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a b s t r a c t 

A Streamline Upwind Petrov–Galerkin (SUPG) finite element method for a convection dom- 

inated transient convection-diffusion-reaction equation in time-dependent domains is pro- 

posed. The time-dependent domain is handled by the arbitrary Lagrangian–Eulerian (ALE) 

approach, whereas the SUPG method is used for the spatial discretization. Further, the first 

order modified backward Euler and the second order modified Crank–Nicolson methods 

are used for the temporal discretization. It is shown that the stability of the semi-discrete 

(continuous in time) conservative ALE-SUPG equation is independent of the mesh veloc- 

ity, whereas the stability of the fully discrete scheme with the implicit Euler time dis- 

cretization is unconditionally stable and is only conditionally stable (time step depends 

on mesh velocity) with the Crank–Nicolson method. Numerical results are presented to 

support the stability estimates and to show the influence of the SUPG stabilization param- 

eter in a time-dependent domain. Further, the proposed numerical scheme is applied to a 

boundary/layer problem in a time-dependent domain. 
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1. Introduction 

Numerical solution of a convection dominated transient convection–diffusion equation in time-dependent domains is 

considered in this paper. It is well-known that the standard Galerkin method induces spurious oscillations in the numerical

solution of a convection dominated equation. In addition, the deformation of the domain makes the computations more

complex. To suppress the oscillations in the solution and to enhance the stability of the numerical scheme, stabilization

methods are used for convection dominated problems. The additional stabilization in stabilized numerical schemes mainly

depends on the convection term in the equation. Moreover, the numerical method that we use to handle the domain move-

ment modifies the convection term in the convection–diffusion equation. 

In the Eulerian approach, a fixed mesh is used to solve the equations in time-dependent domains, and the moving bound-

aries/interfaces are captured using interface capturing/tracking methods such as Level-set [1] , Volume of Fluid [2] , Immersed

boundary/Front-tracking method [3,4] , etc. Therefore, the convection term is not modified when an Eulerian approach is

used to handle time-dependent domains. Alternatively, the arbitrary Lagrangian–Eulerian (ALE) approach [5,6] is preferred

when the application demands high accuracy and/or sharp moving boundaries/interfaces, for instance, in fluid-structure in-

teraction applications. The moving boundaries/interfaces are resolved by a moving mesh and are tracked explicitly. Hence,
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the ALE approach introduces a convective mesh velocity term into the model equation [7] , and it alters the overall convec-

tive field of the problem. Since the mesh velocity need not be identical or even close to the convective velocity in many

practical applications, the model problem can still be convection dominated and can have boundary/interior layers even

after reformulating the model equations into an ALE form. It is of our interest in this paper. 

Streamline Upwind Petrov–Galerkin (SUPG) is one of the popular stabilization methods for convection dominated prob-

lems, see for example [8–11] and references therein. Other popular stabilization methods such as Galerkin least-squares [12] ,

edge stabilization [13] , continuous interior penalty [14] , local projection stabilization [15] , orthogonal subgrid scale [16] have

also been proposed in the literature for convection dominated problems in fixed domains, see [17] for an overview. A com-

parison of the SUPG method with other stabilization methods for a problem in fixed domain can be found in [18,19] . An

adaptive SUPG method for a transient problem in fixed domain has been analyzed in [20] . 

For the problems in time-dependent domains, the analysis of standard Galerkin finite element discretization with differ-

ent temporal discretizations has been presented in [6,7,21–24] . Further, the orthogonal subgrid scale method with the ALE

approach for the solution of the transient convection–diffusion equation in a time-dependent domain has also been pre-

sented in [25] . However, to the best of the authors’ knowledge, the SUPG discretization has not been studied for transient

equations in time-dependent domains. 

In this work, we analyze the SUPG finite element method for a convection dominated transient convection–diffusion

equation in a time-dependent domain. In particular, an inconsistent SUPG discretization for a conservative ALE formula-

tion of the transient equation is considered. The stability estimate for two temporal discretizations methods, (i) first order

backward Euler and, (ii) second order Crank–Nicolson, with the inconsistent SUPG form are derived. 

The paper is organized as follows. In Section 2 , the transient convection–diffusion equation in a time-dependent domain

and its ALE formulations are given. The spatial discretization using the SUPG finite element method is also presented in

this section. Further, the stability of the semi-discrete problem (continuous in time) is derived in Section 3 . Section 4 is

devoted to the stability estimates of the fully discrete problem obtained with backward Euler and Crank–Nicolson time

discretizations. Finally, the numerical studies are presented in Section 5 . 

2. Model problem and its ALE formulation 

2.1. Convection–diffusion–reaction equation 

Let T be a given time, and for t ∈ [0, T] we consider a linear time-dependent convection–diffusion–reaction equation 

∂u 

∂t 
− ε�u + b · ∇u + cu = f in (0 , T] × �t , 

u = 0 on [0 , T] × ∂�t , 

u (0 , x ) = u 0 (x ) in �0 , 

(1)

where �t ⊂ R 

d , d = 2 , 3 is a deforming/moving domain with the time-dependent boundary ∂�t . Here, u ( t , x ) is an unknown

scalar function, ε is a constant diffusion coefficient, b ( t , x ) is a given convective velocity, c ( t , x ) is a reaction function, f ( x ) is

a source term and u 0 ( x ) is a given initial data. We assume that �t is bounded for each t ∈ [0, T] with Lipschitz boundary,

and the topology of domain �t do not change in time. Further, assume that there exist a constant μ such that 

0 < μ ≤
(

c(t, x ) − 1 

2 

∇ · b (t, x ) 
)
, ∀ t ∈ (0 , T) , x ∈ �t . (2)

In addition, we assume that the given data are sufficiently smooth. 

2.2. ALE formulation 

We now derive the arbitrary Lagrangian–Eulerian form of the considered model problem (1) . Let ˆ � be a reference do-

main, and define a family of bijective ALE mappings 

A t : ˆ � → �t , A t (Y ) = x (Y, t) , t ∈ (0 , T) . 

The initial domain �0 or the previous time-step domain (when the deformation of the domain is large) can be considered

as a reference domain 

ˆ �. Further, for a function v ∈ C 0 ( �t ) on the Eulerian frame, we define their corresponding function

ˆ v ∈ C 0 ( ̂  �) on the ALE frame by 

ˆ v : (0 , T) × ˆ � → R , ˆ v := v ◦ A t , with 

ˆ v (t, Y ) = v (t, A t (Y )) . 

Moreover, the time derivative on the ALE frame is defined as 

∂v 
∂t 

∣∣∣
Y 

: (0 , T) × �t → R , 
∂v 
∂t 

∣∣∣
Y 
(t, x ) = 

∂ ̂  v 
∂t 

(t, Y ) , Y = A 

−1 
t (x ) . 

We now apply the chain rule to the time derivative of v ◦ A t on the ALE frame to get 

∂v 
∂t 

∣∣∣
Y 

= 

∂v 
∂t 

(t, x ) + 

∂x 

∂t 

∣∣∣
Y 

· ∇ x v = 

∂v 
∂t 

+ 

∂A t (Y ) 

∂t 
· ∇ x v = 

∂v 
∂t 

+ w · ∇ x v , 
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where w is the domain velocity. Using this relation in the model problem (1) , we get the non-conservative ALE form 

∂u 

∂t 

∣∣∣
Y 

− ε�u + (b − w ) · ∇u + cu = f . (3) 

Alternatively, we can use the Reynolds transport theorem 

d 

dt 

∫ 
�t 

u dx = 

∫ 
ˆ �

∂(uJ A t ) 

∂t 
d Y = 

∫ 
ˆ �

[
J A t 

∂u 

∂t 

∣∣∣∣
Y 

+ u 

∂ J A t 
∂t 

]
d Y = 

∫ 
�t 

[
∂u 

∂t 

∣∣∣∣
Y 

+ u ∇ · w 

]
dx 

= 

∫ 
�t 

(
∂u 

∂t 
+ w · ∇u + u ∇ · w 

)
dx, 

to derive the conservative ALE form of the equation. Here, the Euler expansion formula 

∂J A t 
∂t 

∣∣∣
Y 

= J A t ∇ · w (4) 

is used. Now, using the Reynolds transport theorem, the conservative ALE form of Eq. (1) can be written as 

∂(uJ A t ) 

∂t 

∣∣∣∣
Y 

+ J A t [ −ε�u + (b − w ) · ∇u + (c − ∇ · w ) u ] = J A t f . (5) 

Here, J A t = det (J A t ) , and the Jacobian matrix of the ALE mapping, J A t is given by 

J A t = 

∂x i 
∂Y j 

. 

The main difference between (1) and (5) is the additional domain velocity w in the ALE form that accounts for the defor-

mation of the domain. Moreover, the ALE mapping between two different time instances t 1 , t 2 ∈ [0, T], that is the mapping,

A t 1 ,t 2 : �t 1 → �t 2 , is given by, 

A t 1 ,t 2 = A t 2 ◦ A 

−1 
t 1 

. 

2.3. Variational form of the conservative ALE equation 

Let H 

1 ( �t ) be the usual Sobolev space, and H 

1 
0 
(�t ) be a subspace of H 

1 ( �t ) in which the functions vanish on the bound-

ary ∂�t . Further, the solution space for Eq. (5) is defined as 

V = 

{
v ∈ H 

1 
0 (�t ) , v : (0 , T ] × �t → R , v = 

ˆ v ◦ A 

−1 
t , ˆ v ∈ H 

1 
0 ( ̂  �) 

}
. 

Moreover, the L 2 −inner product, the norm and the semi-norm, ( ·, ·) t , ‖·‖ 0, t and | ·| 1, t , respectively, over �t are denoted by 

(u, v ) t := 

∫ 
�t 

u v dx, ‖ v ‖ 

2 
0 ,t := (v , v ) t , | v | 2 1 ,t := ( ∇v , ∇v ) t , ∀ u, v ∈ V. 

Now, multiplying Eq. (5) with a test function v ∈ V and integrate over �t to get ∫ 
ˆ �

∂(uJ A t ) 

∂t 

∣∣∣∣
Y 

ˆ v dY + 

∫ 
�t 

[ −ε�u + (b − w ) · ∇u + (c − ∇ · w ) u ] v dx = 

∫ 
�t 

f v dx. 

Using the fact that ∂ ̂ v 
∂t 

= 0 , and after applying integration by parts to the higher order derivative term, the variational form

of Eq. (5) reads: 

For given 

ˆ �, b , w , c , u 0 and f , find u ∈ V such that for all t ∈ (0, T ] and v ∈ V, 

d 

dt 
( u, v ) t + (ε∇ u, ∇ v ) t + ( (b − w ) · ∇ u, v ) t + ( (c − ∇ · w ) u, v ) t = ( f, v ) t . (6)

The stability analysis for the standard Galerkin finite element discretization (6) has been presented in [6,7,22] . Here, we

analyze the SUPG discretization of the conservative ALE variational form (6) . 

2.4. SUPG discretization of the ALE equation 

It is well-known that the standard Galerkin finite element discretization of convection–diffusion equation induces spu-

rious oscillations in the numerical solution in convection dominated cases. Note that the convective term in the ALE vari-

ational form (6) is proportional to (b − w ) , and the instabilities and spurious oscillations are not expected when the mesh

velocity is the same as convective velocity (pure Lagrangian form). However, this is not the case in the ALE form, and in

practice, the mesh velocity need not be in the same direction as the convective velocity. Therefore, to circumvent the insta-

bilities and to suppress the spurious oscillations, a stabilization method has to be used in practical applications, in particular,
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for problems with boundary and interior layers. One of the simplest and most popular stabilization method for convection

dominated problems in fixed domains is the SUPG method, and it is considered here. 

Let T h,t be the collection of simplices obtained by triangulating the time-dependent domain �t . We denote the diameter

of the cell K ∈ T h,t by h K , t , and the global mesh size in the triangulated domain �h , t by h t := max { h K,t : K ∈ T h,t } . Suppose

V h ⊂ V is a conforming finite element (finite dimensional) space. Let φh := { φi ( x )}, i = 1 , 2 , . . . , N , be the finite element basis

functions of V h . The discrete finite element space V h is then defined as 

V h = 

{ 

u h : u h (t, x ) = 

N ∑ 

i =1 

u i (t) φi (x ) ; u i ∈ R 

} 

⊂ H 

1 
0 (�t ) . (7)

We next define the semi-discrete mesh velocity w h in space using the semi-discrete ALE mapping 

A h,t : ˆ �h → �h,t . (8)

Let 

L 

1 ( ̂  �) = 

{
ψ ∈ H 

1 ( ̂  �) : ψ | K ∈ P 1 ( ̂  K ) for all ˆ K ∈ 

ˆ �h 

}
, 

where P 1 is a set of polynomials of degree less than or equal to one on 

ˆ K , be the piecewise linear Lagrangian finite element

space. To move the mesh, it is sufficient to move the vertices, and thus the semi-discrete (continuous in time) mesh velocity

ˆ w h (t, Y ) ∈ L 

1 ( ̂  �) d in the ALE frame for each t ∈ [0, T) is defined as 

ˆ w h (t, Y ) = 

M ∑ 

i =1 

w i (t) ψ i (Y ) ; w i (t) ∈ R 

d . 

Here, w i ( t ) denotes the mesh velocity of the i th node of simplices at time t and ψ i ( Y ), i = 1 , 2 , . . . , M , are the basis functions

of L 

1 ( ̂  �) . We then define the semi-discrete mesh velocity in the Eulerian frame as 

w h (t, x ) = 

ˆ w h ◦ A 

−1 
h,t 

(x ) . 

Applying now the inconsistent SUPG finite element discretization to the ALE variational form (6) , the semi-discrete form in

space of (6) reads: 

For given �0 , u h (0 , x ) = u 0 (x ) , b , w h , c , and f , find u h ( t , x ) ∈ V h such that for all t ∈ (0, T ] and v h ∈ V h , 

d 

dt 
( u h , v h ) h,t + a SUPG (u h , v h ) h,t −

∫ 
�h,t 

∇ · (w h u h ) v h dx = 

∫ 
�h,t 

f v h dx + 

∑ 

K∈T h,t 

δK 

∫ 
K 

f ( b − w h ) · ∇v h dK, (9)

where 

a SUPG (u, v ) h,t = ε(∇ u, ∇ v ) h,t + (b · ∇u, v ) h,t + (cu, v ) h,t 

+ 

∑ 

K∈T h,t 

δK (−ε�u + ( b − w h ) · ∇u + cu, ( b − w h ) · ∇v ) K . (10)

Here, ( ·, · ) h , t and ( ·, · ) K denotes the L 2 −inner product in �h , t and in K ∈ T h,t , and δK is the SUPG (local) stabilization

parameter. Further, u h (0, x ) ∈ V h is defined as the L 2 -projection of the initial value u 0 ( x ) onto V h . 

Lemma 1. Coercivity of a SUPG ( ·, ·) h , t : Let the discrete form of the assumptions (2) be satisfied. Further, assume that the SUPG

parameters satisfy 

δK ≤ μ0 

2 || c|| 2 
K, ∞ 

, δK ≤
h 

2 
K 

2 εc 2 
in v 

, (11)

where c in v is a constant used in inverse inequality. Then, the SUPG bilinear form satisfies 

a SUPG (u h , u h ) h,t ≥
1 

2 

||| u h ||| 2 t , 

where the mesh-dependent norm is defined as 

||| u ||| 2 t = 

( 

ε| u | 2 1 ,t + 

∑ 

K∈T h,t 

δK || ( b − w h ) · ∇u || 2 0 ,K + μ|| u || 2 0 ,t 

) 

. 

Proof. Using the assumption (2) in (10) , we get 

a SUPG (u h , u h ) h,t ≥ ε| u h | 2 1 ,t + μ|| u h || 2 0 ,t + 

∑ 

K∈T h,t 

δK || ( b − w h ) · ∇u h || 2 0 ,K 

+ 

∑ 

K∈T h,t 

δK (−ε�u h + cu h , ( b − w h ) · ∇u h ) K . 
(12)
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Consider the last term in the above equation, apply Cauchy–Schwarz and then Young’s inequalities to get ∣∣∣∣∣ ∑ 

K∈T h,t 

δK (−ε�u h + cu h , ( b − w h ) · ∇u h ) K 

∣∣∣∣∣
≤

∑ 

K∈T h,t 

[ 
ε2 δK || �u h || 2 0 ,K + δK c 

2 || u h || 2 0 ,K + 

1 

2 

δK | | ( b − w h ) · ∇u h | | 2 0 ,K 

] 

≤ 1 

2 

[
ε| u h | 2 1 ,K + μ|| u h || 2 0 ,K + δK || ( b − w h ) · ∇u h || 2 0 ,K 

]
≤ 1 

2 

||| u h ||| 2 t . (13) 

Here, the inverse inequality 

|| �u h || 0 ,K = c in v h 

−1 
K | u h | 1 ,K , ∀ u h ∈ V h 

is used for the diffusive term. Note that the inverse inequality and the second assumption on δK in (11) can be omitted

when piecewise linear finite elements are used. Finally, using the estimate (13) in (12) , the coercivity is proved. �

3. Stability of the semi-discrete (continuous in time) ALE-SUPG problem in space 

3.1. Stability of the semi-discrete (continuous in time) conservative ALE-SUPG form 

In the conservative semi-discrete form (9) , we can not take v h = u h to derive the stability estimate, since the variational

form (6) is derived using ∂ ̂ v 
∂t 

= 0 . Nevertheless, a function u h ∈ V h can be defined as a linear combination of basis functions

of V h with time-dependent coefficients, see (7) , that is, 

u h (t, x ) = 

∑ 

i ∈ N 
u i (t) φi (x ) . 

Note that the basis functions φi do not depend on time in the reference domain, and thus 

∂u h 

∂t 

∣∣∣∣
Y 

(t, x ) = 

∑ 

i ∈ N 

du i (t) 

dt 
φi (x ) . 

Taking v h = φi in (9) and multiplying the equation by u i (t) ∈ R , we get 

u i (t) 
d 

dt 

∫ 
�h,t 

u h φi dx + 

∫ 
�h,t 

ε∇ u h ∇ (u i (t) φi ) dx + 

∫ 
�h,t 

b · ∇u h u i (t) φi dx + 

∫ 
�h,t 

cu h u i (t) φi dx 

+ 

∑ 

K∈T h,t 

δK 

(
− ε�u h + ( b − w h ) · ∇u h + cu h , ( b − w h ) · ∇u i (t) φi 

)
K 

−
∫ 
�h,t 

∇ · (w h u h ) u i (t) φi dx 

= 

∫ 
�h,t 

f u i (t) φi dx + 

∑ 

K∈T h,t 

δK ( f, ( b − w h ) · ∇(u i (t) φi )) K . 

Since u i ( t ) depends only on time, the first term can be rewritten as, 

u i (t) 
d 

dt 

∫ 
�h,t 

u h φi dx = 

d 

dt 

∫ 
�h,t 

u h u i (t) φi dx −
∫ 
�h,t 

u h φi 

du i (t) 

dt 
dx 

= 

d 

dt 

∫ 
�h,t 

u h u i (t) φi dx −
∫ 
�h,t 

u h 

∂φi u i (t) 

∂t 

∣∣∣∣
Y 

dx. 

Now, summing over i = 1 , 2 , . . . , N , we get 

d 

dt 
‖ u h ‖ 

2 
0 ,t −

∫ 
�h,t 

u h 

∂u h 

∂t 

∣∣∣∣
Y 

dx + ε| u h | 2 1 ,t + 

∫ 
�h,t 

b · ∇u h u h dx −
∫ 
�h,t 

∇ · (w h u h ) u h dx 

+ c|| u h || 2 0 ,t + 

∑ 

K∈T h,t 

δK 

(
− ε�u h + ( b − w h ) · ∇u h + cu h , ( b − w h ) · ∇u h 

)
K 

= 

∫ 
�h,t 

f u h dx + 

∑ 

K∈T h,t 

δK ( f, ( b − w h ) · ∇u h ) K . 

Using the Euler expansion (4) , the second term can be written as 
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∫ 
�h,t 

∂u h 

∂t 

∣∣∣
Y 

u h dx = 

∫ 
ˆ �

∂u h 

∂t 
u h J A t d Y = 

1 

2 

d 

dt 

∫ 
ˆ �
(u 

2 
h J A t ) d Y −

1 

2 

∫ 
ˆ �

u 

2 
h 

∂ J A t 
∂t 

d Y 

= 

1 

2 

d 

dt 

∫ 
ˆ �

u 

2 
h J A t dY − 1 

2 

∫ 
ˆ �

u 

2 
h ∇ · w h J A t dY 

= 

1 

2 

(
d 

dt 
|| u h || 2 0 ,t −

∫ 
�h,t 

u 

2 
h ∇ · w h dx 

)
. 

Further, applying the Cauchy–Schwarz and Young’s inequalities, the right hand side terms become 

| ( f, u h ) | = 

∣∣∣∣
(

f 

μ1 / 2 
, μ1 / 2 u h 

)∣∣∣∣ ≤ 1 

μ
|| f || 2 0 ,t + 

1 

4 

μ|| u h || 2 0 ,t 

and ∣∣∣∣∣ ∑ 

K∈T h,t 

δK ( f, ( b − w h ) · ∇u h ) K 

∣∣∣∣∣ ≤
∑ 

K∈T h,t 

δK || f || 2 0 ,K + 

1 

4 

∑ 

K∈T h,t 

δK || ( b − w h ) · ∇u h || 2 0 ,K . 

Using the above relations, we obtain 

1 

2 

d 

dt 
|| u h || 2 0 ,t + 

1 

2 

||| u h ||| 2 t + 

1 

2 

∫ 
�h,t 

u 

2 
h ∇ · w h dx −

∫ 
�h,t 

∇ · (w h u h ) u h dx 

≤ 1 

μ
|| f || 2 0 ,t + 

1 

4 

|| μ1 / 2 u h || 2 0 ,t + 

∑ 

K∈T h,t 

δK || f || 2 0 ,K + 

1 

4 

∑ 

K∈T h,t 

δK || ( b − w h ) · ∇u h ) || 2 0 ,K 

≤ 1 

μ
|| f || 2 0 ,t + 

∑ 

K∈T h,t 

δK || f || 2 0 ,K + 

1 

4 

||| u h ||| 2 t . 

Further, applying integration by parts to the last term on left hand side, that is ∫ 
�h,t 

∇ · (w h u h ) u h dx = −
∫ 
�h,t 

w h · ∇u h u h d x = 

1 

2 

∫ 
�h,t 

u 

2 
h ∇ · w h d x, 

we get 

d 

dt 
|| u h || 2 0 ,t + 

1 

2 

||| u h ||| 2 t ≤
2 

μ
|| f || 2 0 ,t + 2 

∑ 

K∈T h,t 

δK || f || 2 0 ,K . 

Finally, integrating the above inequality over time (0, T ), we get the stability estimate 

|| u h || 2 0 ,t + 

1 

2 

∫ T 

0 

||| u h ||| 2 t dt ≤ || u h (0) || 2 0 ,t + 

2 

μ

∫ T 

0 

|| f || 2 0 ,t dt + 2 

∫ T 

0 

∑ 

K∈T h,t 

δK || f || 2 0 ,K dt, 

which is independent of the mesh velocity w h . 

4. Fully discrete scheme 

In this section, we present the stability estimates for a fully discrete conservative ALE-SUPG form. In particular, the first

order modified implicit backward Euler and the second order modified Crank–Nicolson time discretizations are analyzed. 

4.1. Discrete ALE-SUPG with Implicit Euler method 

Let 0 = t 0 < t 1 < · · · < t N = T be a decomposition of the considered time interval [0, T] into N equal time intervals. Let us

denote the uniform time step by �t = t n - t n −1 , 1 ≤ n ≤ N . Further, let u n 
h 

be an approximation of u ( t n , x ) in V h ⊂ H 

1 
0 (�t n ) ,

where �t n is the deforming domain at time t = t n . We first discretize the ALE mapping in time using a linear interpolation.

We denote the discrete ALE mapping by A h, �t , and define it for every τ ∈ [ t n , t n +1 ] by 

A h, �t (Y ) = 

τ − t n 

�t 
A h,t n +1 (Y ) + 

t n +1 − τ

�t 
A h,t n (Y ) , 

where A h,t (Y ) is the time continuous ALE mapping defined in (8) . Since the discrete ALE mapping is defined linearly in

time, we obtain the discrete mesh velocity 

ˆ w 

n +1 
h 

(Y ) = 

A h,t n +1 (Y ) − A h,t n (Y ) 

�t 
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as a piecewise constant function in time. Further, we define the mesh velocity on the Eulerian frame as 

w 

n +1 
h 

= 

ˆ w 

n +1 
h 

◦ A 

−1 
h, �t 

(x ) . 

In the derivation of stability estimates, we use the geometric conservative law (GCL) ∫ 
�

t n +1 

φi φ j dx −
∫ 
�t n 

φi φ j dx = 

∫ t n +1 

t n 

∫ 
�τ

φi (x ) φ j (x ) ∇ · w h (τ ) d x d τ, 

see [7] for more details. Since the mesh velocity is assumed to be a piecewise constant function in time, the midpoint time

integration rule can be applied to the GCL to get ∫ 
�

t n +1 

φi φ j dx −
∫ 
�t n 

φi φ j dx = �t 

∫ 
�

t n +1 / 2 

φi (x ) ψ j (x ) ∇ · w h dx. (14) 

Further, to avoid complex notations, we do not explicitly write the ALE mappings inside the integrals, that is, the inner

product (u m 

h 
, v n 

h 
) h,m 

, for m 
 = n denotes ∫ 
�t m 

u 

m 

h v 
n 
h dx = 

∫ 
�t m 

u 

m 

h v 
n 
h ◦ A t n ,t m (x ) dx. 

integrals to be evaluated in the backward Euler method, since it is necessary for the 

Remark 1. Note that in order to satisfy the GCL condition (14) , an integral with ∇ · w term that arise from (9) needs to be

evaluated exactly in time at t = t n +1 / 2 . 

Applying the midpoint time integration rule to the semi-discrete problem (9) , the ALE-SUPG backward Euler discrete

form of (9) reads: 

For given �0 , u h (0) = u h, 0 , b , w 

n +1 / 2 
h 

, c , and f n +1 / 2 find u n +1 
h 

∈ V h in the time interval (t n , t n +1 ) such that for all v h ∈ V h

1 

�t 

[
(u 

n +1 
h 

, v h ) �h,t n +1 
− (u 

n 
h , v h ) �h,t n 

]
+ a n +1 / 2 

SUPG 
(u 

n +1 
h 

, v h ) −
∫ 
�

h,t n +1 / 2 

∇ · (w h u 

n +1 
h 

) v h dx 

= 

∫ 
�

h,t n +1 / 2 

f n +1 / 2 v h dx + 

( ∑ 

K∈T 
h,t n +1 / 2 

δK 

∫ 
K 

f n +1 / 2 ( b − w h ) · ∇v h dK 

) 

, 

(15) 

where 

a n +1 / 2 
SUPG 

(u h , v h ) = ε(∇ u h , ∇ v h ) �
h,t n +1 / 2 

+ (b · ∇u h , v h ) �
h, t n +1 / 2 

+ (cu h , v h ) �
h, t n +1 / 2 

+ 

∑ 

K∈T 
h,t n +1 / 2 

δK (−ε�u h + ( b − w h ) · ∇u h + cu h , ( b − w h ) · ∇v h ) K . 

Lemma 2 (Stability estimate for the conservative ALE-SUPG form with modified implicit Euler method) . Let the discrete

version of (2) and the assumption (11) on δK hold true. Further, assume that δK ≤ �t 
4 , the solution of the conservative problem

(15) satisfies 

|| u 

n +1 
h 

|| 2 0 ,t N+1 + 

�t 

2 

N ∑ 

n =0 

||| u 

n +1 
h 

||| 2 t n +1 / 2 ≤ || u 

0 
h || 2 0 ,t 0 + 

2�t 

μ

N ∑ 

n =0 

|| f n +1 / 2 || 2 0 ,t n +1 / 2 + 2�t 
∑ 

K∈T 
h,t n +1 / 2 

δK 

N ∑ 

n =0 

|| f n +1 / 2 || 2 0 ,K . 

Proof. Rewrite Eq. (15) to get 

1 

�t 

∫ 
�

h,t n +1 

u 

n +1 
h 

v h dx − 1 

�t 

∫ 
�h,t n 

u 

n 
h v h dx + 

∫ 
�

h,t n +1 / 2 

b · ∇u 

n +1 
h 

v h dx 

−
∫ 
�

h,t n +1 / 2 

∇ · (w h u 

n +1 
h 

) v h dx + 

∫ 
�

h,t n +1 / 2 

ε∇ u 

n +1 
h 

∇ v h dx + 

∫ 
�

h,t n +1 / 2 

cu 

n +1 
h 

v h dx 

+ 

∑ 

K∈T 
h,t n +1 / 2 

δK 

(
− ε�u 

n +1 
h 

+ (( b − w h ) · ∇u 

n +1 
h 

) + cu 

n +1 
h 

, ( b − w h ) · ∇v h 
)

K 

= 

∫ 
�

h,t n +1 / 2 

f n +1 / 2 v h dx + 

∑ 

K∈T 
h,t n +1 / 2 

δK 

∫ 
K 

f n +1 / 2 ( b − w h ) · ∇v h dK. 

Taking v h = u n +1 
h 

and applying integration by parts for the mesh velocity term, we get ∫ 
�

h,t n +1 / 2 

u 

n +1 
h 

∇ · (w h u 

n +1 
h 

) dx = −
∫ 
�

h,t n +1 / 2 

∇u 

n +1 
h 

· (w h u 

n +1 
h 

) dx = 

1 

2 

∫ 
�

h,t n +1 / 2 

∇ · w h (u 

n +1 
h 

) 2 dx. 
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Using this relation in the above equation, we get, ∫ 
�

h,t n +1 

u 

n +1 
h 

u 

n +1 
h 

dx −
∫ 
�h,t n 

u 

n 
h u 

n +1 
h 

dx + �t a SUPG (u 

n +1 
h 

, u 

n +1 
h 

) h,t n +1 / 2 − �t 

2 

∫ 
�

h,t n +1 / 2 

∇ · w h | u 

n +1 
h 

| 2 dx 

≤ �t 

∫ 
�

h,t n +1 / 2 

f n +1 / 2 u 

n +1 
h 

dx + 

∑ 

K∈T 
h,t n +1 / 2 

δK �t 

∫ 
K 

f n +1 / 2 ( b − w h ) · ∇u 

n +1 
h 

dK. 

Applying the coercivity of the bilinear form and the Cauchy–Schwarz inequality, we get 

|| u 

n +1 
h 

|| 2 0 ,t n +1 + 

�t 

2 

||| u 

n +1 
h 

||| 2 t n +1 / 2 − �t 

2 

∫ 
�

h,t n +1 / 2 

∇ · w h | u 

n +1 
h 

| 2 dx 

≤
∫ 
�h,t n 

u 

n 
h u 

n +1 
h 

dx + �t 

∫ 
�

h,t n +1 / 2 

f n +1 / 2 u 

n +1 
h 

dx + 

∑ 

K∈T 
h,t n +1 / 2 

δK �t 

∫ 
K 

f n +1 / 2 ( b − w h ) · ∇u 

n +1 
h 

dK 

≤ 1 

2 

(|| u 

n +1 
h 

|| 2 0 ,t n + || u 

n 
h || 2 0 ,t n 

)
+ 

�t 

μ
|| f n +1 / 2 || 2 0 ,t n +1 / 2 + �t 

∑ 

K∈T 
h,t n +1 / 2 

δK || f n +1 / 2 || 2 0 ,K + 

�t 

4 

||| u 

n +1 
h 

||| 2 t n +1 / 2 . 

Further, using the relation, 

|| u 

n +1 
h 

|| 2 0 ,t n +1 − || u 

n +1 
h 

|| 2 0 ,t n = 

∫ t n +1 

t n 

∫ 
�h,t 

| u 

n +1 
h 

| 2 ∇ · w h dx = �t 

∫ 
�

h,t n +1 / 2 

| u 

n +1 
h 

| 2 ∇ · w h dx, 

which can be derived from GCL equation (14) with ψ i = ψ j = u n +1 
h 

, we get, 

|| u 

n +1 
h 

|| 2 0 ,t n +1 + 

�t 

2 

||| u 

n +1 
h 

||| 2 t n +1 / 2 ≤ || u 

n 
h || 2 0 ,t n + 2�t 

∑ 

K∈T 
h,t n +1 / 2 

δK || f n +1 / 2 || 2 0 ,K + 

2�t 

μ
|| f n +1 / 2 || 2 0 ,t n +1 / 2 . 

Finally, summing over all time steps, we get the unconditional stability estimate. �

4.2. Discrete ALE-SUPG with Crank–Nicolson method 

We next consider the modified Crank–Nicolson method which is basically the Runge–Kutta method of order 2. For an

equation 

du (t) 

dt 
= f (u (t ) , t ) , t > 0 and u (0) = u 0 , 

the modified Crank–Nicolson scheme reads 

u 

n +1 − u 

n = �t f 

(
u 

n +1 + u 

n 

2 

, t n + 
1 
2 

)
. 

Applying the modified Crank–Nicolson scheme to (9) , the fully discrete form of (9) reads: 

For given �0 , u h (0) = u h, 0 , b , w 

n +1 / 2 
h 

, c , and f n +1 / 2 find u n +1 
h 

∈ V h in the time interval (t n , t n +1 ) such that for all v h ∈ V h

1 

�t 

[
(u 

n +1 
h 

, v h ) �h,t n +1 
− (u 

n 
h , v h ) �h,t n 

]
−

(
∇ ·

(
w 

n +1 / 2 

h 

(
u 

n +1 
h 

+ u 

n 
h 

2 

))
, v h 

)
�

h,t n +1 / 2 

+ a n +1 / 2 
SUPG 

(
u 

n +1 
h 

+ u 

n 
h 

2 

, v h 

)
= 

(
f n +1 / 2 v h 

)
�

h,t n +1 / 2 

+ 

∑ 

K∈T 
h,t n +1 / 2 

δK 

(
f n +1 / 2 ( b − w h ) · ∇v h 

)
K 
. 

(16)

Let us recall the following discrete Gronwall inequality, which will be used in the stability estimate of the conservative

ALE-SUPG form with Crank–Nicolson method. 

Lemma 3 (Gronwall lemma, [26] ) . Let f , A n , B n , C n be given sequences of non-negative numbers for n ≥ 0 such that the following

inequality holds 

A n + �t 

n ∑ 

i =0 

B i ≤ �t 

n ∑ 

i =0 

γi A i + �t 

n ∑ 

i =0 

C i + f . 

Suppose that �t γ i < 1 for all i , and set σi = ( 1 − �tγi ) 
−1 . We then have 

A n + �t 

n ∑ 

i =0 

B i ≤ exp 

( 

�t 

n ∑ 

i =0 

σi γi 

) [ 

�t 

n ∑ 

i =0 

C i + f 

] 

. 
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Lemma 4 (Stability estimate for the conservative ALE-SUPG form with Crank–Nicolson method) . Let the discrete version of

(2) and the assumption (11) on δK hold true. Further, assume that 

�t < 

1 

βn 
1 

+ βn 
2 

= 

(||∇ · w h || ∞ ,t n +1 / 2 || J A 
t n +1 / 2 , t n +1 

|| ∞ ,t n +1 + ||∇ · w h || ∞ ,t n +1 / 2 || J A 
t n , t n +1 / 2 

|| ∞ ,t n 
)−1 

and δK ≤ �t 
4 , then 

‖ u 

N+1 
h 

‖ 

2 
0 ,t N+1 + 

�t 

4 

N ∑ 

n =0 

||| u 

n +1 
h 

+ u 

n 
h ||| 2 t n +1 / 2 

≤
( 

(1 + �tβ0 
2 ) ‖ u 

0 
h ‖ 

2 
0 ,t 0 + �t 

N ∑ 

n =0 

(
2 

μ
+ �t 

)
‖ f n +1 / 2 ‖ 

2 
0 ,t n +1 / 2 

) 

exp 

( 

�t 

N+1 ∑ 

n =1 

βn 
1 + βn 

2 

1 − �t(βn 
1 

+ βn 
2 
) 

) 

. 

Here, || · || ∞ ,t n is the L ∞ −norm in �t n . 

Proof. Testing Eq. (16) with v h = u n +1 
h 

+ u n 
h 
, and using the relation 

(u h , u h + v h ) = 

1 

2 

|| u h || 2 + 

1 

2 

|| u h + v h || 2 − 1 

2 

|| v h || 2 

and then the GCL (14) condition, the first term can be written as, ∫ 
�

h,t n +1 

u 

n +1 
h 

(u 

n +1 
h 

+ u 

n 
h ) dx −

∫ 
�h,t n 

u 

n 
h (u 

n +1 
h 

+ u 

n 
h ) dx 

= 

1 

2 

|| u 

n +1 
h 

|| 2 0 ,t n +1 + 

1 

2 

|| u 

n +1 
h 

+ u 

n 
h || 2 0 ,t n +1 − 1 

2 

|| u 

n 
h || 2 0 ,t n +1 − 1 

2 

|| u 

n 
h || 2 0 ,t n −

1 

2 

|| u 

n +1 
h 

+ u 

n 
h || 2 0 ,t n + 

1 

2 

|| u 

n +1 
h 

|| 2 0 ,t n 

= 

1 

2 

|| u 

n +1 
h 

|| 2 0 ,t n +1 − 1 

2 

|| u 

n 
h || 2 0 ,t n + 

1 

2 

(|| u 

n +1 
h 

+ u 

n 
h || 2 0 ,t n +1 − || u 

n +1 
h 

+ u 

n 
h || 2 0 ,t n 

)
− 1 

2 

|| u 

n 
h || 2 0 ,t n +1 + 

1 

2 

|| u 

n +1 
h 

|| 2 0 ,t n 

= 

1 

2 

|| u 

n +1 
h 

|| 2 0 ,t n +1 − 1 

2 

|| u 

n 
h || 2 0 ,t n + 

�t 

2 

(∫ 
�

t n +1 / 2 

∇ · w h | (u 

n +1 
h 

+ u 

n 
h ) | 2 dx 

)

− 1 

2 

(
|| u 

n 
h || 2 0 ,t n + �t 

∫ 
�

t n +1 / 2 

∇ · w h | u 

n 
h | 2 dx 

)
+ 

1 

2 

(
|| u 

n +1 
h 

|| 2 0 ,t n +1 − �t 

∫ 
�

t n +1 / 2 

∇ · w h | u 

n +1 
h 

| 2 dx 

)

= || u 

n +1 
h 

|| 2 0 ,t n +1 − || u 

n 
h || 2 0 ,t n + �t 

∫ 
�

t n +1 / 2 

∇ · w h u 

n +1 
h 

u 

n 
h dx. 

Applying integration by parts to the mesh velocity term, along with the coercivity of the bilinear form and using the Cauchy–

Schwarz inequality to the right hand side terms, we get 

|| u 

n +1 
h 

|| 2 0 ,t n +1 + 

�t 

8 

||| (u 

n +1 
h 

+ u 

n 
h ) ||| 2 t n +1 / 2 + �t 

∫ 
�

h,t n +1 / 2 

∇ · w h u 

n +1 
h 

u 

n 
h dx 

≤ || u 

n 
h || 2 0 ,t n + 

�t 

4 

∫ 
�

h,t n +1 / 2 

∇ · w h | u 

n +1 
h 

+ u 

n 
h | 2 dx + 

�t 

μ
|| f n +1 / 2 || 2 0 ,t n +1 / 2 + �t 

∑ 

K∈T 
h,t n +1 / 2 

δK || f n +1 / 2 || 2 K 

≤ �t 

∫ 
�

h,t n +1 / 2 

∇ · w h 

(
1 

4 

| u 

n +1 
h 

+ u 

n 
h | 2 − u 

n +1 
h 

u 

n 
h 

)
dx + || u 

n 
h || 2 0 ,t n + 

�t 

μ
|| f n +1 / 2 || 2 0 ,t n +1 / 2 + �t 

∑ 

K∈T 
h,t n +1 / 2 

δK || f n +1 / 2 || 2 K 

≤ �t 

2 

∫ 
�

h,t n +1 / 2 

∇ · w h 

(| u 

n 
h | 2 + | u 

n +1 
h 

| 2 ) dx + || u 

n 
h || 2 0 ,t n + 

�t 

μ
|| f n +1 / 2 || 2 0 ,t n +1 / 2 + �t 

∑ 

K∈T 
h,t n +1 / 2 

δK || f n +1 / 2 || 2 K . 

Using the ALE mapping and its Jacobian, we obtain 

|| u 

n +1 
h 

|| 2 0 ,t n +1 + 

�t 

8 

||| u 

n +1 
h 

+ u 

n 
h ||| 2 t n +1 / 2 ≤ �t 

2 

||∇ · w h || ∞ ,t n +1 / 2 || J A 
t n +1 , t n +1 / 2 

|| ∞ ,t n +1 || u 

n +1 
h 

|| 2 0 ,t n +1 + 

�t 

μ
|| f n +1 / 2 || 2 0 ,t n +1 / 2 

+ �t 
∑ 

K∈T 
h,t n +1 / 2 

δK || f n +1 / 2 || 2 K + 

�t 

2 

||∇ · w h || ∞ ,t n +1 / 2 || J A 
t n , t n +1 / 2 

|| ∞ ,t n || u 

n 
h || 2 0 ,t n . 

Denoting 
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βn 
1 = 

1 

2 

||∇ · w h || ∞ ,t n +1 / 2 || J A 
t n +1 , t n +1 / 2 

|| ∞ ,t n +1 , βn 
2 = 

1 

2 

||∇ · w h || ∞ ,t n +1 / 2 || J A 
t n , t n +1 / 2 

|| ∞ ,t n , 

the above inequality becomes 

|| u 

n +1 
h 

|| 2 0 ,t n +1 + 

�t 

8 

||| (u 

n +1 
h 

+ u 

n 
h ) ||| 2 t n +1 / 2 ≤ �tβn +1 

1 || u 

n +1 
h 

|| 2 0 ,t n +1 + (1 + �tβn 
2 ) || u 

n 
h || 2 0 ,t n 

+ 

�t 

μ
|| f n +1 / 2 || 2 0 ,t n +1 / 2 + �t 

∑ 

K∈T 
h,t n +1 / 2 

δK || f n +1 / 2 || 2 K . 

Summing over the index n = 0 , 1 , 2 , ... N, and using the assumption on δK , we get 

|| u 

N+1 
h 

|| 2 0 ,t N+1 + 

�t 

8 

N ∑ 

n =0 

||| (u 

n +1 
h 

+ u 

n 
h ) ||| 2 t n +1 / 2 ≤ �tβN+1 

1 || u 

N+1 
h 

|| 2 0 ,t N+1 + �t 

N ∑ 

n =1 

(βn 
1 + βn 

2 ) || u 

n 
h || 2 0 ,t n + (1 + �tβ0 

2 ) || u 

0 
h || 2 0 ,t 0

+ 

�t 

μ
|| f n +1 / 2 || 2 0 ,t n +1 / 2 + �t 

∑ 

K∈T 
h,t n +1 / 2 

δK || f n +1 / 2 || 2 K 

≤ �t 

N+1 ∑ 

n =1 

(βn 
1 + βn 

2 ) || u 

n 
h || 2 0 ,t n + (1 + �tβ0 

2 ) || u 

0 
h || 2 0 ,t 0 + �t 

N+1 ∑ 

n =1 

(
2 

μ
+ 

�t 

2 

)
‖ f n +1 / 2 ‖ 

2 
0 ,t n +1 / 2 . 

Finally, using Gronwall’s lemma, we get 

‖ u 

N+1 
h 

‖ 

2 
0 ,t N+1 + 

�t 

4 

N ∑ 

n =0 

||| (u 

n +1 
h 

+ u 

n 
h ) ||| 2 t n +1 / 2 

≤
( 

(1 + �tβ0 
2 ) ‖ u 

0 
h ‖ 

2 
0 ,t 0 + �t 

N ∑ 

n =0 

(
2 

μ
+ �t 

)
‖ f n +1 / 2 ‖ 

2 
0 ,t n +1 / 2 

) 

exp 

( 

�t 

N+1 ∑ 

n =1 

βn 
1 + βn 

2 

1 − �t(βn 
1 

+ βn 
2 
) 

) 

. 

Note that the assumption on the time step in terms of the mesh velocity needs to be satisfied in order to get the stable ALE-

SUPG solution. Hence, the Crank–Nicolson time discretization scheme is conditionally stable for the considered problem. �

5. Numerical results 

To support the proposed conservative ALE-SUPG finite element scheme, numerical results are presented in this section.

Two examples, ( i ) transient scalar equation with ε = 0 . 01 , b = 0 and c = 0 in (1) , and ( ii ) transient scalar equation with

ε = 10 −8 , b = (1 , 0) T and c = 0 in (1) , are considered. In both examples, the standard Galerkin solution and the SUPG so-

lution are compared. In order to study the influence of the mesh velocity type convection and reaction terms introduced

by the conservative ALE formulation (5) for different �t and δK , the first example is considered with b = 0 and c = 0 . Fur-

ther, the deformation of the domain in this example is given explicitly, and thus the restriction of the mesh velocity on

the time step in Crank–Nicolson method, see lemma (4) , can be studied. The second example is a convection dominated

problem, and it is considered to show the applicability of the ALE-SUPG discretization to convection dominated problems

in time-dependent domains. Further, the piecewise linear and piecewise quadratic finite elements are used for the spatial

discretization in the first and second examples, respectively. Even though the second derivative in the SUPG formulation

becomes zero for the linear finite elements, the influence will be negligible for a very small diffusive coefficient ε even in

higher order finite element discretizations. Note that the SUPG method is needed only for problems with small diffusion

coefficient. In computations, the SUPG parameter is chosen as 

δK = 

{ 

δ0 h K,t 

‖ b − w ‖ ∞ 

if ε < h K,t ‖ b − w ‖ ∞ 

, 

0 else, 

where δ0 is a numerical parameter and h K , t is the time-dependent local cell size. Further, the resulting system of algebraic

equation is solved using the direct solver UMFPACK. 

5.1. Example 1 

We consider the time-dependent equation (1) with ε = 0 . 01 , b = 0 , c = 0 and u 0 = 1600 Y 1 (1 − Y 1 ) Y 2 (1 − Y 2 ) . Even

though the convection and the reaction terms are zero in this example, the mesh velocity introduces convection and re-

action type terms through the conservative ALE formulation of the equation, see (5) . Moreover, the effects of the mesh

velocity on the numerical solution obtained with different time discretizations can clearly be studied by using this example
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Fig. 1. L 2 -norm of the standard Galerkin solution obtained for different time-steps. (a): Implicit Euler, and (b): Crank–Nicolson. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

since b = 0 and c = 0 . For this example, let �0 := (0, 1) 2 be the initial (as well as reference) domain. Further, the Eulerian

coordinate x ( Y , t ) ∈ �t is given by 

x (Y, t) = A t (Y ) = 

{
x 1 = Y 1 (2 − cos (20 πt)) 

x 2 = Y 2 (2 − cos (20 πt)) , 

where Y ∈ �0 . Note that the domain expands and contracts periodically with origin intact, but remains square. Now, the

mesh velocity w becomes 

w = 

dY 

dt 
= 

d 

dt 

(
X 

2 − cos (20 πt) 

)
= 

(
20 πx 1 sin (20 πt) 

2 − cos (20 πt) 
, 

20 πx 2 sin (20 πt) 

2 − cos (20 πt) 

)
. 

In computations, the piecewise linear interpolation in time is used to obtain the new position of the domain, i.e., x h ( Y , τ ) ∈
�τ for τ ∈ [ t n , t n +1 ] is given by 

x h (Y, τ ) = 

τ − t n 

�t 
x h 

(
Y, t n +1 

)
+ 

t n +1 − τ

�t 
x h ( Y, t n ) . 

Hence, the mesh velocity is obtained as 

w h (Y, τ ) = 

x h 
(
Y, t n +1 

)
− x h ( Y, t n ) 

�t 
. 

The triangulated unit square domain consists of 8192 triangles and using the piecewise linear finite element ( P 1 ) on this

mesh results in 4225 degrees of freedoms (DOFs). Further, the computations are performed until the dimensionless time

T = 2 . 

We first present the numerical results obtained with the standard Galerkin discretization. The L 2 −norm of the solu-

tion obtained with different time-steps are presented in Fig. 1 . Since both the modified implicit Euler and Crank–Nicolson

schemes are stable, we expect a similar behavior in the computed solutions also. Though the L 2 -norm of the solutions ob-

tained with both schemes are decreasing in general, it can be observed that the solution obtained with implicit Euler time

discretization is more diffusive for higher values of �t , see Fig. 1 (a). Nevertheless, the monotonicity of implicit Euler so-

lution is not affected by the mesh velocity even for large values of �t , which supports the stability estimate derived in

lemma (2) , as there is no time step ( �t ) restriction with respect to the mesh velocity. Contrarily, the solution obtained

with the Crank–Nicolson scheme shows high oscillations when the time step is large with respect to mesh velocity, and it

confirms the stability estimates given in lemma (4) . 

We next present the numerical results obtained with the SUPG discretization. Since b = 0 , the SUPG parameter is calcu-

lated using 

δK = 

{ 

δ0 h K,t 

‖ w ‖ ∞ 

if ε < h K,t ‖ w ‖ ∞ 

, 

0 else. 

The L 2 −norm of the standard Galerkin solution is compared with the SUPG solution obtained using the implicit Euler and

Crank–Nicolson schemes in Fig. 2 and Fig. 3 , respectively. For different values of δ , the SUPG solution obtained with the
0 
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Fig. 2. L 2 -norm of the ALE-SUPG solution obtained with the implicit Euler method for different values of δ0 . (a): �t = 0 . 01 , and (b): �t = 0 . 0 0 01 . 

Fig. 3. L 2 -norm of the ALE-SUPG solution obtained with Crank–Nicolson method for different values of δ0 . (a): �t = 0 . 01 , and (b): �t = 0 . 0025 . 

 

 

 

 

 

 

 

 

 

 

 

implicit Euler using �t = 0 . 01 and �t = 0 . 0 0 01 are depicted in Fig. 2 (a) and (b), respectively. Since the standard Galerkin

solution obtained with �t = 0 . 01 is already too diffusive, the effect of δ0 is not visible in the SUPG solution for the con-

sidered values of δ0 . However, the effect of δ0 on the solution can clearly be observed in �t = 0 . 0 0 01 case, see Fig. 2 (b).

Further, the SUPG solution approaches the standard Galerkin solution when δ0 decreases, which is obvious from the SUPG

formulation. 

Next, the Crank–Nicolson time discretization with �t = 0 . 01 and 0.0025 is chosen to study the effects of δ0 on the

solution, see Fig. 3 (a) and (b), respectively. Contrary to the implicit Euler case, the standard Galerkin solution obtained with

the Crank–Nicolson time discretization is not too diffusive even in the large time step case, and hence the effects of δ0 on

the solution can clearly be seen even in �t = 0 . 01 case, see Fig. 3 (a). Interestingly, the amplitude of the oscillation in the

L 2 -norm of the solution reduces when δ0 increases, see Fig. 3 (a). 

Remark 2. The choice of stabilization parameter δK in SUPG scheme is of interest to many researchers. There are several

proposals for δK in the literature, see for example [27–29] and the references therein. A comparative study on the choice of

δK for the convection–diffusion problems in fixed domains can be found in [27] . However, the convective term varies in ALE

formulations, and the optimal choice of δ for problems in time-dependent domains needs further investigation. 
K 
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Fig. 4. Standard Galerkin solution of Example 2 at t = 10 with the implicit Euler method. 

Fig. 5. The observed undershoots in the ALE-SUPG solution of Example 2 for different values of δ0 . (a): Implicit Euler, and (b): Crank–Nicolson. 

 

 

 

 

 

 

Remark 3. The numerical results presented in Figs. 2 and 3 show that the condition δK ≤ �t 
4 used to derive the stability

is not strong. It indicates that the stability estimates could also be derived for scalar problems in time-dependent domains

without this restriction as derived in [10] for fixed domains. 

5.2. Example 2 

We next consider an example that exemplifies a fluid-structure interaction problem. Define a time-dependent two-

dimensional channel 

�t := { (−3 , 9) × (−3 , 3) } \ �̄S 
t 

that excludes a periodically oscillating (up and down) circular disc �S 
t , where the position of the disc, x (Y, t) ∈ �S 

t , and the

reference disc are given by 

x (Y, t) = A t (Y ) : 

{
x 1 = Y 1 

x 2 = Y 2 + 0 . 5 sin (2 πt/ 5) , 
and �S 

0 := 

{
(Y 1 , Y 2 ) ∈ R 

2 ; Y 2 1 + Y 2 2 ≤ 1 

}
. 

Further, define �D := {−3 } × (−3 , 3) as the inflow boundary, and the remaining part �N := ∂�t ��D as Neumann boundary.

We now solve the convection dominated transient scalar equation (1) with ε = 10 −8 , b = (1 , 0) T and c = 0 . Further, we
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Fig. 6. The observed overshoots in the ALE-SUPG solution of Example 2 for different values of δ0 . (a): Implicit Euler, and (b): Crank–Nicolson. 

Fig. 7. ALE-SUPG solution of Example 2 over the line y = 0 with different values of δ0 . (a): Implicit Euler, and (b): Crank–Nicolson. 

 

 

 

 

 

 

 

 

 

 

impose zero initial value, the homogeneous Neumann condition on �N , and inhomogeneous Dirichlet condition 

u D (x 1 , x 2 ) = 

{
1 on ∂�S 

t , 

0 on �D . 

For the considered data, there will be a boundary layer on the upstream side of the oscillating circular disc, and two interior

layers on the downstream side of the disc. Since the solid disc oscillates periodically, the position of the boundary and

interior layers also change in time. 

The channel is triangulated using the mesh generator “Triangle” [30,31] , and it results in 9416 triangular cells and 19552

DOF with piecewise quadratic polynomial finite element ( P 2 ) for the unknown u . The computations are performed until

the dimensionless time T = 10 with the time step �t = 0 . 01 . Further, the linear elastic-solid update technique is used to

handle the mesh movement that occurs due to the oscillations of the solid disc. At each time step, we first compute the

displacement of the disc. We then solve the linear elastic equation in �t n to compute the inner points’ displacement by

considering the displacement on ∂�S 
t n +1 as the Dirichlet value. This elastic update technique avoids the remeshing during

the entire computation, see [32] for more details on handling the mesh movement. 

Since the solution u must be in the range of [0, 1] for the considered problem, any value of u which is below 0 is called

undershoots and exceeds 1 is called overshoots. The standard Galerkin solution obtained with the implicit Euler method
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Fig. 8. A sequence of ALE-SUPG solution of Example 2 obtained with δ0 = 0 . 1 and implicit Euler discretization at different instance t = 0 . 05 , 4 , 7 , 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is presented in Fig. 4 . As expected the solution contains spurious oscillations, and have more undershoots and overshoots.

We next perform an array of computations with different values of δ0 in SUPG discretization with �t = 0 . 01 in both im-

plicit Euler and Crank–Nicolson methods. The observed undershoots and the overshoots in the ALE-SUPG solution obtained

with different values of δ0 in implicit Euler and Crank–Nicolson methods are plotted in Fig. 5 and 6 , respectively. The over-

shoots in the solution obtained with the Crank–Nicolson time discretization using δ0 = 0 . 1 and 0.5 are highly oscillatory,

and therefore, a curve fitting plot is used to show the overshoots. 

As it can be observed from the plots that the undershoots and overshoots in the solution obtained with the Euler method

is less in comparison to the solution obtained with the Crank–Nicolson method (note that the scaling of figures is different).

For both the Euler and Crank–Nicolson methods, the choice of δ0 = 0 . 1 among the considered values suppresses the un-

dershoots and overshoots almost. The oscillations can further be suppressed by varying (increasing) δ0 . Moreover, the plots

of undershoots and overshoots provide only an indication for the choice of δ0 to suppress the spurious oscillations in the

numerical solution. However, the smearing effect of δ0 on the numerical solution cannot be observed in Figs. 5 and 6 . There-

fore, to analyze the smearing effect, the obtained ALE-SUPG solution over the line y = 0 for different values of δ0 at time

t = 10 are plotted in Fig. 7 . Further, the surface plot of the ALE-SUPG solution at different instances are plotted in Figs. 8

and 9 to present the smearing effect. In addition, the contour plots at time t = 10 for standard Galerkin with implicit Euler,

SUPG with implicit Euler and SUPG with Crank–Nicolson discretizations are also depicted in Fig. 10 . Even though, the SUPG

discretization suppressed the spurious oscillations in the numerical solution almost, there are very small undershoots and
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Fig. 9. A sequence of ALE-SUPG solution of Example 2 obtained with δ0 = 0 . 1 and Crank–Nicolson method at different instance t = 0 . 05 , 4 , 7 , 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

overshoots (the solution exceeds its range [0, 1] at most 10%) for the chosen δ0 = 0 . 1 . We could reduce these undershoots

and overshoots by increasing δ0 , however, it will smear the solution further. 

Remark 4. In this work, the inconsistent SUPG formulation is considered by neglecting the time derivative term in the

stabilized formulation. The derivation of the stability estimates for the consistent SUPG formulation becomes challenging.

Nevertheless, the numerical implementation of consistent SUPG form is not difficult at least for equations in stationary

domains. However, the implementation of the consistent SUPG is not straightforward in time-dependent domains since 

∑ 

K∈T h,τ

∫ 
K 

du 

dt 
δK ( b − w h ) · ∇v d K 
 = 

∑ 

K∈T h,τ

d 

d t 

∫ 
K 

u δK ( b − w h ) · ∇v dK, 

when ( b − w h ) is a function of time. It needs further investigation to handle this term in the analysis as well as in the

implementation. 

6. Summary 

In this work, a stabilized numerical scheme for a transient scalar equation in the time-dependent domain is proposed.

In particular, a conservative ALE-SUPG finite element method is analyzed for a convection dominated transient equation

in moving domains. The stability estimates of conservative ALE-SUPG finite element method with the backward Euler and

Crank–Nicolson temporal discretizations are derived. It is shown that the stability of the semi-discrete (continuous in time)

ALE-SUPG equation is independent of the mesh velocity, whereas the stability of the fully discrete problem in implicit Euler

case is unconditionally stable and the Crank–Nicolson time discretization is only conditionally stable (time step depends on

the mesh velocity). The proposed conservative ALE-SUPG scheme is demonstrated with appropriate examples. The influence

of the SUPG parameter are studied, and the numerical results confirm the theoretical estimates. 
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Fig. 10. Contour plots of the solution of Example 2 obtained at time t = 10 . (a): Standard Galerkin with implicit Euler, (b): SUPG with δ0 = 0 . 1 and implicit 

Euler, (c): SUPG with δ0 = 0 . 1 and Crank–Nicolson. 
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