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The heat transfer from a solid phase to an impinging non-isothermal liquid droplet is studied numeri-
cally. A new approach based on an arbitrary Lagrangian–Eulerian (ALE) finite element method for solving
the incompressible Navier–Stokes equations in the liquid and the energy equation within the solid and
the liquid is presented. The novelty of the method consists in using the ALE-formulation also in the solid
phase to guarantee matching grids along the liquid–solid interface. Moreover, a new technique is
developed to compute the heat flux without differentiating the numerical solution. The free surface
and the liquid–solid interface of the droplet are represented by a moving mesh which can handle jumps
in the material parameter and a temperature dependent surface tension. Further, the application of the
Laplace–Beltrami operator technique for the curvature approximation allows a natural inclusion of the
contact angle. Numerical simulation for varying Reynold, Weber, Peclét and Biot numbers are performed
to demonstrate the capabilities of the new approach.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The interaction between sprays and hot solid objects occur in a
wide variety of industrial and environmental applications. Never-
theless, our understanding of the mechanisms involved in the pro-
cess is far from being complete. Therefore, the study of the
hydrodynamic and thermodynamic behavior of a single droplet
impinging on a solid substrate is of fundamental importance.

As a droplet nears a hot solid substrate, heat is transferred from
the solid to the liquid phase by conduction, convection and radia-
tion. This energy is used to increase the temperature of the liquid
or to vaporize the liquid from the base of the droplet. In the latter
case a direct contact between the solid and the liquid phase is
excluded (Leidenfrost phenomenon). For a surface temperature
below the Leidenfrost temperature we suppose that the direct
liquid-wall contact and the kinetic of the droplet spreading domi-
nate the heat transfer. Thus, we consider in this paper the coupled
heat transfer process in a single deforming droplet and in the solid
phase during the spreading and recoiling from the moment of its
impact till losing a direct contact with the solid. Despite several
advances made in the field of Computational Fluid Dynamics,
modeling and simulation of these processes are still very challeng-
ing. The Volume-of-Fluid [1–5], Level set [6–10], Immersed
Boundary/Front Tracking [11–15] and the arbitrary Lagrangian
Eulerian [16–21] are the most commonly used methods for
tracking/capturing moving interfaces/boundaries.

Although several interface capturing/tracking methods have
been proposed in the literature, only a few numerical studies incor-
porated the thermodynamic behavior. In the early study [22],
MAC-type solution technique has been used for the computations
of a water droplet impinging on a flat surface above the Leidenfrost
temperature. However, the unsteady heat transfer computation
has been neglected in this study. A considerable number of numer-
ical simulations using the Volume-of-Fluid method have been
reported in the literature for droplets impinging on a hot surface
[23–29]. Also, numerical studies using the Level set method
[30,31] and the Immersed Boundary method [32,33] have been
reported in the literature. All these methods can be classified as
fixed grid (Eulerian) methods. Computations using the Lagrangian
approach for a liquid droplet impinging on a hot solid substrate
have been presented in [34]. To the best of the authors knowledge,
computations of a liquid droplet impinging on a hot solid substrate
using the arbitrary Lagrangian–Eulerian (ALE) approach in both
phases have not been reported in the literature.

In this paper, we present an accurate and efficient sharp inter-
face ALE finite element approach for the computation of a non-
isothermal liquid droplet impinging on a hot solid substrate. The
Marangoni force, the surface force, and the jumps in the material
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parameters are incorporated into the model very accurately since
the free surface and the liquid–solid interface are resolved by the
computational mesh in the ALE approach. Also, spurious velocities
arising often in other methods can be suppressed by using this
approach [35]. Further, we use the Laplace–Beltrami operator tech-
nique [36,37] to treat the curvature in a semi-implicit manner [38].
This technique allows us to include the equilibrium contact angle
into the model weakly [39]. Since the moving liquid–solid interface
is resolved by the computational mesh, the energy equation in
both the liquid and the solid phases can be solved by a one-field
formulation. This allows us also to develop a new technique for
computing the heat flux from the solid phase to the liquid phase
without differentiating the numerical solution.

The paper is organized as follows. In Section 2 we introduce the
governing equations for the fluid flow and the heat transfer in the
liquid and solid phases. Then, the complex coupled problem is for-
mulated in dimensionless quantities. Section 3 is devoted to the
ingredients of our numerical approach. First, we explain in detail
how the curvature approximation by the Laplace–Beltrami tech-
nique and the contact angle condition can be implemented in the
weak form of the Navier–Stokes equations. We derive a one-field
formulation for the temperature in the liquid–solid domain. Next
the ALE approach to handle the moving mesh is discussed. Then,
under the assumption of axisymmetry, the fully weak 3D formula-
tion is transferred to the weak axisymmetric formulation. The dis-
cretization in space and time, in particular, the semi-discretization
of the curvature term are given. Finally, we address the mesh han-
dling techniques at the liquid–solid interface and the inner mesh
update. Section 4 is concerned with numerical tests for varying
Reynolds, Weber, Peclét and Biot numbers showing the capabilities
of the new method. We shortly summarize the proposed numerical
method and the obtained results in Section 5.

2. Mathematical model

2.1. Governing equations for the fluid flow

We consider a liquid droplet impinging on a horizontal hot sub-
strate, see Fig. 1. The fluid is assumed to be incompressible; density
and viscosity are constant. The governing equations for the fluid
flow describing the sequence of spreading and recoiling of an
impinging droplet in the given time interval (0, I) are the time-
dependent incompressible Navier–Stokes equations

@u
@t
þ ðu � rÞu� 1

q
r � ðTðu;pÞÞ ¼ ge in XFðtÞ � ð0; IÞ; ð1Þ

r � u ¼ 0 in XFðtÞ � ð0; IÞ; ð2Þ
ΓSΩS

ΓF
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τF

τS
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νS
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θ

Fig. 1. Computational model for an impinging droplet on a hot solid substrate.
with the initial condition

uð�;0Þ ¼ u0 in XFð0Þ ð3Þ

and the boundary conditions given below. The time-dependent
domain of the deforming droplet is denoted by XFðtÞ. The set
XFðtÞ � ð0; IÞ is understood as fðx; tÞ 2 R4 : t 2 ð0; IÞ; x 2 XFðtÞg. The
boundary of the droplet satisfies @XFðtÞ ¼ CFðtÞ [ CSðtÞ, where CFðtÞ
and CSðtÞ are the free surface and the liquid–solid interface of the
droplet, respectively. Further, u is the velocity, p is the pressure, q
is the density, g is the gravitational constant, t is the time, e is an unit
vector in the opposite direction of the gravitational force,
u0ð0; 0;�uimpÞ is a given initial velocity and I is a given final time.
The stress tensor Tðu;pÞ for a Newtonian incompressible fluid is
given by

Tðu;pÞ :¼ 2lDðuÞ � pI; DðuÞi;j ¼
1
2

@ui

@xj
þ @uj

@xi

� �
;

with i; j ¼ 1; . . . ;3, where l denotes the dynamic viscosity, DðuÞ the
velocity deformation tensor and I the identity tensor. The kinematic
and force balancing conditions on the free surface CF are given by

u � mF ¼ w � mF on CFðtÞ; ð4Þ
Tðu;pÞ � mF ¼ rðTFÞKmF þrrðTFÞ on CFðtÞ: ð5Þ

Here, mF denotes the unit outer normal vector on the free surface, K
denotes the sum of the principal curvatures,r the tangential gradi-
ent (defined in Section 3.1), w the velocity of the computational
domain XFðtÞ; TF the temperature on CFðtÞ;rðTFÞ the temperature-
dependent surface tension. Let si;F ; i ¼ 1;2; denote tangential vec-
tors on the free surface CF(t). Then, (5) is equivalent to

mF � Tðu;pÞ � mF ¼ rðTFÞK; on CFðtÞ;
si;F � Tðu;pÞ � mF ¼ si;F � rrðTFÞ on CFðtÞ;

since the tangential gradient on CFðtÞ is perpendicular to mF . Fur-
ther, for simplicity we assume that the temperature-dependent sur-
face tension rðTFÞ follows a simple linear law

rðTFÞ ¼ rref � C1ðTF � Tref Þ; ð6Þ

where Tref is some reference temperature, rref is the surface tension
coefficient at the reference temperature and C1 > 0 is the negative
rate of change of surface tension with temperature. The changes
in the local surface temperature TFon the free surface induce varia-
tions in the surface tension. Due to these variations in the surface
tension, the fluid moves away from the region of low surface ten-
sion to the region of high surface tension. This effect is called
Marangoni convection. Note that for large TF the surface tension
(6) could become negative and the model would be no longer cor-
rect. In order to avoid this unphysical behavior we check in our
numerical computations whether the computed surface tension
values are in the range of validity of the law (6).

Next, for moving contact line problems the conventional no-slip
boundary condition at fixed walls cannot be used along the solid
surface. Imposing the no-slip boundary condition at the moving
contact line, where the free surface and the liquid–solid interface
meet, leads to an non-integrable force singularity at the contact
line [40–43]. Therefore, we use instead the Navier–slip boundary
condition [39,44–46] on the liquid–solid interface CSðtÞ

u � mS ¼ 0; u � si;S þ �lðsi;S � Tðu; pÞ � mSÞ ¼ 0: ð7Þ

Here, mS and si;S; i ¼ 1;2 denote the outer unit normal and tangential
vectors on the liquid–solid interface. Further, �l is the slip coeffi-
cient [39,47].

2.2. Heat transfer from the solid into the liquid phase

The heat transfer in the moving droplet and in the fixed solid
phase are described by the energy equation. In this study, we
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assume that the material properties such as densities, thermal con-
ductivities and specific heats are constant in the liquid and the
solid phases, respectively. The solid phase will be denoted by XS

and is fixed over time. However, due to the changing wetting area
CSðtÞ the non-wetted part CNðtÞ :¼ @XS n CSðtÞ of the boundary
along which we describe Neumann type boundary conditions
becomes time-dependent. The heat transfer in the liquid and solid
phase, respectively, is described by the energy equations

@TF

@t
þ u � rTF ¼

kF

cF
pq

DTF in XFðtÞ � ð0; IÞ; ð8Þ

@TS

@t
¼ kS

cS
pqS

DTS in XS � ð0; IÞ: ð9Þ

We complete (8) and (9) by the initial conditions

TFð�;0Þ ¼ TF;0 in XFð0Þ; TSð�;0Þ ¼ TS;0 in XS; ð10Þ

the boundary conditions at the free surface CFðtÞ and along the non-
wetting part of the solid CNðtÞ

�kF
@TF

@mF
¼ aFðTF � T1Þ on CFðtÞ;

@TS

@n
¼ 0 on CNðtÞ ð11Þ

and the transition conditions (continuity of temperature and heat
flux)

kF
@TF

@mF
¼ �kS

@TS

@mS
; TF ¼ TS on CSðtÞ: ð12Þ

Here, TF and TS are the temperatures in XFðtÞ and XS, respectively,
kF ; kS the conductivities, q;qS the densities, cF

p; c
S
p the specific heat

of the fluid and the solid. Finally, T1 denotes the temperature of
the surrounding gas, aF is the convection heat transfer coefficient
on the liquid–gas interface, and n is the outer normal on CNðtÞ.

2.3. Dimensionless form of the model equations

In this section we derive the dimensionless form of the coupled
Navier–Stokes and energy equations. We introduce the scaling fac-
tors L and U as characteristic length and velocity, respectively. Fur-
thermore, we define the dimensionless variables

~x ¼ x
L
; ~u ¼ u

U
; ~w ¼ w

U
; ~t ¼ tU

L
; ~I ¼ IU

L
; ~p ¼ p

qU2

and the dimensionless numbers (Reynolds, Weber, Froude and slip,
respectively)

Re ¼ qUL
l ; We ¼ qU2L

rref
; Fr ¼ U2

Lg
; b� ¼ �lqU:

We introduce a dimensionless stress tensor Sð~u; ~pÞ by

Sð~u; ~pÞ ¼ 1
qU2 Tð~u; ~pÞ ¼ 1

Re
@~ui

@~xj
þ @

~uj

@~xi

� �
� pdij

� �
i;j¼1;...;3

and the dimensionless temperature in the liquid phase

eT F ¼
TF � T1
Tref � T1

:

Writing the coupled system in the new dimensionless variables and
omitting the tilde afterwards we end up with the dimensionless
Navier–Stokes problem

@u
@t
þ ðu � rÞu�r � Sðu;pÞ ¼ 1

Fr
e in XFðtÞ � ð0; IÞ; ð13Þ

r � u ¼ 0 in XFðtÞ � ð0; IÞ; ð14Þ
u � mS ¼ 0 on CSðtÞ � ð0; IÞ; ð15Þ
b�ðsi;S � Sðu;pÞ � mSÞ ¼ �u � si;S on CSðtÞ � ð0; IÞ; ð16Þ
u � mF ¼ w � mF on CFðtÞ � ð0; IÞ; ð17Þ
with the initial condition

uð�;0Þ ¼ u0=U:

The dimensionless form of the normal stress boundary condition on
CF becomes

mF � Sðu; pÞ � mF ¼
1

We
1� C0ðTF � 1Þð ÞK ð18Þ

and the shear stress boundary condition reads

si;F � Sðu;pÞ � mF ¼ �
C0

We
si;F � rTF ; ð19Þ

where

C0 ¼
C1

rref ðTref � T1Þ
:

In order to write the energy equations in a dimensionless form,
we define in addition the dimensionless temperature in the solid
phase as

eT S ¼
TS � T1

Tref � T1
:

After transforming the energy equations as well as the initial,
boundary and transition conditions in dimensionless form we omit
the tilde and obtain the dimensionless energy equations in the
liquid and solid phase

@TF

@t
þ u � rTF �

1
PeF

DTF ¼ 0 in XFðtÞ � ð0; IÞ; ð20Þ

@TS

@t
� 1

PeS
DTS ¼ 0 in XS � ð0; IÞ; ð21Þ

respectively. The dimensionless initial conditions become

TFð�;0Þ ¼
TF;0 � T1
Tref � T1

in XFð0Þ; ð22Þ

TSð�;0Þ ¼
TS;0 � T1
Tref � T1

in XS: ð23Þ

Finally, the dimensionless thermal boundary and transition condi-
tions can be written as

� @TF

@mF
¼ BiTF on CFðtÞ � ð0; IÞ; ð24Þ

@TF

@mF
¼ � kS

kF

@TS

@mS
on CSðtÞ � ð0; IÞ; ð25Þ

TF ¼ TS on CSðtÞ � ð0; IÞ; ð26Þ
@TS

@n
¼ 0 on CNðtÞ � ð0; IÞ: ð27Þ

In the above equations, PeF ;PeS, and Bi denote the dimensionless
Peclet numbers in the fluid and solid, respectively, and Biot number,
given by

PeF ¼
LUcF

pq
kF

; PeS ¼
LUcS

pqS

kS
; Bi ¼ aFL

kF
:

3. Numerical scheme

We start with the weak form of the Navier–Stokes equations
and derive a weak one-field formulation of the energy equation.
Next, we describe the arbitrary Langrangian–Eulerian approach
to handle the equations on time-dependent domains. Then the dis-
cretization in space and time will be given. Finally in this section,
we discuss aspects of the mesh handling at the time-dependent
liquid–solid interface and within the domains XFðtÞ and XS.
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3.1. Weak form of the Navier–Stokes equations

We use the standard notations L2;H1 and ð�; �Þx for Sobolev
spaces and the inner product in L2ðxÞ and its vector-valued ver-
sions, respectively. We look for velocity and pressure in the spaces

V :¼ fv 2 H1ðXFðtÞÞ3 : v � mS ¼ 0 on CSðtÞg; ð28Þ
Q :¼ L2ðXFðtÞÞ; ð29Þ

thus the no penetration boundary condition u � mS ¼ 0 on liquid–
solid interface CSðtÞwill be implemented in both the ansatz and test
velocity spaces. Multiplying the momentum and mass balance
equations. (13) and (14) by test functions v 2 V and q 2 Q respec-
tively, integrating over XFðtÞ and applying the Gaussian theorem
for the part including the stress tensor lead us to the weak formu-
lation. In particular, the term including the symmetric stress tensor
can be written as

�
Z

XF

r�Sðu;pÞ �vdxþ
Z
@XF

v �Sðu;pÞ �mdc

¼
Z

XF

Sðu;pÞ :rvdx¼
Z

XF

1
2

Sðu;pÞ :rvdxþ
Z

XF

1
2

STðu;pÞ :rvdx

¼ 2
Re

Z
XF

DðuÞ : DðvÞdx�
Z

XF

pr�vdx: ð30Þ

Now, the free surface and liquid–solid boundary conditions will be
included in the weak form as follows. We move the boundary inte-
gral term in (30) to the right hand side and split it into integrals
over CS and CF

�
Z
@XF

v � Sðu;pÞ � mdc ¼ �
Z

CS

v � Sðu; pÞ � mSdcS

�
Z

CF

v � Sðu; pÞ � mF dcF : ð31Þ

Then, using the orthonormal decomposition

v ¼ ðv � mSÞmS þ
X2

i¼1

ðv � si;SÞsi;S on CS;

the no penetration condition (15) incorporated in (28) and the slip
with friction boundary condition (16), the integral over the liquid–
solid interface can be written as

�
Z

CS

v � Sðu;pÞ � mSdcS ¼ �
X2

i¼1

Z
CS

ðv � si;SÞsi;S � Sðu; pÞ � mSdcS

¼ 1
b�

X2

i¼1

Z
CS

ðu � si;SÞðv � si;SÞdcS: ð32Þ

Similarly, using the orthonormal decomposition

v ¼ ðv � mFÞmF þ
X2

i¼1

ðv � si;FÞsi;F on CF

and the boundary conditions (18) and (19), the integral over the
liquid–gas interface becomes

�
Z

CF

v � Sðu; pÞ � mF dcF ¼ �
Z

CF

X2

i¼1

ðv � si;FÞsi;F � Sðu;pÞ

� mFdcF �
Z

CF

ðv � mFÞ � mF � Sðu;pÞ

� mFdcF

¼ C0

We

Z
CF

X2

i¼1

ðv � si;FÞðsi;F � rTFÞdcF

� 1
We

Z
CF

MTF ðv � mFÞKdcF ; ð33Þ
where MTF ¼ ð1� C0ðTF � 1ÞÞ. The surface tension force given by the
second term in (33) contains the temperature dependent surface
tension coefficient and the curvature. Hence, the approximations
of the temperature and the curvature have to be very accurate in
order to avoid unphysical flows in the droplet. One of the popular
techniques is based on the replacement of the curvature vector
KmF by the Laplace–Beltrami operator applied to the identity idCF

followed by an integration by parts [36,37,48]. The main advantages
of this technique are

- the surface tension force can be computed for piecewise smooth
surfaces,

- only first derivatives of the basis functions are needed,
- the surface tension force can be treated semi-implicitly giving

additional stability,
- the contact angle at the moving contact line can be incorpo-

rated directly.

In order to explain this technique in more detail we need some facts
from differential geometry. Let U � R3 be an open set with CF � U.
For a scalar function f given on U, we define the components of the
tangential gradient by

ðrf Þi :¼ dif ¼ @if � ðmF � rf ÞmF;i; i ¼ 1;2;3:

It turns out that the restriction ofrf onto CFðtÞ depends only on the
values of f on CFðtÞ. The Laplace–Beltrami operator applied to f is
defined as

Df :¼ r � ðrf Þ ¼
X3

i¼1

diðdif Þ: ð34Þ

Its application to vector-valued function is understood in a compo-
nent-wise manner. We replace the curvature vector KmF in (33) by
the Laplace–Beltrami operator applied to the identity DidCF and
integrate by parts [49,50] to get

� 1
We

Z
CF

MTF v � mFKdcF ¼ �
1

We

Z
CF

MTF DidCF � v dcF

¼ 1
We

Z
CF

ridCF

: rðMTF vÞdcF �
1

We

Z
f
ðmf � ridCF Þ

�MTF vdf

¼ 1
We

Z
CF

ridCF

: ½MTFrv þ v �rMTF �dcF �
1

We

�
Z

f
mf �MTF vdf: ð35Þ

Here, we used mf � mF ¼ 0 such that mf � ridCF ¼ mf � ridCF ¼ mf. Note,
that the last term in (35), which does not appear for closed surfaces
CF , is an integral over the contact line f and mf is the co-normal vector
at the contact line which is normal to f and tangent to CF . Let sS be the
scaled projection of mF onto the plane CS such that jsSj ¼ 1 that means

sS :¼ mF � ðmF � mSÞmS

jmF � ðmF � mSÞmSj
:

Then, mf � sS ¼ cosðhÞwhere h is the contact angle at the moving con-
tact line. In order to incorporate the contact angle into the model,
we decompose the test function v into

v ¼ ðv � mSÞmS þ ðv � sSÞsS þ ðv � s?S Þs?S ;

where s?S is a unit vector perpendicular to mS and sS. Now, computing
the inner product mf � v in the last term of (35) we use v � mS ¼ 0 on CS

for all v 2 V and the orthogonality mf � s?S ¼ 0 of the co-normal to get
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Z
f
mf �MTF vdf ¼

Z
f
ðmf � sSÞðv � sSÞMTF df

¼
Z

f
cosðhÞMTF v � sSdf: ð36Þ

Using the derivations (30)–(33), (35) and (36) the weak form of
the Navier–Stokes equation reads:

For given uð0Þ, find ðu; pÞ 2 V � Q such that

@u
@t
;v

� �
XF

þ aðu; u;vÞ � bðp;vÞ þ bðq;uÞ ¼ f ðK; vÞ ð37Þ

for all ðv; qÞ 2 V � Q . Here, the forms a; b and f are given by

aðû; u;vÞ ¼
Z

XF

2
Re

DðuÞ : DðvÞ þ ðû � rÞu � vdx

þ 1
b�

Z
CS

X2

i¼1

ðu � si;SÞðv � si;SÞdcS;

bðq;vÞ ¼
Z

XF

qr � vdx;

f ðK; vÞ ¼ 1
Fr

Z
XF

e � vdxþ 1
We

Z
f

cosðhÞMTF v � sSdf

� 1
We

Z
CF

ridCF : ½MTFrv þ v �rMTF �dcF

� C0

We

Z
CF

X2

i¼1

ðv � si;FÞðsi;F � rTFÞdcF :
3.2. Weak form of the energy equation

We start with multiplying (20) with a test function wF 2 H1ðXFÞ,
integrating by parts, incorporating the boundary condition (24)
and using the transition condition (25) to getZ

XF

@TF

@t
wF dxþ

Z
XF

ðu � rÞTFwF dxþ 1
PeF

Z
XF

rTF � rwF dx

þ
Z

CF

Bi
PeF

TFwF dcF

¼ � 1
PeF

kS

kF

Z
CS

@TS

@mS
wFdcF : ð38Þ

Similarly, we multiply (21) with a test function wS 2 H1ðXSÞ, inte-
grate by parts and incorporate the boundary condition (27) to
obtainZ

XS

@TS

@t
wSdxþ 1

PeS

Z
XS

rTS � rwSdx ¼ 1
PeS

Z
CS

@TS

@mS
wSdcS: ð39Þ

In order to write the energy equations (38) and (39) in a one-field
formulation in the domain XðtÞ :¼ XFðtÞ [XS [ CSðtÞ, we define

uTðx; tÞ ¼
uðx; tÞ if x 2 XFðtÞ;
0 if x 2 XS;

�
Tðx; tÞ ¼

TFðx; tÞ if x 2 XFðtÞ;
TSðx; tÞ if x 2 XS;

�
PeðxÞ ¼

PeF if x 2 XFðtÞ;
kF
kS

PeF if x 2 XS;

(

T0ðxÞ ¼
TF;0ðxÞ if x 2 XFðtÞ;
TS;0ðxÞ if x 2 XS:

�
Moreover, let gðxÞ ¼ 1 in XFðtÞ and gðxÞ ¼ kSPeS=ðkFPeFÞ in XS. Then,
multiplying (39) with kSPeS=ðkFPeFÞ and adding to (38) we end up
with the weak one-field formulation of the energy equation:

For given Xð0Þ;uT and T0, find T 2 H1ðXÞ such that for all
w 2 H1ðXÞ
g
@T
@t
;w

� �
X

þ aTðuT ; T;wÞ þ bTðT;wÞ ¼ 0: ð40Þ

The forms aT and bT are given by

aTðuT ; T;wÞ ¼
Z

X

1
Pe
rT � rwdxþ

Z
X
ðu � rÞTwdx; bTðT;wÞ

¼ Bi
Z

CF

1
Pe

Twdx:
3.3. Arbitrary Lagrangian Eulerian (ALE) approach

We consider the impinging droplet problem on a micro scale
and exclude topological changes in XFðtÞ. Thus, the Arbitrary
Lagrangian–Eulerian (ALE) approach is an appropriate tool to han-
dle the free surface of the droplet. In the ALE approach, the free
surface is resolved by the computational mesh. It allows further
to suppress spurious velocities in free surface flows [35].

For each t 2 ð0; IÞ, we define a family of ALE mappings

At : bXF ! XFðtÞ; AtðYÞ ¼ XðY; tÞ; Y 2 bXF ;

where bXF is a reference domain of XFðtÞ. In practical computations,
the initial domain or the previous time-step domain is often taken
as the reference domain. We assume that the ALE mapping At is an
homeomorphism, i.e. continuous with continuous inverse A�1

t . Fur-
ther, we assume that the mapping

t ! XðY; tÞ; Y 2 bXF

is differentiable almost everywhere in the time interval ð0; IÞ. For
any scalar function v 2 C0ðXFðtÞÞ, we define their corresponding
function v̂ 2 C0ðbXFÞ as follows:

v̂ :¼ v � At ; with v̂ðY; tÞ ¼ vðAtðYÞ; tÞ:

The time derivative of v 2 C0ðXFÞ on the reference frame

@v
@t

����bXF

: XFðtÞ � ð0; IÞ ! R

is defined as

@v
@t

����bXF

ðX; tÞ ¼ @v̂
@t
ðY; tÞ; Y ¼ A�1

t ðXÞ:

We define the domain velocity w as

wðX; tÞ ¼ @X
@t

����bXF

:

Now, applying the chain rule to the time derivative of v � At on the
reference frame we get

@v
@t

����bXF

¼ @v
@t

����
X
þ @X
@t

����bXF

� rXv ¼ @v
@t

����
X
þw � rXv: ð41Þ

Thus, to rewrite any equation into the non-conservative ALE form,
the time derivative has to be replaced with the time derivative on
the reference frame and a convective domain velocity term has to
be added. Now, using (41) the variational form of the Navier–Stokes
equation (37) in the ALE frame reads:

For given Xð0Þ;uð0Þ, find ðu; p;wÞ 2 V � Q � V such that for all
ðv; qÞ 2 V � Q

@u
@t

� ����bXF

;v

!
XF

þ aðu�w; u;vÞ � bðp;vÞ þ bðq;uÞ ¼ f ðK; vÞ

Now, to rewrite the energy equation in an ALE forms, we need an
extension of the ALE mapping on bXF onto bX with the associated
domain velocity wT where wT jXF

¼ w. Here, bX is a reference domain
of XðtÞ. The variational form of the energy equation (40) in the ALE
frame reads:
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For given uT ;wT ; Tð0Þ, find T 2 H1ðXÞ such that for all w 2 H1ðXÞ

g
@T
@t

� ����bX ;w
�

X

þ aTðuT �wT ; T;wÞ þ bTðT;wÞ ¼ 0:
Fig. 2. Mesh adaptive method.
3.4. 3D-axisymmetric formulation

The computational cost can be drastically reduced when we
restrict to a 3D-axisymmetric model. There is no need to start again
with the partial differential equation in cylindrical coordinates and
derive a suitable variational formulation. Instead we generate the
3D-axisymmetric weak form in the 2D-meridian domain directly
from the weak form in 3D-Cartesian coordinates. Introducing cylin-
drical coordinates, the volume, surface and line integrals in 3D are
transformed into area integrals, line integrals and a functional in
the contact point as described for interface flows in [21]. In this
way the space dimension is reduced by one. Note that this approach
leads naturally to boundary conditions along the ’artificial rota-
tional axis’ which are already partially included in the weak form.

3.5. Discretization in space and time

We use the fractional-step-H scheme as time-discretization
[51, Section 3.2] which is strongly A-stable and second order accu-
rate on fixed domains. One step in the fractional-step-H scheme
consists of a clever combination of three H schemes with different
step sizes and different H. In order not to overload the representa-
tion, in the following we will denote by ðtn; tnþ1Þ a subinterval in
the fractional-step-H scheme. We advect the free surface and
interface points Xn on CFðtnÞ [ CSðtnÞ solving

dX
dt
¼ uðX; tÞ

with the implicit Euler scheme

Xnþ1 ¼ Xn þ ðtnþ1 � tnÞunþ1;

to obtain the new position of the free surface and interface points,
respectively. More details on the mesh handling are given in the
next two subsections.

Investigations in [52] show that an implicit handling of the cur-
vature term seem to be needed to hope for unconditional stability.
Thus, as in [48,53], we use a semi-implicit approximation of the
curvature term (first term in (35))

1
We

Z
CF ðtnþ1Þ

MTFridCF ðtnþ1Þ : rvdcF

	 1
We

Z
CF ðtnÞ

MTF ridCF ðtnÞ þ dtnunþ1
� �

: rvdcF ;

with the time step dtn ¼ tnþ1 � tn. Consequently, the curvature term
is splitted into an explicit term on the right hand side of the weak
formulation (37)

� 1
We

Z
CF ðtnÞ

MTn
F
ridCF ðtnÞ : rvdcF ;

where Tn
F :¼ TFðtnÞ, and an implicit term on the left hand side

dtn

We

Z
CF ðtnÞ

MTn
F
runþ1 : rvdcF :

Note that this term on the left hand side is symmetric and positive
semi-definite and – compared with a fully explicit approach –
improves the stability of the discrete system.

Since in the ALE approach the computed velocities are used to
move the surface and interface points, high accuracy is required.
Further, mass should be conserved and spurious velocities – if
there are some – should be suppressed. Therefore, we use
second–order inf–sup stable finite element approximations
avoiding spurious pressure oscillations [54]. Continuous pressure
approximations often generate spurious velocities. In order to
suppress them discontinuous pressure approximations are a good
choice [35]. But to guarantee the inf–sup stability for discontinu-
ous, piecewise linear pressure approximations on arbitrary shape
regular families of meshes we have to enrich the space of
continuous, piecewise quadratic functions by cubic bubble
functions. We denote this pair shortly as ðPþ2 ; P

disc
1 Þ and use it for

the approximation of the velocity components and the pressure.
The good mass conservation properties are lying on the fact that
up to the first integral moments the divergence is elementwise
vanishing. The temperature is approximated in X by the standard
continuous, piecewise quadratic P2 element.
3.6. Mesh handling at the liquid–solid interface

In the droplet deformation problem, the free surface vertices
adjacent to the contact line may reach the solid surface in the next
time step during the droplet spreading, see Fig. 2. Further, the ver-
tices on the liquid–solid interface can move in the tangential direc-
tion due to the slip with friction boundary condition. This leads to
non-matching grid along the liquid–solid interface if the mesh in
the solid domain would be fixed. The liquid–solid interface can
be handled by either a non-matching or a matching grid. In the
non-matching grid, it is enough to find the displacement of the
liquid domain and the domain velocity in the solid phase will be



676 S. Ganesan et al. / International Journal of Heat and Mass Transfer 78 (2014) 670–687
zero. In the matching grid, the displacement of the solid domain
also has to be calculated due to the movement of the vertices on
the liquid–solid interface. Thus, the domain velocity will be
non-zero in solid phase which will induce the domain velocity con-
vection term in the energy equation of the solid phase. In order to
handle the non-matching grid at the liquid–solid interface, the mor-
tar finite element method could be used. However, then we would
get mortar spaces of time-dependent dimension which are not sim-
ple to realize, whereas no special method is needed in the case of a
matching grid. That is why we prefer to use matching grids.

Let us explain in more detail the implemented mesh manipula-
tion technique, which maintains a matching grid when a free sur-
face vertex reaches the solid surface. Every time step, after moving
the mesh, we calculate the distance between the solid surface and
the free surface vertex adjacent to the solid surface. If the distance
is less than 10�8 or if the free surface vertex is penetrated into the
solid surface, we do the following steps to maintain a matching
grid before continuing with the next time step:

- Move the free surface vertex perpendicularly to the solid sur-
face and change its type to a contact line (point) vertex. Here,
we could move the free surface vertex using the fluid velocity
but the vertex is already very close (10�8) to the solid surface
and for simplicity we move it perpendicularly to the solid sur-
face, see Fig. 2, top and middle.

- Delete the free surface edge and the solid edge on which the
free surface vertex incident, see Fig. 2, middle.

- Reconnect all edges associated with the right side vertex of the
solid edge to the moving contact line vertex.

- Generate a new liquid–solid interface edge with the old and
new contact line vertex, see Fig. 2, bottom.

- Construct new finite element spaces for the velocity, pressure
and temperature on the manipulated mesh.

- Map the nodal values of old finite element functions on the nodal
values of the new finite element functions without interpolation.

- Impose the no penetration condition by setting the normal
component of the velocity to zero for the degrees of freedom
associated with the newly generated liquid–solid interface
edge.

- Take the average value from the free surface temperature val-
ues and the solid surface temperature values for the tempera-
ture degrees of freedom on the newly generated liquid–solid
interface edge.

Due to the above mesh manipulation approach, the mesh at the
liquid–solid interface remains fitted and thus no mortar (or other)
technique is needed. But, due to the tangential movement of the
liquid–solid vertices, the displacement of inner points in the solid
phase has to be recalculated and this induces a domain velocity
convection term in the energy equation of the solid phase. Note,
that the mesh manipulation also guarantees a fixed number of cells
but only the number of degrees of freedom along the liquid–solid
interface and along the free surface may change.

3.7. Linear elastic mesh update

In the elastic mesh update, we calculate the displacement vec-
tors subject to the displacement of the boundary in each time step.
The displacement vector Wnþ1 in the domains bXFðtnÞ and bXS are
obtained by solving linear elasticity equations. For a given bound-
ary displacement !nþ1, find the displacement Wnþ1such that

r � TðWnþ1Þ ¼ 0 in bXðtnÞ [ bXS

Wnþ1 ¼ !nþ1 on CFðtnÞ [ CSðtnÞ [ CNðtnÞ
ð42Þ

where
Tð/Þ ¼ k1ðr � /ÞIþ 2k2Dð/Þ:

Here, k1 and k2 are Lame constants. To solve problem (42), we use
the same triangulation T h of the domain which has been taken
for the flow and temperature variables and apply a finite element
method. The discrete form of Eq. (42) is derived in the usual way:

Find Wnþ1
h 2Wn

h :¼ H1ðbXðtnÞ [ bXSÞ such that Wn
h ¼ !n

h on
CFðtnÞ [ CSðtnÞ [ CNðtnÞ and for all / 2Wn

h;0 the relationZ
bXhðtnÞ

DðWn
hÞ : Dð/Þ þ C1

Z
bXhðtnÞ

r �Wn
hr � / ¼ 0 ð43Þ

holds. Here C1 ¼ k1=k2 is a positive constant, which in all our calcu-
lations equals 1. The solution of (43) is approximated by continu-
ous, piecewise linear P1 triangular finite elements since we have
to find the displacements of the vertices only and want to have
low costs. Also, note that we used the previous time step domain
as the reference domain to calculate the mesh velocity. We refer
to [55] for a priori bounds and the regularity requirements of map-
pings in (43).

3.8. Calculating the heat flux across the liquid–solid interface

One of the main objectives of this modeling is to study the heat
transfer from the solid phase into the liquid phase during the
spreading and recoiling of the droplet for better understanding of
the cooling effects. Thus, the crucial parameter in this study is
the heat flux across the liquid–solid interface CS from the solid
phase into the liquid phase. The heat flux (Q) quantifies the cooling
effect in the solid phase, and one of the main objective in spray
cooling is to maximize Q. Therefore, the heat flux has to be calcu-
lated very accurately. In this section, we present an accurate tech-
nique to calculate the heat flux based on the ideas given in [56] for
a stationary domain. In the time interval ðtn; tnþ1Þ the heat flux over
CS is given by

Q :¼
Z tnþ1

tn

Z
CS

1
PeS

@TS

@mS
dcS ¼

Z tnþ1

tn

Z
@XS

1
PeS

@TS

@mS
dcS; ð44Þ

since @TS
@n

��
@XSnCS

= 0, see (11). Let us consider the Dirichlet problem
written in ALE frame

@TS

@t

����bXS

�w � rTS �r �
1

PeS
rTS

� �
¼ 0 in XS � ðtn; tnþ1Þ;

TSðX; tnÞ ¼ TnjXS
in XS;

TS ¼ Tj@XS
on @XS;

ð45Þ

where TS on @XS is known as the trace of T. Now, multiplying (45)
by v 2 H1ðXSÞ and integrating by parts we get

@TS

@t

� ����bXS

�w � rTS; v
!

XS

þ 1
PeS
rTS;rvð ÞXS

¼ 1
PeS

Z
@XS

@TS

@mS
vdc:

Since the left hand side is equal to zero for all test functions
v 2 H1

0ðXSÞ (which is just the weak formulation of the Dirichlet
problem (45)), the quantity of interest (right hand side for v ¼ 1
on @XS) is independent of the special choice of

v 2 fw 2 H1ðXSÞ : w ¼ 1 on @XSg:

Now integrating over one substep ðtn; tnþ1Þ of the fractional-step-H
scheme, we get for all v 2 H1ðXSÞ with v ¼ 1 on @XS

Q :¼ 1
PeS

Z tnþ1

tn

Z
@XS

@TS

@mS
dcdt

¼ Tnþ1
S � Tn

S ; v
� 	

XS

þ
Z tnþ1

tn

1
PeS
ðrTS;rvÞXS

� ðw � rTS;vÞXS


 �
dt:

In the discrete case, we define
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Q h : ¼ Tnþ1
S;h � Tn

S;h; vh

� 	
XS

þHdtn
1

PeS
rTnþ1

S;h ;rvh

� 	
XS



� wnþ1 � rTnþ1

S;h ;vh

� 	
XS

�
þ ð1�HÞdtn

1
PeS

rTn
S;h;rvh

� 	
XS



� wn � rTn

S;h; vh

� 	
XS

�
;

where H is the corresponding value from the substep in the frac-
tional-step-H scheme. Note that, as in the continuous case, Qh is
independent from the special choice of the finite element function
vh 2 H1ðXSÞwith vh ¼ 1 on @XS. Let u1;u2; . . . ;uN be the basis func-
tion associated with the inner nodes of XS and indices from N þ 1 to
N þM be the basis functions associated with the boundary @XS

nodes. Then, with vh as above and

TS;h ¼
XNþM

j¼1

Tjuj vh ¼
XNþM

i¼Nþ1

ui:

Note that vh 
 1 at all boundary nodes on @XS and vh 
 0 at all
inner nodes in XS. Thus, we get

Q h ¼
XNþM

i¼Nþ1

XNþM

j¼1

ðTnþ1
j � Tn

j Þðuj;uiÞXS
þHdtn Tnþ1

j
1

PeS
ðruj;ruiÞXS


�
�ðwnþ1 � ruj;uiÞXS

i
þ ð1�HÞdtn Tn

j
1

PeS
ðruj;ruiÞXS



� wn � ruj;ui

� 	
XS

��
:

Therefore, to calculate the heat flux, we need only the mass and the
stiffness matrices, but these matrices have been generated already
in the assembling process. From the generated matrices
Mij ¼ ðuj;uiÞXS

and

A‘
ij ¼

1
PeS
ðruj;ruiÞXS

� w‘ � ruj;ui

� 	
XS

for ‘ 2 fn;nþ 1g;

we compute the vectors

mðjÞ ¼ uj;
XNþM

i¼Nþ1

ui

 !
XS

¼
XNþM

i¼Nþ1

ðuj;uiÞXS
a‘ðjÞ

¼
XNþM

i¼Nþ1

1
PeS
ðruj;ruiÞXS

� w‘ � ruj;ui

� 	
XS


 �
:

More precisely, we first initialize the vectors mðjÞ ¼ 0 and a‘ðjÞ ¼ 0
for j ¼ 1; . . . ;N þM. Then, for each nodal value Tj on @XS, that is, for
each Tj; j ¼ N þ 1; . . . ;N þM, we identify the jth column in the matri-
ces M and A‘. After that we set

mðjÞ ¼
XNþM

i¼Nþ1

Mi;j; a‘ðjÞ ¼
XNþM

i¼Nþ1

A‘
i;j:

Note that these vectors have to be calculated before doing any
manipulation for imposing boundary conditions. Finally, we com-
pute the heat flux as

Q h ¼ ðTnþ1 � TnÞ �mþHdtnTnþ1 � anþ1 þ ð1�HÞdtnTn � an: ð46Þ

Note that the basis functions on the liquid–solid interface have sup-
port on both liquid and solid phases. However, to evaluate Qh we
need the contribution only from one side, and we always consider
the support of the basis functions from the solid phase in our
calculations.

4. Numerical results

In this section, we present an array of numerical results for a
3D-axisymmetric non-isothermal liquid droplet impinging on a
horizontal hot solid substrate. Simulations of isothermal impinging
droplets have been presented in [21,38,39]. To demonstrate the
accuracy of the proposed numerical model, we first compare the
simulated results with experimental data given in [57,58], and then
the mesh convergence study is performed. After that, we study the
influence of the Reynolds number on the flow dynamics of the
deforming non-isothermal droplet on a hot substrate. Finally, we
run an array of computations to study the thermal effects on the flow
dynamics of the droplet by varying the Weber, Peclet, and Biot num-
bers. Unless specified, we used a constant time step 0:0005; b� ¼ 1
and C0 ¼ 0:002 in all computations. The total number of degrees of
freedom of an impinging droplet problem varies during the reme-
shing, however we have around 14,000 degrees of freedom initially
in all test cases with h ¼ 0:01557859. Further, a typical simulation of
impinging droplet takes approximately nine hours for computing
until the dimensionless time T ¼ 12:5 using the Intel(R) Core(TM)
i7–2600 CPU at 3.40 GHz with 8 GB memory.

4.1. Validation

We first compare the numerically obtained wetting diameter
and the apex height of an impinging water droplet with the exper-
imental results given in [57]. We consider a water droplet of diam-
eter d0 ¼ 1:29� 10�3 m impinging on a polished silicon surface
with the pre-impact speed of uimp ¼ 1:18 m/s, polished test case
in Table 1 of [57]. We consider the non-heated case with the equi-
librium contact angle he ¼ 46�. Using L ¼ d0 and U = 1.18 m/s as
characteristic values, we get Re ¼ 1522;We ¼ 25 and Fr ¼ 110.
Computations are performed with b� ¼ 150, and the initial mesh
size is h ¼ 0:01557859. The computationally obtained wetting
diameter and the apex height of the droplet are compared in
Fig. 3 with the experimental results. The droplet attains a maxi-
mum dimensionless wetting diameter of 2.1728, and then starts
to recoil before attaining the equilibrium state. The wetting diam-
eter fits very well, both qualitatively and quantitatively, with the
experimental result even in the recoiling stage. In experiments,
an oscillating behavior in the apex height of the droplet has been
observed, and it could be due to the capillary waves on the free
surface. The numerically obtained apex height curve is more
damped, even though the qualitative behavior is similar to
experiments. The damping effect has also been observed in the Vol-
ume–of–Fluid simulations of 3D–axisymmetric droplets with a
dynamic contact angle model, see Fig. 10 in [28]. The axisymmetric
assumption in the numerical model could be the reason for this
damping effect, and thus a full 3D simulation has to be used in order
to capture the surface capillary waves more accurately. To support
our argument, we consider another experiment reported in [58]
with no capillary waves on the free surface. A water droplet of diam-
eter d0 ¼ 2:7� 10�3 m with We ¼ 90 and he ¼ 100� is considered.
The numerically obtained wetting diameter and the apex height of
the droplet are depicted in Fig. 4. The obtained wetting diameter
and the apex height are in very good agreement, both qualitatively
and quantitatively during the spreading and recoiling stages, with
the experimental results reported in Fig. 6 and 7 of [58].

We next perform the mesh convergence study for the proposed
numerical scheme. Consider a hemispherical water droplet of
diameter d0 ¼ 1:29� 10�3 m with the equilibrium contact angle
he ¼ 80� on a cylindrical substrate. We assume that the droplet is
in rest initially. Further, the height and diameter of the solid cylin-
der are 5� 10�4 m and 3:8� 10�2 m respectively. Using L ¼ d0 and
U = 1.18 m/s as characteristic values, we get Re ¼ 1522;We ¼ 25
and Fr ¼ 110. We run an array of simulations with a fixed surface
tension by assuming TF ¼ TS ¼ 0 K to study the mesh convergence
of the flow solver. The initial mesh (Level 0) consists of 25 vertices
on the free surface with h ¼ 0:06282152, and the successive
mesh levels are generated by uniformly refining the initial mesh.
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Fig. 3. Comparison with experimental results. (a) wetting diameter, and (b) apex
height of a liquid droplet with he ¼ 46� , Re = 1522, We = 25 and Fr = 110.
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Fig. 4. Comparison with experimental results. (a) wetting diameter, and (b) apex
height of a water droplet with he ¼ 100� , We = 90.
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All computations are performed with the slip coefficient
b� ¼ 0:55=h, where h is the mesh size, and with the time step
0.0005 (Level 0 to 3) and 0.0001 (Level 4), respectively.

Since the initially contact angle (90� due to hemispherical
shape) and wetting diameter are not in equilibrium, the droplet
slowly starts to oscillate and attains it equilibrium value. The
obtained dynamics of the wetting diameter and the dynamic con-
tact angle in all five mesh levels look similar in Fig. 5(a) and (c). A
close-up look, however, at the maximal wetting diameter value
Fig. 5(b) clearly shows the convergence behavior. A similar mesh
convergence behavior has been observed in the dynamic contact
angle, see Fig. 5(c) and (d).

We finally perform the mesh convergence study on the heat
transfer using the same example with different initial temperature
in the solid substrate. In this study we consider the first three mesh
levels with the time step 0.0005 and b� ¼ 0:55=h. Further, we used
PeF ¼ PeS ¼ 1. The obtained heat flux and the total heat flux over
time in different mesh levels are presented in Fig. 6. The conver-
gence (in space) of the heat transfer are clearly seen in Fig. 6.
4.2. Influence of the Reynolds number on the flow dynamics

To study the influence of the Reynolds number on the flow
dynamics of a non-isothermal water droplet impinging on a hot solid
substrate, we consider a droplet of diameter d0 ¼ 2:7� 10�3 m. Fur-
ther, the following material parameters are used: the density
q = 1000 kg/m3, the dynamic viscosity l = 0.001 Ns/m2, the surface
tension r = 0.073 N/m, the equilibrium contact angle he ¼ 30�. Also,
we assume that uimp = 1.54 m/s, TF;0 = 298 K, TS;0 = 328 K, T1 = 298 K,
Tref = 323 K (temperature of the fluid surface, the solid surface, the
atmospheric and the reference, respectively). Using L = d0=2 and
U = uimp as characteristic values, we get Re ¼ 2079;We ¼ 43; Fr
¼ 179;PeF ¼ 10;PeS ¼ 100;Bi ¼ 0:000058 for the considered mate-
rial parameters. In order to study the influence of the Reynolds num-
ber, we considered four variants: (i) Re = 260, (ii) Re ¼ 520, (iii)
Re ¼ 1040 and (iv) Re ¼ 2079 by varying the viscosity l.

We first present the contours of the pressure, velocity, vorticity,
and the temperature distribution for the high Reynolds number
case Var (iv). Fig. 7 depicts the pressure contours in the droplet
of Var (iv) at different instances (dimensionless time)
t = 0:1;1:0;2:0;8:0;16;25. Initially, the pressure variation is large
near the contact line. However, the distribution of pressure
becomes almost uniform toward the end of simulation. Next, the
contour lines of the magnitude of the velocity for the same variant
are depicted in Fig. 8. The arrows in each picture represent the flow
direction. The vorticity contours in the 3D-axisymmetric imping-
ing droplet during the sequence of spreading and recoiling are
depicted in Fig. 9. The observed range of vorticity is high in the
high Reynolds number variant in comparison with the low Rey-
nolds number Var (i).

Next, the computationally obtained sequence of droplets in Var
(i) and Var (iv) at different instances (dimensionless time)
t = 1:0;8:0;16;25, are depicted in Figs. 10 and 11 with the solid
substrate. The colors in the pictures represent the temperature dis-
tribution during the droplet deformation over time. Initially, the
dimensionless temperature in the droplet is zero, whereas the tem-
perature in the solid is 1.2143. In the high Reynolds number case,
Var (iv), the wetting diameter of the droplet is larger, and thus the
droplet covers more solid substrate and absorb more heat from the
solid substrate. The total heat flux from the solid phase into the
liquid phase will be studies in the Sections 4.4 and 4.5.

Next, the obtained wetting diameter and the dynamic contact
angle in all four variants over time are presented in Fig. 12. As
expected, the wetting diameter increases when the Reynolds
number increase. The maximum wetting diameter and the time
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taken to obtain it are presented in Fig. 13. We can observe that the
maximum wetting diameter is nonlinear with respect to the Rey-
nolds number, see Fig. 13. A similar behavior is observed in the
time taken to attain the maximum wetting diameter. The dynamic
contact angle in all four variants reach the equilibrium value
almost after the dimensionless time t = 10, see Fig. 12. Further,
the maximum relative mass loss in the liquid droplet occurs in
Var (iv), and it is 0.42% which shows the accuracy of the numerical
scheme.

Remark 1. Since the contact point and the free surface points
move with the discrete fluid velocity, a small change in the relative
velocity between the contact point and the free surface point next
to it will induce wiggles in the dynamics contact angle calculations.
Note that the free surface point of the droplet may reach the solid
substrate (rolling motion) during spreading. These are the reasons
for the wiggles in the curves of Fig. 12. Also, note that in our
calculations, the angle between the solid substrate and the first
free surface point is calculated as the dynamic contact angle at
every time-step.
4.3. Influence of the Weber number on the flow dynamics

To study the influence of the surface tension on the flow
dynamics, we vary the Weber number and fix the other dimension-
less numbers. We consider the following four variants: (i)
We ¼ 43, (ii) We ¼ 90, (iii) We ¼ 140, and (iv) We ¼ 190 by vary-
ing the surface tension. Further, we used the fixed numbers
Re ¼ 2079; Fr ¼ 179, PeF ¼ 10;PeS ¼ 100, and Bi ¼ 0:000058 in all
variants. Also, we set the equilibrium contact angle
he ¼ 30�; TF;0 ¼ 298 K; TS;0 ¼ 328 K, T1 = 298 K, Tref = 323 K.

The computationally obtained wetting diameter and dynamic
contact angle over time for all four variants are presented in
Fig. 14. Since the surface tension will be large in the Var (i), the
maximum wetting diameter is small. As expected, the maximum
wetting diameter increases when the Weber number increase.
The dynamic contact angle in all four variants reach the equilib-
rium value almost after the dimensionless time t = 1. However,
more oscillations have been observed in Var (iv). Since the surface
tension coefficient is very small (less rigid) in this variant, more
rolling motion is observed while spreading. Next, the maximum
wetting diameter and the time taken to obtain it are presented in
Fig. 15. As in the Reynolds number case, the maximum wetting
diameter is nonlinear with respect to the Weber number, see



Fig. 7. Pressure contours in the impinging droplet with he ¼ 30� , We = 43, Fr = 179 during spreading and recoiling. Var (iv) Re = 2079. The dimensionless timing from the top:
t ¼ 0:1;1:0;2:0;8:0;16;25.
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Fig. 8. Velocity (magnitude) contours in the impinging droplet with he ¼ 30�;We ¼ 43; Fr ¼ 179 during spreading and recoiling. Var (iv) Re = 2079. The dimensionless timing
from the top: t ¼ 0:1;1:0;2:0;8:0;16;25.
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Fig. 9. Vorticity contours in the impinging droplet with he ¼ 30� ;We ¼ 43; Fr ¼ 179 during spreading and recoiling. Var (iv) Re=2079. The dimensionless timing from the top:
t ¼ 0:1;1:0;2:0;8:0;16;25.
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Fig. 10. Sequence of images of a liquid droplet impinging on a hot solid substrate
with he ¼ 30�;We ¼ 43; Fr ¼ 179. Var (i) Re = 260. The dimensionless timing from
the top: t ¼ 1:0;8:0;16;25.

Fig. 11. Sequence of images of a liquid droplet impinging on a hot solid substrate
with he ¼ 30�;We ¼ 43; Fr ¼ 179. Var (iv) Re = 2079. The dimensionless timing from
the top: t ¼ 1:0;8:0;16;25.
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Fig. 15. Further, the maximum relative mass loss in the liquid drop-
let is 0.4% and it occurred in Var (iv).

4.4. Influence of the solid Peclet number on the flow dynamics

In this section we study the influence of the solid Peclet number on
the heat transfer. We consider five variants (i) PeS = 50, (ii) PeS = 100,
(iii) PeS = 250, (iv) PeS = 350 and (v) PeS = 400 by varying the heat
conductivity of the solid. Further, we use fixed dimensionless
numbers Re ¼ 2079; Fr ¼ 179;We ¼ 43;Bi ¼ 0:000058;PeF ¼ 10.
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Reynolds numbers with fixed We = 43 for a liquid droplet.
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The fluid flow indirectly depends on the temperature thorough
the surface tension. A change in the local surface temperature T on
the free surface induce Marangoni convection. However, in all
variants the surface temperature variation is not high. Thus, the
flow dynamics is same in all five variants of the solid Peclet number,
see the wetting diameter and the dynamic contact angle over time in
Fig. 16.

Next, we use the new method in Section 3.8 for calculating the
heat flux ðQhÞ and the total heat flux (sum over all time intervals)
across the liquid–solid interface. The results for all five variants are
presented in Fig. 17. Though, the wetting area is same in all vari-
ants, the heat flux varies. The heat flux is larger in the small solid
Peclet number Var (i), whereas the heat flux is smaller in the large
solid Peclet number Var (v). It is interesting to note that the heat
flux is same in all five variants when the wetting diameter is large,
say around the dimensionless time t = 9, see Fig. 17. During the
recoiling, we can see the reverse effect, that is, the heat flux is less
in the small solid Peclet number case Var (i), and it approaches zero
faster than the other variants. This behavior can clearly be seen in
the total heat flux, Fig. 17 (bottom), where there is almost no
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Fig. 17. Heat flux (a) and total heat flux (b) over a liquid–solid interface with
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Fig. 18. Wetting diameter (a) and dynamic contact angle (b) of a liquid droplet with
he ¼ 30�;Re ¼ 3750;We ¼ 128; Fr ¼ 425, impinging on a hot solid substrate. Vari-
ants of Biot number (i) Bi = 0.001, (ii) Bi = 0.1, (iii) Bi = 1.
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Fig. 19. Influence of the Biot number on the heat flux (a) and on the total heat flux
(b) with Re = 3750, We = 128, Fr = 425 (i) Bi = 0.001, (ii) Bi = 0.1, (iii) Bi = 1.
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variation in the total heat flux of Var (i) after the dimensionless
time t = 10.

4.5. Influence of the Biot number on the flow dynamics

In this section we study the influence of the Biot number on the
heat flux. We consider a droplet of diameter d0 ¼ 3:0� 10�3 m.
Further, the following material parameters are used: the density
q = 1000 kg/m3, the dynamic viscosity l = 0.001 Ns/m2, the surface
tension r = 0.073 N/m, the equilibrium contact angle he = 30�. Also,
we assume that uimp ¼ 2:5 m/s, TF;0=300 K, TS;0 = 700 K, T1 = 298 K,
Tref = 323 K (temperature of the fluid surface, the solid surface, the
atmospheric and the reference, respectively). Using L = d0=2 and
U = uimp as characteristic values, we get Re ¼ 3750; Fr ¼ 425;
We ¼ 128;PeF ¼ 10;PeS ¼ 100. In this study, we consider three
variants: (i) Bi = 0.001, (ii) Bi = 0.1 and (iii) Bi = 1. The obtained
wetting diameter and the dynamic contact angle over time for all
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three variants are presented in Fig. 18. Though the flow dynamics
is similar in first two variants, there are some oscillations in the
dynamic contact angle of Var (iii). Recall that the Biot number con-
trols the heat flux across the free surface, that is, a large value of
Biot number induces more heat flux. Since we use the same liquid
Peclet number in all three variants, the temperature on the free
surface will be less in case of a large Biot number, Var (iii), in com-
parison with the Var (i). Therefore, the surface tension force will be
larger in Var (iii), see the relation (18), and it induces more rolling
motion while spreading.

Next, the obtained heat flux and the total heat flux across the
liquid–solid interface over time are presented in Fig. 19. As
expected, the heat flux is large in the high Biot number case Var
(iii). The heat flux in Var (i) approaches zero when the droplet
attains it maximum wetting diameter, whereas the heat transfer
from the solid phase to the liquid phase occurs even during the
recoiling stage in the Var (iii), see Fig. 19.
5. Summary

A finite element scheme using the arbitrary Lagrangian–Euleri-
an (ALE) approach for computations of a non-isothermal liquid
droplet impinging on a horizontal hot solid substrate is presented
in this paper. The coupled Navier–Stokes and the energy equations
are solved using this numerical scheme. The derivation of the
energy equations in solid and liquid phases into a single variational
equation makes the scheme robust in the ALE approach. The high-
lights of the numerical scheme are the Laplace–Beltrami operator
technique for the curvature approximation and the contact angle
inclusion, the ALE approach with moving meshes in both the liquid
and the solid phase to track the free surface and to guarantee
matching grids at the liquid–solid interface, and the special algo-
rithm for calculating the heat flux without differentiating the
numerical solution. The proposed numerical scheme works well
without loss of accuracy even for problems with large jumps in
the material parameters across the liquid–solid interface. An array
of numerical experiments by varying the Reynolds, Weber, Peclet,
and Biot numbers are performed for a 3D–axisymmetric non-iso-
thermal liquid droplet impinging on a horizontal hot solid
substrate.
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