5]. Further, the authors
compared the analytically obtained aspect ratio with the numerical
solution obtained using the public software ‘‘Surface-Evolver’’. A
free energy lattice Boltzmann algorithm has also been proposed in
[6] to study the droplet dynamics on chemically patterned surfaces.
The authors applied a constant force (Poiseuille flow field) over the
droplet to displace it on a heterogeneous surface, and studied the
effect of wettability contrast. Molecular dynamics simulations for
water droplets with radius of few Angstrom have been presented
in [7] to study the wetting effects on a planar surface with
heterogeneous wettability and on surfaces with pillars. Recently,
phase-field simulations for micro-sized isothermal droplet imping-
ing on a heterogeneous wettability surface have been presented in
[8]. Even though many numerical simulations using free energy
minimization algorithms have been performed for the equilibrium
shape of the droplet, the flow dynamics of impinging droplets on
surfaces with heterogeneous wettability has been considered only
in [8].

A considerable number of numerical simulations of droplet
impinging on heated solid substrates with homogeneous
wettability have been reported in the literature [9–17]. The above
list of references may not be complete, but to the best of the
authors knowledge, simulation of droplet impinging on heated
solid substrates with heterogeneous wettability has not been
reported in the previous studies.

In the present study, numerical simulations of non-isothermal
droplet impinging and spreading on a heated solid substrate with
circular patterned heterogeneous wettability are presented. The
ALE finite element scheme proposed in [17] is extended for solid
substrates with heterogeneous wettability. Moreover, the
Marangoni convection is included in the variational form of the
Navier–Stokes equations without calculating the tangential deriva-
tive of the surface tension. In the ALE approach, the moving bound-
aries are resolved by moving meshes and thus the boundaries are
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tracked explicitly. Further, the jumps in the material coefficients
and the surface force including the Marangoni effect are incorpo-
rated into the model very accurately. In addition, the energy equa-
tions in both the liquid and the solid phases are reformulated into a
one-field formulation, which enables to treat the heat transfer
between the phases implicitly.

2. Mathematical model

2.1. Governing equations

A liquid droplet impinging on a heated solid substrate, which
contains two regions with different wetting properties is consid-
ered. The schematic representation of the considered model is
shown in Fig. 1. XF and XS represent the fluid and solid domains,
CS and CF represent the liquid–solid and the liquid–gas (free sur-
face) interfaces, respectively and CN :¼ @XS n CS is the non-wetting
part of the solid. Further, hin

e and hout
e denote the inner and outer

surface equilibrium contact angle, respectively and Din
p is the inner

surface pattern diameter.
We assume that the liquid is incompressible and the material

properties (density, viscosity, thermal conductivity and specific
heat) are constants in the liquid and in the solid phases, respec-
tively. Detailed description of the mathematical model and the
numerical scheme used in this paper has been presented in [17],
whereas a brief description of the model and the numerical scheme
is presented here. Let

x ¼
~x
L
; u ¼

~u
U
; w ¼

~w
U
; t ¼

~tU
L
;

I ¼
~IU
L
; p ¼

~p

qU2 ; T ¼
eT � T1

Tref � T1

be the dimensionless length, fluid velocity, domain velocity, time,
given end time, pressure and temperature, respectively, whereas
the tilde denotes the respective dimensional quantities. Here, L
and U are characteristic length and velocity scales, q denotes the
density of the fluid, T1 denotes the temperature in the surrounding
gas and Tref is a given reference temperature at which the surface
tension is cref . Further, we define the dimensionless numbers
(Reynolds, Weber, Froude and slip, respectively) as

Re ¼ qUL
l

; We ¼ qU2L
cref

; Fr ¼ U2

Lg
; b� ¼

1
�lqU

;

where g is the gravitational constant, �l is the slip coefficient in the
Navier–slip with friction boundary condition. Given these numbers,
the fluid flow in the droplet is described by the time-dependent
incompressible Navier–Stokes equations

@u
@t
þ ðu � rÞu�r � Sðu;pÞ ¼ 1

Fr
e in XFðtÞ � ð0; IÞ; ð1Þ

r � u ¼ 0 in XFðtÞ � ð0; IÞ ð2Þ
θout
e

ΩS

ΩF (t)

ΓS(t)

ΓF (t)

Din
p

ΓN (t)θin
e

Fig. 1. Computational model of an impinging droplet on a hot solid substrate,
which contains inner and outer regions with different wetting properties.
with the initial condition

uð�;0Þ ¼ u0=U;

the force balance (neglecting the dilatational surface viscosity and
the surface shear viscosity in the Boussinesq–Scriven law) and the
kinematic condition

Sðu; pÞ � mF ¼
1

We
rC � ðĉrCidCÞ; u � mF ¼ w � mF

on the free surface CFðtÞ, and the Navier–slip boundary condition

u � mS ¼ 0; si;S � Sðu;pÞ � mS ¼ �b�ðu � si;SÞ

on the liquid–solid interface CSðtÞ. Here, e is the unit vector in the
direction opposite to the gravitational force. The dimensionless
stress tensor Sðu; pÞ and the deformation tensor DðuÞ for the
incompressible Newtonian fluid are given by

Sðu;pÞ ¼ 2
Re

DðuÞ � pI; DðuÞ ¼ 1
2
ruþruT� �

:

Here, I is the identity tensor. Further, u0 ¼ ð0;0;�uimpÞ is the initial
velocity with the impact speed uimp; idC is an identity mapping and
rC is the tangential gradient operator on the free surface. For
instance, the tangential gradient of the scalar field / and the tan-
gential divergence of a vector field v are defined by

rC/ ¼ I� mF � mFð Þ/; rC � v ¼ trðrCvÞ:

Note that the restriction ofrC/ onto CFðtÞ depends only on the val-
ues of / on CFðtÞ. The temperature-dependent surface tension factor
is given by

ĉðTFÞ ¼ 1� C1

cref
ðTF � 1Þ: ð3Þ

Here, TF is the dimensionless temperature on the free surface and
C1 > 0 is the negative rate of change of surface tension with temper-
ature. In computations, C1=cref ¼ 0:002 is used.

Next, the distribution of the temperature in the liquid droplet
and in the solid substrate is described by the dimensionless energy
equations

@TF

@t
þ u � rTF �

1
PeF

DTF ¼ 0 in XFðtÞ � ð0; IÞ; ð4Þ

@TS

@t
� 1

PeS
DTS ¼ 0 in XSðtÞ � ð0; IÞ ð5Þ

with the initial conditions

TFðx;0Þ ¼
TFð0Þ � T1
Tref � T1

in XFð0Þ;

TSðx;0Þ ¼
TSð0Þ � T1
Tref � T1

in XSð0Þ

and boundary conditions

� @TF

@mF
¼ BiTF on CFðtÞ � ð0; IÞ;

TF ¼ TS;
@TF

@mF
¼ � kS

kF

@TS

@mS
on CSðtÞ � ð0; IÞ;

@TS

@n
¼ 0 on CNðtÞ � ð0; IÞ:

ð6Þ

Here, TFð0Þ and TSð0Þ denote the initial temperature in the fluid and
solid phases, respectively, and the dimensionless (Peclet and the
Biot) numbers are given by

PeF ¼
LUcF

pq
kF

; PeS ¼
LUcS

pqS

kS
; Bi ¼ aFL

kF
;



58 S. Ganesan et al. / International Journal of Heat and Mass Transfer 88 (2015) 55–72
where kF ; kS the thermal conductivities, q; qS the densities, cF
p; cS

p

the specific heat of the fluid and the solid phases. Further, aF is
the convection heat transfer coefficient on the liquid–gas interface
and n is the unit outward normal on CN .

3. Numerical scheme

3.1. ALE approach for time-dependent domains

The free surface of the droplet is tracked by the ALE approach
using moving meshes, which resolve interfaces and boundaries.
Since the liquid–solid interface is resolved by the moving mesh
in XFðtÞ, the solid substrate XS also become time-dependent.
Therefore, the energy equations in both the liquid and solid phases
have to be reformulated to an ALE form, in addition to the deriva-
tion of the Navier–Stokes equations.

Let XðtÞ :¼ XFðtÞ [XS [ CSðtÞ be the domain for the energy

equation, and X̂ (often the previous time step domain in computa-
tions) be its reference domain. Define a family of ALE mapping

At : X̂! XðtÞ; AtðYÞ ¼ XðY; tÞ; t 2 ð0; IÞ:

Assume that the mapping At for all t 2 ð0; IÞ is homeomorphic, that
is, At is bijective, continuous and its inverse A�1

t is also continuous.
Further, assume that the mappings are differentiable almost every-
where in ð0; IÞ. We call Y as the ALE coordinate while X as the
Eulerian coordinate. For a scalar function v : XðtÞ � ð0; IÞ ! R,
which is defined on the Eulerian frame, define their corresponding
v̂ on the ALE frame as

v̂ : X̂� ð0; IÞ ! R; ðY; tÞ# vðXðY; tÞ; tÞ ¼ vðAtðYÞ; tÞ:

Further, the time derivative of v on the ALE frame is given by

@v
@t

����
X̂

: XðtÞ � ð0; IÞ ! R; ðX; tÞ# @v̂
@t
ðA�1

t ðXÞ; tÞ

and the domain velocity on the ALE frame is defined by

wðX; tÞ ¼ @X
@t

����
X̂

ðA�1
t ðXÞ; tÞ; X 2 XðtÞ:

In order to write the model equations in the ALE frame, apply the
chain rule to the time derivative of v in the ALE frame to get

@v
@t

����
X̂

¼ @v
@t
þ @v
@X

@X
@t

����
X̂

ðA�1
t ðXÞ; tÞ ¼

@v
@t
þw � rv : ð7Þ

Using (7) we now transform the time derivatives in the model equa-
tions into the ALE frame and obtain

@u
@t

����
X̂

þ ððu�wFÞ � rÞu�r � Sðu;pÞ ¼
1
Fr

e; ð8Þ

@TF

@t

����
X̂

þ ðu�wFÞ � rTF �
1

PeF
DTF ¼ 0; ð9Þ

@TS

@t

����
X̂

�wS � rTS �
1

PeS
DTS ¼ 0; ð10Þ

where wF ¼ wjXF
and wS ¼ wjXS

.

3.2. Variational form

The variational form of the Navier–Stokes equations and the
energy equations are derived in the usual way. Let L2; H1 and
ð�; �ÞX be the Sobolev spaces and the inner product in L2ðXÞ and
its vector-valued versions. We now define the velocity and
pressure spaces as
V :¼ v 2 H1ðXFðtÞÞ3 : v � mS ¼ 0 on CSðtÞ
n o

; Q :¼ L2ðXFðtÞÞ;

where the no penetration boundary condition u � mS ¼ 0 on liquid–
solid interface CSðtÞ is incorporated in the velocity space. Next, mul-
tiply the ALE form of the momentum conservation equation (8) and
the mass balance equation (2) by test functions v 2 V and q 2 Q
respectively, and integrate over XFðtÞ. Applying the Gaussian theo-
rem to the stress tensor, we get

�
Z

XF ðtÞ
r �Sðu;pÞ �vdxþ

Z
@XF ðtÞ

v �Sðu;pÞ �mdc¼ 2
Re

Z
XF ðtÞ

DðuÞ : DðvÞdx

�
Z

XF ðtÞ
pr�vdx:

We now split the boundary integral asZ
@XF ðtÞ

v � Sðu;pÞ � mdc ¼
Z

CSðtÞ
v � Sðu;pÞ � mSdcS

þ
Z

CF ðtÞ
v � Sðu;pÞ � mF dcF :

Using the orthonormal decomposition

v ¼ ðv � mSÞmS þ
X2

i¼1

ðv � si;SÞsi;S on CS;

the integral over CSðtÞ becomesZ
CSðtÞ

v � Sðu;pÞ � mSdcS ¼ �b�
X2

i¼1

Z
CSðtÞ
ðu � si;SÞðv � si;SÞdcS:

Note that this integral term will be on the left hand side of the sys-
tem, and it adds stability to the system. We next include the force
balancing condition on the free surface with Marangoni effects into
the variational form without evaluating the tangential gradient of
the surface tension. This approach is different from our earlier
approach, where the Laplace–Beltrami operator has been used to
handle the curvature [17–19]. After incorporating the force balanc-
ing condition, the integral over free surface becomes

�
Z

CF ðtÞ
v � Sðu; pÞ � mF dcF ¼ �

1
We

Z
CF ðtÞ

v � rC � ðĉrCidCÞdcF

¼ 1
We

Z
CF ðtÞ

ĉrCidC : rCvdcF

� 1
We

Z
fðtÞ

ĉmf � vdf;

where fðtÞ is the contact line and mf is the co-normal vector at the
contact line, which is normal to f and tangent to CFðtÞ. After includ-
ing the contact angle in the integral over the contact line, as in [17],
the variational form of the Navier–Stokes equations read.

For given u0 and XFð0Þ, find ðu; pÞ 2 V � Q such that

@u
@t
;v

� �
X̂F

þ aðu�w; u;vÞ � bðp;vÞ þ bðq;uÞ ¼ f ðvÞ ð11Þ

for all ðv; qÞ 2 V � Q , where

aðû;u;vÞ¼ 2
Re

Z
XF ðtÞ

DðuÞ : DðvÞþðû �rÞu �vdxþb�

Z
CSðtÞ

X2

i¼1

ðu �si;SÞðv �si;SÞdcS;

bðq;vÞ ¼
Z

XF ðtÞ
qr � vdx;

f ðvÞ ¼ 1
Fr

Z
XF ðtÞ

e � vdx� 1
We

Z
CF ðtÞ

ĉrCidC : rCvdcF

þ 1
We

Z
fðtÞ

ĉ cosðhðfÞÞ v � sSdf:
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Here, the space-dependent contact angle is defined as

hðfÞ ¼
hin

e if f 6 Din
p � 0:01

chin
e þ ð1� cÞhout

e if Din
p � 0:01 < f < Din

p þ 0:01

hout
e if f P Din

p þ 0:01;

8>><>>:
where c ¼ 0:01þ Din

p � f
� �

=0:02:

Remark. Note that the Marangoni convection is included in the
variational form (11) without calculating the tangential derivative
of the surface tension. Consequently, the partial derivatives of the
temperature are no longer needed to incorporate the Marangoni
effects, and thus, a piecewise constant or a piecewise linear finite
elements can also be used for the finite element approximation of
the temperature. Further, the contact angle in the source term f ðvÞ
is now position dependent and it includes the heterogeneous
wettability into the model.

We next derive the variational form of the energy equation in
the liquid and in the solid substrate as a single equation in XðtÞ.
We first multiply the Eq. (9) with a test function wF 2 H1ðXFÞ,
apply integration by parts and incorporate boundary conditions
to getZ

XF ðtÞ

@TF

@t
wFdxþ

Z
XF ðtÞ
ððu�wFÞ � rÞTFwF dxþ 1

PeF

Z
XF ðtÞ
rTF � rwFdx

þ
Z

CF ðtÞ

Bi
PeF

TFwFdcF ¼ �
1

PeF

kS

kF

Z
CSðtÞ

@TS

@mS
wFdcF : ð12Þ

Similarly, multiplying (10) with a test function wS 2 H1ðXSÞ, and
after applying integration by parts and incorporating boundary con-
ditions, we obtainZ

XSðtÞ

@TS

@t
wSdxþ

Z
XSðtÞ
ðwS � rÞTSwSdxþ 1

PeS

Z
XSðtÞ
rTS � rwSdx

¼ 1
PeS

Z
CSðtÞ

@TS

@mS
wSdcS: ð13Þ

Using

uTðx; tÞ ¼
uðx; tÞ if x 2 XFðtÞ;
0 if x 2 XS;

	

Tðx; tÞ ¼
TFðx; tÞ if x 2 XFðtÞ;
TSðx; tÞ if x 2 XS;

	

PeðxÞ ¼
PeF if x 2 XFðtÞ;
kF
kS

PeF if x 2 XS;

(

gðxÞ ¼
1 if x 2 XFðtÞ;
kSPeS
kF PeF

if x 2 XS:

(

T0ðxÞ ¼
TFðx;0Þ if x 2 XFð0Þ;
TSðx;0Þ if x 2 XS;

	
the one-field variational form of the energy equation is obtain as:

For given Xð0Þ; uT ; w and T0, find T 2 H1ðXðtÞÞ such that

g
@T
@t
;w

� �
X

þ aTðuT �w; T;wÞ þ bTðT;wÞ ¼ 0 ð14Þ

for all w 2 H1ðXðtÞÞ, where

aTðu; T;wÞ ¼
Z

XðtÞ

1
Pe
rT � rwdxþ

Z
XðtÞ
ðu � rÞTwdx;
bTðT;wÞ ¼ Bi
Z

CF ðtÞ

1
Pe

Twdx:
3.3. Spatial and temporal discretization

Let 0 ¼ t0 < t1 < � � � < tN ¼ I be a decomposition of the time
interval ½0; I�, and dt ¼ tn � tn�1 be an uniform time step. We then
apply the fractional-step-h scheme, which – on fixed domains –
is strongly A-stable and of second-order convergent [20, Chapter
3.2.1], to the time derivatives in the variational forms (11) and
(14) to obtain the temporal discretization.

Using the axisymmetric assumption, we next obtain the 3D-ax-
isymmetric weak form in a 2D-meridian domain from (11) and
(14) by transforming the volume, surface and line integrals into
the area, line and a functional in the contact point as described
in [21] for interface flows. The axisymmetric formulation reduces
the computational cost drastically, and allows to use 2D finite ele-
ments for spatial discretization.

In the ALE approach, the free surface is resolved by the compu-
tational mesh. Further, the kinematic condition

u � mF ¼ w � mF

has to be satisfied on the free surface while moving the free surface.
Thus, an accurate velocity approximation, at least of second-order,
is preferred. Therefore, we use the inf-sup stable finite-element pair
ðP2; P1Þ, i.e., continuous, piecewise quadratic polynomials for the
velocity components and continuous, piecewise linear polynomials
for the pressure [22]. For the spatial discretization of the energy
equation a continuous, piecewise quadratic finite elements is used.

3.4. Free surface tracking and mesh update

To realize the ALE implementation, we first calculate the mesh
velocity at each time step. The computation of the fluid mesh
velocity wF is presented here, whereas the solid phase mesh veloc-
ity is obtained in a similar way. At time t ¼ tn, let Wn

F be the dis-

placement vector in bXF , and Xn be the new position for all
Xn�1 2 @XFðtn�1Þ, for example, at the beginning n ¼ 1, we start with
X1 ¼ X0 þ dtu0. We then obtain the displacement of the inner
points by solving the linear elasticity equation with Dirichlet
boundary condition

r � TðWnÞ ¼ 0 in cXF ðtnÞ

Wn ¼ Xn � Xn�1 on @cXF ðtnÞ;
ð15Þ

where Tð/Þ ¼ k1ðr � /ÞIþ 2k2Dð/Þ. Here, k1 and k2 are Lame con-
stants, and in computations we used k1 ¼ k2 ¼ 1. Once the displace-
ment vector is calculated, the mesh velocity is then calculated as
wn ¼ Wn=dt. After that we solve the discrete form of the Navier–
Stokes equation (11) by considering the temperature explicitly. In
the solution of the Navier–Stokes equations, a fixed point iteration,
as in [21], is used to handle the nonlinear convection term, that is,
at time tn, starting with un

0 :¼ un�1; wn
0 :¼ wn�1 and replacing the

form aðun �wn;un;vÞ by aðun
i�1 �wn

i�1;u
n
i ;vÞ; i ¼ 1;2; . . ., and iter-

ate (solve the linear system) until the residual of the Navier–
Stokes equations reduces to 10�8. Note that in each step of the fixed
point iteration, the linear elasticity problem (15) has to be solved,
‘virtually’ without moving the mesh, in order to treat the mesh
velocity wn implicit. Further, the free surface force term in f ðvÞ is
treated semi-implicitly as in [17].

We then calculate the mesh velocity wn
S , in a similar way, and

solve the discrete form of the energy equation (14) with the
updated flow velocity and the mesh velocity. Finally, we move



Fig. 2. Computational mesh of an impinging droplet on a hot solid substrate.
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Fig. 3. Computationally obtained wetting diameter ðaÞ and the dynamic contact
angle ðbÞ of an impinging droplet with he ¼ 50� , Re = 151, We = 4.5 and Fr = 11,125
for different number of vertices on the free surface boundary.
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the mesh with the computed displacement and advance to the
next time step.

During the mesh movement, the free surface adjacent to the
contact line may reach the solid surface due to rolling motion of
the droplet. Since the boundary resolved mesh is used in the ALE
approach, the rolling motion leads to a non-matching grid along
the liquid–solid interface. Therefore, a mesh manipulation tech-
nique which maintains a matching grid when a free surface vertex
reaches the solid surface is implemented, see [17] for a detailed
description. Further, an automatic remeshing algorithm is used
to remesh the domain when the quality of the mesh become very
poor, say if the minimum angle becomes less than 10�.

4. Numerical results

In this section, we present a detailed numerical investigation on
the impingement and spreading of a 3D-axisymmetric non-
isothermal liquid droplet on a heated solid substrate with
heterogeneous wettability. We first perform a mesh convergence
study for a non-isothermal droplet impinging on a homogeneous
solid substrate. We then validate the numerical scheme for an
isothermal liquid droplet impinging on a homogeneous solid
substrate using the experimental data presented in [15]. The pro-
posed numerical scheme guarantees the conservation of mass
and energy well, and it is demonstrated by calculating the relative
mass and internal energy fluctuations. We then consider a non-
isothermal droplet impingement on a solid substrate with circular
patterned heterogeneous wettability, see Fig. 1. The effects of
wettability contrast, pattern diameter, Reynolds number and
Weber number on the confinement of the droplet spreading are
studied. Further, the influence of these parameters on the total
heat transfer from the solid substrate to the liquid droplet is
examined. The total heatZ t

0

Z
CSðtÞ

1
PeS

@TS

@mS
dcS

is calculated using the variational form, and we refer to [17] for the
detailed derivation. Unless specified, we use a constant time step
dt ¼ 0:00025 and 200 vertices on the free surface with the initial
edge size h0 = 0.00778929. Fig. 2 depicts an initial mesh used in
computations. Further, a mesh-dependent slip number
b� ¼ 8:26=2h0 is used in computations unless specified, and the
reader is referred to [23] for the choice of a slip number.
Moreover, we limit the maximum area of each cell in the mesh to
0.00625 during the triangulation, and it results in 1364 and 2164
cells in the initial liquid and solid domains, respectively. This choice
of initial mesh results in 5966 velocity, 810 pressure and 7443 tem-
perature degrees of freedom. However, the number of cells and the
degrees of freedom may vary during remeshing.

4.1. Validation

In this section, we first perform a mesh convergence study for
the proposed numerical scheme. We consider a water droplet of
diameter d0 ¼ 5:5� 10�5 m impinging with an impact speed of
uimp ¼ 2:45 m/s on a homogeneous hot solid substrate. Further,
the following material parameters are used: density q = 1000 kg/
m3, surface tension r = 0.0728 N/m, dynamic viscosity
l ¼ 8:9� 10�4 N s/m2, and the equilibrium contact angle
he ¼ 50�. Also, we take TSð0Þ ¼ 328 K; TFð0Þ ¼ 298 K; T1 ¼ 298 K
and Tref ¼ 323 K. Using the characteristic length L = d0 and charac-
teristic velocity U = uimp, we get Re ¼ 151, We ¼ 4:5, Fr ¼ 11;125,
PeS ¼ 200, PeF = 20 and Bi = 0.000116. To perform a mesh conver-
gence study, we vary the number of vertices on the free surface
boundary. The initial mesh (L0) consists of 25 vertices on the free
surface with h0=0.06334015 and the successive mesh levels are
generated by doubling the number of vertices on the free surface
and halving the cell area of the previous level mesh. Four variants
with different number of vertices on the free surface are used: (i)
L0 with 25 vertices (ii) L1 with 50 vertices, (iii) L2 with 100 vertices
and (iv) L3 with 200 vertices. The wetting diameter and dynamic
contact angle for all the mesh levels are shown in Fig. 3. From both
pictures in Fig. 3, we can observe the convergence with L2 and L3
meshes.

To validate the numerical scheme, we now compare the
numerically obtained wetting diameter and the apex height of
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the impinging water droplet with the experimental results pre-
sented in [15]. We consider an isothermal water droplet with same
material properties as in the mesh convergence study, and for the
corresponding experimental data we refer to droplet C in Table 1 of
[15]. The used dimensionless numbers are Re ¼ 151, We ¼ 4:5 and
Fr = 11125. The computationally obtained wetting diameter and
the apex height of the droplet are compared with the experimental
results in Fig. 4. The wetting diameter curve fits very well with the
experimental result, whereas the numerically obtained apex height
of the droplet is less oscillatory compared to the experimental
data. Due to non-symmetric capillary waves, a large oscillation in
the apex height of the droplet could have been observed in exper-
iments, whereas the axisymmetric numerical model is used here.
Nevertheless, the difference is less and the behavior is similar.
Moreover, the wetting diameter of the droplet is the key factor
for the heat transfer and for the effect of the wettability contrast
in the flow dynamics, and it fits well with experiments.

Guaranteeing the mass and the energy conservation is very
crucial in computations of free surface flows, as mass loss results
in completely unphysical solutions. Therefore, verifying the
conservation properties is another measure to determine the
accuracy of the numerical scheme. To verify the mass and the
energy conservation properties, we consider a droplet of
diameter d0 ¼ 2:7� 10�3 m impinging with an impact velocity of
uimp = 1.54 m/s. Further, we assume that the product of the specific
heat and density is same in both the liquid and solid phases.
Computations are performed for two test cases (i) Re = 260 and
(ii) Re = 2079, with We = 43, Fr = 179, PeF ¼ 10, PeS ¼ 100, Bi = 0
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Fig. 4. Comparison of numerical simulations with experimental results. Wetting
diameter (a) and the apex height (b) of the impinging droplet with he ¼ 50� ,
Re = 151, We = 4.5 and Fr = 11,125.
and he ¼ 30�. Further, we use TFð0Þ = 298 K, TSð0Þ = 328 K,
T1 = 298 K and Tref = 323 K in both the test cases. We calculate
the relative mass and internal energy fluctuation using

mass fluctuation :¼
R

XF ð0Þ
dx�

R
XF ðtÞ

dxR
XF ð0Þ

dx
;

internal energy fluctuation :¼
R

Xð0Þ Tdx�
R

XðtÞ TdxR
Xð0Þ Tdx

with Bi = 0. Note that, the mass of the solid substrate does not
change, and thus it is enough to verify the mass fluctuation in
XFðtÞ. Further, the internal energy in liquid and solid substrate must
be conserved due to the choice of the adiabatic conditions on CF and
CN in (6). The mass and the internal energy fluctuations obtained in
computations of both test cases are presented in Fig. 5. Even in the
high Reynolds number case, the relative mass and the internal
energy fluctuations are less than 10�2 and 10�3, respectively, and
it shows the accuracy of the numerical scheme.
4.2. Effect of wettability contrast

The equilibrium contact angle depends on the surface proper-
ties of the solid substrate, and these properties can be modified
selectively by chemical coating. As already mentioned in the intro-
duction, chemical surface patterning with sufficient wettability
contrast is one of the popular techniques to confine the spreading
of an impinging droplet within a specified area. In order to confine
the droplet within a specified area, the inner region of the circular
pattern is made more wettable than the surface surrounding it, i.e.,
hin

e 6 hout
e . In this section we study the effect of wettability contrast
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Fig. 5. The mass (a) and the internal energy (b) fluctuations in computations of
impinging droplets in two test cases, (i) Re = 260 and (ii) Re = 2079, with We = 43,
Fr = 179, PeF = 10, PeS = 100, Bi = 0 and he ¼ 30� .
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on the spreading and confinement of a non-isothermal impinging
droplet.

We consider a water droplet with the same material properties
as in the mesh convergence study which result in Re = 151,
We = 4.5, Fr = 11,125, PeF ¼ 20, PeS ¼ 200 and Bi = 0.000116. In
order to study the effect of wettability contrast, a set of simulations
by varying the contact angle of the outer surface: (i) hout

e ¼ 50�, (ii)
hout

e ¼ 55�, (iii) hout
e ¼ 70�, (iv) hout

e ¼ 90� and (v) hout
e ¼ 120� are per-

formed. Further, the contact angle of the inner surface is fixed as

hin
e ¼ 50�. Two sets of simulations with (1) Din

p ¼ 1:2 and (2)

Din
p ¼ 1:4 for the above variants are performed. The values for Din

p

are chosen in such a way that it is less than the final wetting diam-
eter when the same droplet spreads on a homogeneous surface.

The numerical results of the above variants are presented in
Figs. 6 and 7. We can observe that the equilibrium wetting diame-
ter, (c) in Figs. 6 and 7, reduces significantly with increasing the

wettability contrast. In the case of Din
p ¼ 1:2, we can observe that

the droplet spreading is confined to the inner surface only for
hout

e ¼ 120�, i.e. for the variant with the wettability contrast 70�,

see Fig. 6(a). Moreover, in the case of Din
p ¼ 1:4, the droplet spread-

ing is confined to the inner surface for both hout
e ¼ 90� and

hout
e ¼ 120�, i.e. for the variants with wettability contrast 40� and

70�. Hence, the confinement of the droplet within a certain speci-
fied area depends on both the wettability contrast and the diame-
ter of inner surface. In the dynamic contact angle curve a sudden
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Fig. 6. Wetting diameter (a), dynamic contact angle (b)), equilibrium wetting diameter (
the inner surface Din

p ¼ 1:2. Numerical results for (i) hout
e ¼ 50� , (ii) hout

e ¼ 55� , (iii) hout
e ¼
shoot at around t = 1.4 indicates that the droplet starts to spread
in the outer surface. Since the wettability contrast is high in the
hout

e ¼ 120� case, there are oscillations in the dynamic contact angle
at the later stage when the contact line is in the transition region
between the inner and outer surface. From the total heat curves,
we observe that the total heat transfer from the solid substrate
to liquid droplet is maximum for surface with the lowest wettabil-

ity contrast and higher Din
p . This is due to the fact that the liquid

droplet is exposed to a larger surface area, thereby enabling greater
heat transfer from the solid substrate to the liquid droplet.

We now present the contours of the magnitude of velocity and
the temperature distributions for two variants of impinging dro-

plets, hout
e ¼ 70� and 90�, with hin

e ¼ 50�, Din
p ¼ 1:4. Fig. 8 depicts

the magnitude of velocity contours in the droplet at different
instances t = 0.1, 0.75, 1.5, 2.5 and 5.0. At t = 0.1 and 0.75, the dro-
plet spreading remains similar in both hout

e ¼ 70� and 90� variants.
However, after t = 0.75, hout

e affects the flow dynamics significantly.
We can observe a difference in the magnitude of the velocity at a
given time instant. In the variant hout

e ¼ 70�, the droplet attained
its equilibrium but not confined within the inner surface.
However, in the case of hout

e ¼ 90�, the droplet is confined within
the inner surface but takes longer time to attain its equilibrium.
Fig. 9 depicts the temperature distribution in both the liquid dro-
plet and solid substrate. Initially the dimensionless temperature
in the droplet in zero, whereas the temperature in the solid is
1.214 in both variants. The temperature in the droplet increases
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c) and total heat (d) of a droplet impinging on a hot solid substrate with diameter of
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e ¼ 90� and (v) hout
e ¼ 120� .
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Fig. 7. Wetting diameter (a), dynamic contact angle (b), equilibrium wetting diameter (c) and total heat (d) of a droplet impinging on a hot solid substrate with diameter of
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with time due to spreading. We have already seen the total heat
increases with decrease in hout

e . The same can also be observed by
comparing the minimum temperature in the droplet at a given
time instant. Since the droplet is not confined within the inner sur-
face in the variant hout

e ¼ 70�, it is exposed to a larger surface area,
which eventually induce more heat transfer from the solid to
liquid.

4.3. Effect of pattern diameter

To study the effect of diameter of a circular patterned solid sub-
strate on the confinement of the spreading droplet, we vary the
diameter of the inner surface. We consider the following five vari-

ants: (i) Din
p ¼ 0:8, (ii) Din

p ¼ 1:0, (iii) Din
p ¼ 1:2, (iv) Din

p ¼ 1:4 and (v)

Din
p ¼ 1:5. For the above variants we perform two sets of simula-

tions with (1) hout
e ¼ 90� and (2) hout

e ¼ 120�. The contact angle of

the inner surface is fixed as hin
e ¼ 50�. Further, we use the following

dimensionless numbers Re = 151, We = 4.5, Fr = 11,125, PeF ¼ 20,
PeS ¼ 200 and Bi = 0.000116 in all variants.

The computationally obtained wetting diameter, dynamic con-
tact angle, equilibrium wetting diameter and the total heat transfer
for the above variants are shown in Figs. 10 and 11. From these fig-
ures, we can observe that the droplet can be confined to as low as

Din
p ¼ 1:0, i.e. the initial diameter of the droplet which is quite sig-

nificant. However, this can be achieved only for the variant
hout

e ¼ 120�. Further, the confinement can be obtained only when
Din
p ¼ 1:4 and 1.5 for the variant hout

e ¼ 90�. Moreover, we observe
a significant reduction in the equilibrium wetting diameter for
the variant hout

e ¼ 120� (compared to hout
e ¼ 90� variant), see

Figs. 10(c) and 11(c). In the dynamic contact angle curves, we
observe huge periodic jumps which indicate that the droplet
spreads and recoils in the transition region.

From the total heat curves, we observe that the total heat trans-
fer from the solid substrate to the liquid droplet is maximum for
surface with the higher inner diameter which enables larger sur-
face area for heat transfer. Till now, we have analyzed the spread-
ing and confinement of droplet on a circular patterned
heterogeneous surface for fixed material properties of the liquid.
In the subsequent sections we study the effect of Reynolds number
and Weber number on the confinement of the droplet spreading.
4.4. Effect of Reynolds number

In this section we perform a comprehensive study of the effect
of Reynolds number on the spreading and confinement of droplet
on a circular patterned heterogeneous solid substrate. We consider
a water droplet with the same material properties as in the mesh
convergence study, and it results in We = 4.5, Fr = 11,125,
PeF ¼ 20, PeS = 200 and Bi = 0.000116. The contact angle of inner
surface is fixed as hin

e ¼ 50�. In order to study the influence of
Reynolds number, we consider six variants: (i) Re = 40, (ii)
Re = 75, (iii) Re = 150, (iv) Re = 300, (v) Re = 600 and (vi)
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Fig. 10. Wetting diameter (a), dynamic contact angle (b), equilibrium wetting diameter (c) and total heat (d) of a droplet impinging on a hot solid substrate with hout
e ¼ 90� .

Numerical results for (i) Din
p ¼ 0:8, (ii) Din

p ¼ 1:0, (iii) Din
p ¼ 1:2, (iv) Din

p ¼ 1:4 and (v) Din
p ¼ 1:5.
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Fig. 11. Wetting diameter (a), dynamic contact angle (b), equilibrium wetting diameter (c) and total heat (d) of a droplet impinging on a hot solid substrate with outer
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e ¼ 120� . Numerical results for (i) Din
p ¼ 0:8, (ii) Din

p ¼ 1:0, (iii) Din
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Re = 1200 by varying the viscosity. The slip numbers for these vari-
ants are chosen based on the relation proposed in [23]. Two sets of
simulations with (1) hout

e ¼ 90� and (2) hout
e ¼ 120� are performed

for the above variants.

We first consider the case, Din
p ¼ 1:0, and the computationally

obtained wetting diameter, dynamic contact angle, maximum wet-
ting diameter and the total heat transfer for the above variants are

shown in Figs. 12 and 13. The choice Din
p ¼ 1:0 implies that the aim

is to confine the impinging droplet spreading to the inner region,
which is equal to the initial diameter of the droplet. Confinement
can be achieved for the variant hout

e ¼ 120� but the same is not true
in hout

e ¼ 90�. However, the interesting observation is the effect of
Reynolds number, i.e. the effect of the viscosity of the liquid on
the confinement. The maximum wetting diameter increases with
increase in the Reynolds number, but the Reynolds number does
not affect the equilibrium wetting diameter which can be seen in
Fig. 12(a) and (c). Since the equilibrium wetting diameter remains
the same, we can confine the droplet within a certain specified cir-
cular region irrespective of the Reynolds number. However, the
maximum wetting diameter needs to be confined within a speci-
fied region in certain applications. It can be achieved by choosing
a liquid with appropriate viscosity, see Fig. 13(a) and (c). We can
also observe that the maximum wetting diameter can be scaled
down by 10–15% in hout

e ¼ 120� and less than 10% in hout
e ¼ 90� with

an appropriate choice of viscosity. However, it is appropriate to
choose a higher wettability contrast for further reducing the
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Fig. 12. Wetting diameter (a), (c) and dynamic contact angle (b), (d) of droplet impingi
hout

e ¼ 120� (c), (d). Numerical results for (i) Re = 40, (ii) Re = 75, (iii) Re = 150, (iv) Re = 3
maximum wetting diameter. The dynamic contact angle over time
oscillates as the droplet spreads and recoils over the inner and
outer surface. Due to the frequent transition of the contact line
between the inner and outer surface and vice-verse, we observe
oscillations in the dynamic contact angle when the wettability con-
trast is more. The total heat transfer from the solid substrate to the
liquid droplet is directly proportional to the wetting area of the liq-
uid. Hence, from Fig. 13(b) and (d), we can observe that the total
heat transfer is less in the variant Re = 40. The total heat transfer
is almost same for high Reynolds number cases, and it is due to
the confinement of droplet within the inner region.

Figs. 14 and 15 present the numerical results for the case

Din
p ¼ 1:4. From Fig. 14(a) and (c), we can observe that the droplet

is confined to the inner region in both variants, hout
e ¼ 90� and

hout
e ¼ 120�. Fig. 14(b) and (d) shows oscillations in the dynamic

contact angle which indicate that the contact line is in the transi-
tion region. Fig. 15 shows the maximum wetting diameter and
the total heat transfer. We observe almost the same scaling down
of the maximum wetting diameter in the variant hout

e ¼ 90� as

observed previously in the case Din
p ¼ 1:0. Moreover, it is interest-

ing to note that the maximum wetting diameter is confined within
the inner region irrespective of the Reynolds number in the variant,
hout

e ¼ 120�. From Fig. 15(b) and (d), we can observe that the total
heat transfer is less in the variant Re = 40. The total heat transfer
is almost the same when the Reynolds number is high due to the
confinement of the droplet within the inner region.
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ng on a hot solid substrate with Din
p ¼ 1:0 for two test cases: hout
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Fig. 13. Maximum wetting diameter (a), (c) and total heat (b), (d) of droplet impinging on a hot solid substrate with Din
p ¼ 1:0 for two test cases: hout

e ¼ 90� (a), (b) and
hout

e ¼ 120� (c), (d). Numerical results for (i) Re = 40, (ii) Re = 75, (iii) Re = 150, (iv) Re = 300, (v) Re = 600 and (vi) Re = 1200.
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Fig. 14. Wetting diameter (a), (c) and dynamic contact angle (b), (d) of droplet impinging on a hot solid substrate with Din
p ¼ 1:4 for two test cases: hout

e ¼ 90� (a), (b) and
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e ¼ 120� (c), (d). Numerical results for (i) Re = 40, (ii) Re = 75, (iii) Re = 150, (iv) Re = 300, (v) Re = 600 and (vi) Re = 1200.
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Fig. 15. Maximum wetting diameter (a), (c) and total heat (b), (d) of droplet impinging on a hot solid substrate with Din
p ¼ 1:4 for two test cases: hout

e ¼ 90� (a), (b) and
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e ¼ 120� (c), (d). Numerical results for (i) Re = 40, (ii) Re = 75, (iii) Re = 150, (iv) Re = 300, (v) Re = 600 and (vi) Re = 1200.
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Fig. 16. Wetting diameter (a), (c) and dynamic contact angle (b), (d) of droplet impinging on a hot solid substrate with Din
p ¼ 1:0 for two test cases: hout

e ¼ 90� (a), (b) and
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e ¼ 120� (c), (d). Numerical results for (i) We = 4.5, (ii) We = 10, (iii) We = 20, (iv) We = 50, (v) We = 100 and (vi) We = 200.
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4.5. Effect of Weber number

In this section we study the effect of the Weber number on the
spreading and confinement of droplet on a solid substrate with cir-
cular patterned heterogeneous wettability. We consider a water
droplet with the same material properties as in the mesh conver-
gence study with Re = 75.5, Fr = 11,125, PeF ¼ 20, PeS = 200 and
Bi = 0.000116. The contact angle of inner surface is fixed as
hin

e ¼ 50�. In order to study the influence of the Weber number,
we consider six variants: (i) We = 4.5, (ii) We = 10, (iii) We = 20,
(iv) We = 50, (v) We = 100 and (vi) We = 200 by varying the surface
tension. The slip numbers are chosen as proposed in [23]. We per-
form two sets of simulations for the above variants with (1)
hout

e ¼ 90� and (2) hout
e ¼ 120�.

We first consider the case, Din
p ¼ 1:0, and the computationally

obtained wetting diameter, dynamic contact angle, maximum wet-
ting diameter and the total heat transfer for the above variants are
shown in Figs. 16 and 17. Confinement of the droplet within the
inner region is achieved in the variant, hout

e ¼ 120�, however, the
same is not true in the variant, hout

e ¼ 90�. Further, the maximum
wetting diameter increases with an increase in the Weber number,
but the Weber number does not affect the equilibrium wetting
diameter, which can be seen in Fig. 16(c). Since the equilibrium
wetting diameter remains the same, we can confine the droplet
within a certain circular region irrespective of the Weber number.
However, the maximum wetting diameter needs to be confined
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Fig. 17. Maximum wetting diameter (a), (c) and total heat (b), (d) of droplet impingin
hout

e ¼ 120� (c), (d). Numerical results for (i) We = 4.5, (ii) We = 10, (iii) We = 20, (iv) We
within a specified region in certain applications and it can be
achieved by choosing a liquid with appropriate surface tension,
see Fig. 17(a) and (c). Oscillations are observed in the dynamic con-
tact angle curves, and it indicate that the contact line is in the tran-
sition region, see Fig. 16(d). Further, Fig. 17(b) and (d) shows the
total heat transfer. The total heat transfer from the solid substrate
to the liquid droplet is directly proportional to the wetting area of
the liquid. Hence, more total heat transfer is observed when the
Weber number is high. Interestingly, the difference between the
effects of Reynolds and Weber number on the total heat transfer
is quite significant. In the case of increase in the Reynolds number,
the maximum wetting diameter increases only about 10% for the
considered values of the Reynolds number. However, the maxi-
mum wetting diameter increases about 40–100% when the
Weber number is increased.

The numerical results for the case, Din
p ¼ 1:4 are shown in

Figs. 18 and 19. We can observe that the droplet is confined within
the inner region irrespective of the Weber number in both variants,
hout

e ¼ 90� and 120�. Further, oscillations are observed in the
dynamic contact angle curve when the contact line is in the transi-
tion region. Moreover, we can observe that the wettability contrast
has negligible effect on the variation of maximum wetting diameter
with Weber number, since the droplet is confined within the inner
region in both variants, hout

e ¼ 90� and 120� see Fig. 19(a) and (c).
From the total heat curves, we can observe that the total heat
increases with increase in the Weber number, see Fig. 19(b) and (d).
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Fig. 18. Wetting diameter (a), (c) and dynamic contact angle (b), (d) of droplet impinging on a hot solid substrate with Din
p ¼ 1:4 for two test cases: hout

e ¼ 90� (a), (b) and
hout

e ¼ 120� (c), (d). Numerical results for (i) We = 4.5, (ii) We = 10, (iii) We = 20, (iv) We = 50, (v) We = 100 and (vi) We = 200.

4.5 10 25 50 100 200
1.3

1.7

2.1

2.4

We

M
ax

im
um

 d
/d

0

0 2 4 6 8 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

tU/L

T
ot

al
 h

ea
t

4.5
10
25
50
100
200

4.5 10 25 50 100 200
1.3

1.5

1.7

1.9

2.1

2.3

We

M
ax

im
um

 d
/d

0

0 2 4 6 8 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

tU/L

T
ot

al
 h

ea
t

4.5
10
25
50
100
200

(a) (b)

(c) (d)

Fig. 19. Maximum wetting diameter (a), (c) and total heat (b), (d) of droplet impinging on a hot solid substrate with Din
p ¼ 1:4 for two test cases: hout

e ¼ 90� (a), (b) and
hout

e ¼ 120� (c), (d). Numerical results for (i) We = 4.5, (ii) We = 10, (iii) We = 20, (iv) We = 50, (v) We = 100 and (vi) We = 200.
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5. Summary

A finite element scheme using the ALE approach is presented for
the simulations of a non-isothermal liquid droplet impinging on a
heated solid substrate with circular patterned heterogeneous wet-
tability. In this study, the inner region is assumed to be more wet-
table than the outer region, and this heterogeneous wettability is
incorporated into the model using a space-dependent contact
angle. A mesh convergence study is first performed and then the
numerical scheme is validated with experimental results from lit-
erature. Further, the mass and the internal energy fluctuations in
the entire simulations are less than one percent, and it shows the
accuracy of the numerical scheme. An array of numerical simula-
tions are performed to study the effects of the wettability contrast,
pattern diameter, Reynolds number and Weber number on the
confinement of the droplet spreading. In all test cases, the total
heat transfer from the solid substrate to the liquid droplet is also
examined.

The following points are observed from the numerical simula-
tions. The confinement of the droplet within a specified area
depends on the wettability contrast and the diameter of the inner
surface. Further, the maximum wetting diameter increases with an
increase in the Reynolds number and Weber number. In certain
applications, controlling the maximum wetting diameter is crucial
when the maximum allowable wetting area is prescribed. It can be
achieved by choosing a liquid with appropriate viscosity and/or
surface tension. Moreover, the influence of the Reynolds number
on the maximum wetting diameter is negligible in comparison to
the Weber number. Next, the total heat transfer from the solid
substrate to the liquid droplet is more when the diameter of inner
surface is large and/or the wettability contrast is less since
hin

e 6 hout
e . Further, the influence of the Weber number on the total

heat transfer is more compared to the Reynolds number.
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