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Abstract

A mathematical model for an non-isothermal liquid droplet deformation with dynamic contact angles on a horizontal solid
surface is presented. The main challenges such as the inclusion of the contact angle in the model, prescribing the boundary
condition at the moving contact line, Marangoni convectionare addressed in our model. The solution is approximated by finite
elements on moving meshes with arbitrary Lagrangian Eulerian (ALE) approach. The computational results show that the heat
transfer slows down the spreading rate and the maximum valueof the wetting diameter.

Introduction

Spreading of a droplet on a solid surface has been studied
theoretically, numerically and experimentally by severalau-
thors. Apart from other difficulties in the numerical com-
putation of free surface (Liquid-Gas interface) flows, defor-
mation of droplets with dynamic contact angles posses addi-
tional difficulties. The main challenges in computations are
the inclusion of dynamic contact angles, see fore.g., S̆ikalo
et al. (2005), the description of a boundary condition for the
liquid velocity at the moving contact line, where the three
phases (Liquid, Gas and Solid) intersect, see fore.g., Dus-
san V (1976), and the variations in the surface tension due to
changes in the local Liquid-Gas interface temperature.

The contact angle is an important property of a liquid
droplet which is determined by the material properties of the
liquid, solid and gas phases. Based on the contact angle, liq-
uid droplets can be classified into wetting and non-wetting
liquid droplets. This property plays a significant role in in-
dustrial applications. For instance, a small contact angleis
desired in spray coolings, whereas a large contact angle is
desired on self cleaning materials. Thus, the inclusion of
the contact angle in the numerical computations is essential
for producing physically relevant solutions. In the sequence
of spreading and recoiling processes, often the contact angle
hysteresisoccurs on real surfaces. The difference between
the advancing contact angleθa and the receding contact an-
gleθr is generally referred to as the contact angle hysteresis.
The advancing contact angleθa is the largest angle just be-
fore the spreading starts and the receding contact angleθr

is the smallest angle just before the recoiling starts. Surface
roughness, inhomogeneity and contaminations are a few rea-
sons for the occurrence of the hysteresis. In our model we

include the static contact angle in a weak sense allowing the
hysteretic behaviour in the dynamic regime. For reducing
the smoothness requirements, the curvature is replaced by
the Laplace-Beltrami operator and integration by parts as de-
scribed in Ganesan (2006).

Using the no-slip condition on the liquid-solid interface,
the model leads to an non-integrable force singularity at the
moving contact line, where the liquid-solid and liquid-gasin-
terfaces intersect, see fore.g.Hocking (1977). A few authors
calls this singularity“kinematic paradox", see fore.g. Behr
& Abraham (2002). Several boundary conditions have been
proposed in the literature to relieve this singularity, seefor
an overview Eggers & Stone (2004). Among them, the so-
called Navier-slip boundary condition has been more often
used and is widely accepted. It reads:

u · νS = 0, u · τ i,S = −ǫµ(τ i,S · T(u, p) · νS),

for i = 1, ..., d− 1, whered is the dimension of the consid-
ered problem,νS andτ i,S are the unit normal and tangential
vectors on the liquid-solid interface. Hereǫµ is the slip coef-
ficient. The unit of the stress is kg/(m·s2) and of the velocity
is m/s. Thus, from the dimensional analysis, the unit of the
slip coefficientǫµ should be ofǫµ−1

ǫ , whereǫ andµǫ have
the unit of a length and a dynamic viscosity, respectively.
The first condition is the no penetration boundary condition,
that is, the fluid cannot penetrate an impermeable solid and
thus the normal component of the velocity is zero. The sec-
ond condition is the slip with friction boundary condition,
that is, on the liquid-solid interface, the tangential velocities
of the fluid are proportional to their corresponding tangential
stresses.

Marangoni convection, which is a convection driven by

1



S4_Wed_B_35 6
th International Conference on Multiphase Flow,

ICMF 2007, Leipzig, Germany, July 9 – 13, 2007

Figure 1: Non-isothermal liquid droplet on a horizontal sur-
face.

variations in the surface tension along the Liquid-Gas inter-
faceΓF , is also considered in our model. We assume that
the surface tension is linearly dependent on the temperature.
Further, we assume that all material parameters such as den-
sity, viscosity and thermal conductivity in the droplet arein-
dependent of the temperature. In our model, the temperature
of the solid surface is assumed to be below the boiling point
temperature, and thus the Leidenfrost effect does not occur.

Continuous model

We consider a 3D-axisymmetric liquid droplet, which is in
the atmospheric temperature, impinging on an uniformly
heated horizontal surface. Figure 1 illustrates the compu-
tational domain of the droplet in 2D. In the figure,ΓF and
ΓS are the liquid-gas and liquid-solid interfaces, respectively.
Further,νF , νS andτF , τS , denote the outward unit normal
and tangential vectors on the corresponding interfaces. The
droplet spreading is modeled as a one-phase flow neglecting
the flow field in the gas-phase setting the pressure field con-
stant in the surrounding gas. The fluid flow and the temper-
ature fields in the liquid are described by the Navier-Stokes
equations and the energy equation, respectively.

Marangoni convection

Marangoni convection is a convection driven by variations in
the surface tension along the liquid-gas interfaceΓF . Since
the surface tension is temperature dependent, these variations
may occur due to the changes in the local surface temperature
T on the liquid-gas interfaceΓF . In our model, we assume
that the surface tensionσ(T ) depends linearly on the temper-
ature, more precisely

σ(T ) = σ0 − C1(T − Tsa). (1)

Here,Tsa is the saturation temperature,σ0 is the reference
value of surface tension, and

C1 = −
∂σ

∂T

∣

∣

∣

T=T0

> 0

is the negative of rate of change of surface tension with re-
spect to the temperature, see fore.g., Anderson & Davis
(1995). This relation induces thermocapillary effects in the

fluid flow through the balance of shear stress with surface
tension gradients along the liquid-gas interfaceΓF . Surface
tension variations on the normal stress boundary condition
are also considered in this study. We assume small buoyant
forces, thus neglect natural convection phenomena.

Governing equations

The fluid flow in the droplet is governed by the time-
dependent Navier-Stokes equation with the Marangoni con-
vection in a time-dependent domainΩ(t) ⊂ R

3, t is the time.
Further, the heat transfer in the droplet is described by theen-
ergy equation. In the time interval (0, I), where I is a given
time, the Navier-Stokes equations and the energy equation
together with the boundary conditions read:

∂u

∂t
−

1

ρ
∇ · S(u, p)

+(u · ∇)u = ge in Ω(t)
∇ · u = 0 in Ω(t)

u · νF = w · νF onΓF (t)

νF · S(u, p) · νF = σ(T )K onΓF (t)

τ i,F · S(u, p) · νF = τ i,F · ∇σ(T ) onΓF (t)

u · νS = 0 onΓS(t)

ǫµ(τ i,S · S(u, p) · νS) = −u · τ i,S onΓS(t)

∂T

∂t
+ (u · ∇)T =

λ

cpρ
∆T in Ω(t)

−λ
∂T

∂νF

= αF (T − T∞) onΓF (t)

T = Tw onΓS(t)
(2)

with givenΩ(0), u(0) = (0, 0,−uimp) andT (0) = T∞, for
i = 1, 2. Hereu denotes the velocity of the fluid,p the pres-
sure in the fluid,T the temperature in the fluid,K is the sum
of the principal curvatures,g the gravitational constant,e an
unit vector in the opposite direction of the gravitational force
anduimp the impact speed of the droplet. Further,λ denotes
the thermal conductivity,cp the specific heat of the liquid,
αF the convection heat transfer coefficient on the liquid-gas
interface,T∞ the temperature of the surrounding gas andTw

is the given temperature at the hot surface.
The stress tensorS(u, p) for Newtonian incompressible

fluids is given by

S(u, p)i,j := 2µD(u)i,j − pδi,j

D(u)i,j =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

, i, j = 1, ..., 3,

whereD(u) is the velocity deformation tensor andδi,j is the
Kronecker delta. Note that, we used one of the possibilities
of a boundary condition on the liquid-solid interface for the
energy equation.
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Variational form

For rewriting the model problem (2) in dimensionless form,
we introduce the scaling factors L and U as characteristic
length and velocity, respectively. Furthermore, we define the
dimensionless variables as

x̃ =
x

L
, ũ =

u

U
, w̃ =

w

U
, t̃ =

tU

L
,

Ĩ =
IU

L
, p̃ =

p

ρU2
, T̃ =

T − T∞
Tsa − T∞

.

Using these dimensionless variables in the stress tensor
S(u, p) and in the mass and momentum equations in (2), and
omitting the tilde afterwards, we obtain the dimensionless
form of the Navier-Stokes equations as

∂u

∂t
+ (u · ∇)u −∇ · S(u, p) =

1

Fr
e in Ω(t),

∇ · u = 0 in Ω(t).
(3)

The dimensionless form of the boundary conditions on the
liquid-gas interfaceΓF (t) in (2) reads:

νF · S(u, p) · νF =
1

We
(1 − C (T − 1))K

τ i,F · S(u, p) · νF = −
C

We
τ i,F · ∇T,

whereC =
C1(Tsa − T∞)

σ0
.

The dimensionless form of the boundary conditions on the
liquid-solid interfaceΓS(t) in (2) read:

u · νS = 0

βǫ(τ i,s · S(u, p) · νs) = −u · τ i,s.

for i = 1, 2. Furthermore, the initial velocity becomes
u(0) = (0, 0,−uimp)/U , and in computations we useU =
uimp to getu(0) = (0, 0,−1) andL = r0, wherer0 is
the radius of the droplet. Here, the dimensionless numbers
(Reynolds, Weber, Froude and slip, respectively) are defined
by

Re=
ρUL

µ
, We=

ρU2L

σ0
, Fr =

U2

Lg
, βǫ = ǫµρU.

Now, we derive the variational form of the dimensionless
equations (3). To simplify the notation, we use the subscript
t to represent the time dependency, for example,Ωt for Ω(t).
Let L2(Ωt) andHm(Ωt), m ≥ 1 be the usual Lebesgue and
Sobolev spaces. We defineQ = L2(Ωt) as a pressure space
and

V := {v ∈ H1(Ωt)
3 : v · νS = 0 onΓS(t)}. (4)

as a velocity space for (3). As a consequence, the no pen-
etration boundary conditionu · νS = 0 on the liquid-solid
interfaceΓS(t) will be satisfied in both the ansatz and test
spaces. We include all other boundary conditions in the weak

formulation. To get the weak formulation of the time depen-
dent Navier-Stokes equations, we multiply the momentum
and mass balance equations (3) by test functionsv ∈ V and
q ∈ Q, respectively, and integrate overΩt. By applying the
Gaussian theorem for the stress tensor, we get the variational
form of (3) as
For givenΩ(0) andu(0), find (u(t), p(t)) ∈ V ×Q such that

(

∂u

∂t
,v

)

+ a(u;u,v) − b(p,v)

+ b(q,u) = f(K,v), (5)

for all v ∈ V andq ∈ Q. Here,

a(û;u,v) =
2

Re

∫

Ωt

D(u) : D(v) dx +

∫

Ωt

(û · ∇)u · v dx

+
1

βǫ

∫

ΓSt

(u · τ i,S)(v · τ i,S) dγS ,

b(q,v) =

∫

Ωt

q ∇ · v dx,

f(K,v) = −
1

We

∫

ΓFt

(1 − C (T − 1)) (v · νF )K dγF

+
C

We

∫

ΓFt

(v · τ i,F )(τ i,F · ∇T ) dγF

+
1

Fr

∫

Ωt

e · v dx.

Next, we derive the variational form of the energy equation.
Using the dimensionless variables in the energy equation
in (2), and omitting the tilde afterwards, we get the dimen-
sionless form of the energy equation as

∂T

∂t
+ (u · ∇)T −

1

Pe
∆T = 0 in Ω(t) × (0, I).

(6)
The energy boundary conditions on the liquid-gas and liquid-
solid interfaces in (2) are transformed into the dimensionless
form:

−
∂T

∂νF

= Bi T onΓF (t)

T = TD =
Tw − T∞
Tsa − T∞

onΓS(t).

(7)

Here, Pe and Bi denote the dimensionless Peclet and Biot
numbers, given by

Pe=
LUcpρ

λ
, Bi =

αFL

λ
.

Furthermore, the dimensionless initial temperature becomes
T (0) = 0.

The weak form of the energy equation is obtained by mul-
tiplying it with a test functionψ ∈ W,

W := {ψ ∈ H1(Ωt) : ψ = 0 on ΓS(t)},

and integration by parts. In particular, the diffusive termof
the energy equation becomes
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−
1

Pe

∫

Ωt

∆T · φdx

=
1

Pe

∫

Ωt

∇T : ∇φdx−
1

Pe

∫

ΓFt

∂T

∂νF

φdγF

=
1

Pe

∫

Ωt

∇T · ∇φdx+
Bi
Pe

∫

ΓFt

T φdγF .

(8)
Hence, the weak form of the energy equation reads:

For givenΩ(0) andT (0), findT (t) ∈ H1(Ωt) with T = TD

onΓSt
such that

(

∂T

∂t
, φ

)

+ aT (u, T, φ) + bT (T, φ) = 0, (9)

for all φ ∈W . Here,

aT (u, T, φ) =
1

Pe

∫

Ωt

∇T · ∇φ dx+

∫

Ωt

(u · ∇) T φ dx,

bT (T, φ) =
Bi
Pe

∫

ΓFt

T φdx.

Inclusion of the contact angle

The contact angle is included by replacing the curvature
K in the liquid-gas interface integral with the Laplace
Beltrami operator and then integration by parts. This reduces
one order of differentiation associated with the curvature
term and increases one order of differentiation on the test
function. A similar technique has been already employed
in Ruschak (1980). The formulation by means of the Laplace
Beltrami operator has been proposed in Dziuk (1991) and
was also used in Bänsch (2001); Matthies (2002) for a closed
liquid-gas interface flows,i.e., flows without moving contact
lines. In this paper, we extend this technique for flows with
moving contact lines as follows

1

We

∫

ΓF (t)

(1 − C (T − 1))v · νFK dγF

=
−1

We

∫

ΓF (t)

(1 − C (T − 1))∇idΓF
: ∇v dγF

+
1

We

∫

cl(t)

(1 − C (T − 1))νcl · v dζ,

sinceνcl · ∇idΓF
= νcl. Here,idΓF

: R
d 7→ R

d is the
identity, νcl is the outward unit normal vector at the mov-
ing contact linecl(t) with respect to the liquid-gas interface
ΓF (t). Now, we decompose the test function in the contact
line integral as

v = (v · νS)νS +

2
∑

i=1

(v · τ i,S)τ i,S

and use the fact thatv · νS = 0 onΓS to get

∫

cl(t)

(1 − C (T − 1))νcl · v dζ

=

∫

cl(t)

(1 − C (T − 1)) (νcl · τ i,S)(v · τ i,S) dζ

=

∫

cl(t)

(1 − C (T − 1)) cos(θ) v · τ i,S dζ, (10)

sinceνcl · τ i,S = cos(θ), whereθ is the contact angle.

Numerical Scheme

The finite element method with the arbitrary Lagrangian Eu-
lerian (ALE) approach is used to approximate the solution
of (5). Here, we briefly recall the numerical scheme, for more
details we refer to Ganesan (2006).

First, we semi-discretise the weak form in time using the
fractional step-ϑ scheme. Next, we rewrite the semi-discrete
form in an ALE form and linearise the non-linear convec-
tion term by an iteration of fixed point type. Further, we
discretise the curvature term into a semi-implicit form as in
Bänsch (2001). Then, we triangulate the domain by a tri-
angular mesh and discretise the linear discrete equation in
space by an inf-sup stable finite element pairP bubble

2 /P disc
1 ,

where the velocity is approximated by continuous, piecewise
quadratic functions enriched with a cubic bubble function
and the pressure is approximated by discontinuous, piece-
wise linear functions. The obtained system of linear alge-
braic equations is solved by the direct solver UMFPACK
Davis & Duff (1997, 1999); Davis (2004).

To track the free surface, we move first the boundary points
with the fluid velocity, and then displace the inner points with
respect to the boundary displacement using elastic solid tech-
nique. We update the mesh in each sub-step of the fractional
step-ϑ scheme and check the minium and maximum angle of
each triangular element in the mesh. If any element violates
the given minimum or maximum angle criteria, we remesh
the domain with the same boundary/interface points and in-
terpolate the solution to the new mesh from the old mesh.
Due to the tangential movement, at some stage the bound-
ary points may accumulate or the resolution of the boundary
points become inadequate at some parts of the boundary. To
overcome this difficulty we redistribute the boundary points
using interpolated cubic splines when needed.

Results and Discussion

In this section, an array of computations is performed for a
liquid droplet impinging on a hot solid surface. Here, we
study the heat transfer in the droplet and the influence of the
heat transfer on the wetting diameter. The validation of the
model and the numerical scheme for an isothermal droplet
deformation has been provided in Ganesan (2006). First,
we present the shapes and wetting diameters of a droplet,
which are numerically obtained with and without heat trans-
fer. Next, we study the influence of the surface temperature
on the wetting diameter. In all our computations, we use
C = 1 in the surface tension temperature relation. Another,
important coefficient in these computations is the slip num-
ber βǫ, where we used a fixed value of10−3 in all cases.
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(i) (ii)
Figure 2: Sequence of images of liquid droplets withθe =
50◦ obtained in different simulations. (i) without heat trans-
fer effect, (ii) with heat transfer effect. Isolines in (i) and (ii)
represent the pressure and temperature fields, respectively.
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Figure 3: Wetting diameter of a liquid droplet impinging on
a heated solid surface withRe = 27, We = 24, Fr = 5,
Pe= 27, Bi = 8.7× 10−6. (i) without heat transfer, (ii) with
heat transfer.

For testing the algorithm, we stick our numerical study to
small Peclet numbers. Extensions to higher Peclet numbers
are possible by using stabilization techniques for the energy
equations, see for example Matthieset al. (2006).

In the first test case, we usedTw = 332.4◦ K, Tsa =
373◦ K, T∞ = 283◦ K (temperature of the solid surface,
the saturation and the atmospheric, respectively), and thedi-
mensionless numbers:Re= 27, We= 24, Fr = 5, Pe= 27,
Bi = 8.7 × 10−6, 1/βǫ = 1000. The computationally ob-
tained shapes of the 3D-axisymmetric droplet at different in-
stances with and without heat transfer effects are plotted in
Figure 2 (i) and (ii), respectively. The dimensionless timings
from top to bottom aret =0.5, 1, 1.5, 2, 2.5, 3. The isolines
in (i) and (ii) represent the pressure and temperature fieldsin
the droplet, respectively. As we expected, effects of the tem-
perature near the contact line region are large in comparison
with other parts of the free surface. At later stage, a rim like
structure is developed near the contact line and it counter-
acts with the spreading. This process slow down the wetting

(i) (ii)
Figure 4: Sequence of images of liquid droplets withθe =
50◦ obtained in different simulations. (i) without heat trans-
fer effect, (ii) with heat transfer effect. Isolines in (i) and (ii)
represent the pressure and temperature fields, respectively.
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Figure 5: Wetting diameter of a liquid droplet impinging on
a heated solid surface withRe = 53, We = 97, Fr = 20,
Pe = 53 andBi = 8.7 × 10−6. (i) without heat transfer, (ii)
with heat transfer.

rate and reduce the maximal wetting diameter. These effects
can be clearly seen in Figure 3, which represents the wetting
diameter in time.
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Figure 6: Wetting diameter (zoom in time (bottom)) of a
liquid droplet impinging on a heated solid surface withRe=
53, We = 97, Fr = 20, Pe = 53 andBi = 8.7 × 10−6 for
different surface temperaturesTW , (i) 292, (ii) 312, (iii) 332
and (iv) 352.
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Figure 7: Dynamic contact angle (zoom in time (bottom))
of a liquid droplet impinging on a heated solid surface with
Re = 53, We = 97, Fr = 20, Pe = 53 andBi = 8.7 ×
10−6 for different surface temperaturesTW , (i) 292, (ii) 312,
(iii) 332 and (iv) 352.

Next, we perform another set of computations with a dif-
ferent set of dimensionless numbers:Re = 53, We = 97,
Fr = 20, Pe= 53 andBi = 8.7×10−6 with Tw = 332.4◦ K,
Tsa = 373◦ K, T∞ = 283◦ K. The computationally obtained
shapes of droplets for this test case at different instances
with and without heat transfer are visualised in Figure 4 (i)
and (ii), respectively. The dimensionless timings from topto
bottom aret =0.5, 1, 1.5, 2, 2.5, 3. The isoline in (i) and (ii)
represent the pressure and temperature fields in the droplet,
respectively. The wetting diameter for this test case is pre-
sented in Figure 5. We observe a similar effect of the heat
transfer as in the previous test case.

Next, to study the influence of the surface temperature,
we performed an array of computations withTw=292◦ K,
312◦ K, 332◦ K, and 352◦ K for a droplet withRe = 27,
We= 24, Fr = 5, Pe= 27, Bi = 8.7 × 10−6, 1/βǫ = 1000.
The wetting diameter and the dynamic contact angle obtained
for these four different values of surface temperature are pre-
sented in Figure 6. Initially, for this particular set of data,
there are almost no variations of the wetting diameter de-
pending on the surface temperature. Nevertheless, a slight
differences in the wetting diameter after timet = 4 can be
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observed, see Figure 6 (bottom) for a closer view. These
results show that the wetting diameter decreases when the
surface temperature increases. Further, the influence of the
surface temperature on the dynamics of the contact angle can
be seen clearly in Figure 7. We observed that the dynamic
contact angle increases when the solid surface temperature
increases.

Concluding remarks

A mathematical model is presented for a non-isothermal de-
forming droplet with dynamic contact angle on a hot surface,
which is below the boiling point temperature. The numerical
study shows that the heat transfer slow down the spreading
rate and the maximum value of the wetting diameter. How-
ever, to commend on the influence of other parameters such
as the density, viscosity, surface tension, impact velocity and
contact angles with respect to the heat transfer, further nu-
merical investigations are needed.
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