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An operator-splitting finite element method for solving high-dimensional parabolic equa-
tions is presented. The stability and the error estimates are derived for the proposed
numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite
element algorithms based on the quadrature points and the nodal points, respectively,
are presented. Both the quadrature and the nodal point based operator-splitting algorithms
are validated using a three-dimensional (3D) test problem. The numerical results obtained
with the full 3D computations and the operator-split 2D + 1D computations are found to be
in a good agreement with the analytical solution. Further, the optimal order of convergence
is obtained in both variants of the operator-splitting algorithms.
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1. Introduction

The numerical solution of partial differential equations in many mathematical models depends not only on time and
space but also on some other properties of the considered problem. For instance, the population balance equation (PBE)
in a population balance system with one internal coordinate depends on the time, the physical space and a property of
the particles, e.g., the size of the particles. Since the PBE contains also derivatives with respect to the properties of the par-
ticles, it is posed on a high-dimensional domain in comparison to all other equations in the population balance system
[4,12,13,15]. Another more challenging example is the FENE Fokker–Planck equation modeling polymeric fluids [14]. In fact,
for a flow domain contained in Rd, the polymer configuration domain for a beadspring chain polymer model consisting of
M þ 1 beads and M springs, the configuration space domain is contained in RMd and therefore the Fokker–Planck equation
is posed on a domain in RdþMd. Even in the simplest case M ¼ 1 the Fokker–Planck equation has to be solved on a domain
in R2d, i.e., four dimensions when d ¼ 2 and six dimensions when d ¼ 3.

The numerical solution of partial differential equations on high-dimensional domains are more challenging due to higher
storage requirements and computational complexity. To overcome these challenges the sparse grid method [3,9,10] can be
used. In the sparse grid method, a high-dimensional equation can be solved by constructing a tensor product sparse grid
space using an one-dimensional multilevel basis for each coordinate direction. Similarly, in the space-time sparse grid meth-
od, the sparse grid spaces are constructed by a tensor product of a d-dimensional basis in space and an one-dimensional ba-
sis in time.
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Another popular method for solving high-dimensional equations is the operator-splitting method developed in [5,6] to
replace a parabolic differential equation in two space dimensions by solving two one-dimensional problems. This basic idea
can be extended to split a high-dimensional equation into a system of low-dimensional equations and solve each low-
dimensional equation separately. In most of the previous studies the finite difference method is used to solve the opera-
tor-split low-dimensional equations, for example, see [11,18,20] and the references therein. Applying the operator-splitting
in the context of finite difference method is simple and it can easily be extended to high-dimensional problems. However, it
is well-known that finite difference methods are more difficult to apply for problems with complex domains. The operator-
splitting has also been used in the finite volume approximation of the population balance equation [11,16,17,19,22].

Recently, the operator-splitting has been used in the tailored finite element and spectral method to solve the high-dimen-
sional FENE Fokker–Planck equation in [14]. An advantage of solving a system of low-dimensional equations separately is
that we can use tailored numerical methods to solve low-dimensional equations in the system of different type. For example,
in [7] the standard Galerkin finite element method and the Streamline Upwind Petrov Galerkin (SUPG) finite element meth-
od has been combined whereas in [1] the discontinuous Galerkin method and the local projection type stabilization has been
considered.

In this paper, we present an operator-splitting scheme for finite element approximation of high-dimensional parabolic
problems in all spaces. Moreover, to use the operator-splitting in the finite element computations, we present two new algo-
rithms based on the quadrature points and the nodal points, respectively. These algorithms are fully practical and easy to
implement. The operator-splitting for the high-dimensional equations is not new, however to the best of our knowledge,
operator-splitting algorithms in the context of finite element approximation in all space dimensions has not been proposed
before in the literature.

The paper is organized as follows. In the next Section, we derive the standard discrete and algebraic forms of a parabolic
problem. Then, we present a finite element analysis of the operator-split parabolic problem in Section 3. After that, in Sec-
tion 4, the two variants of operator-splitting algorithms in the context of finite element method are described in detail. Fi-
nally, numerical results are presented in Section 5 to validate the proposed operator-splitting algorithms.

2. Equations on a high-dimensional domain

Let X :¼ XX �XL, where XX � Rp and XL � Rq be the considered high-dimensional (d ¼ pþ q) domain. Suppose the equa-
tion of interest to be solved is
@u
@t
þ Axuþ ALu ¼ 0 in ð0; T� �X;

u ¼ uD on ð0; T� � @X;
uð0; x; ‘Þ ¼ u0;

ð1Þ
where the operators Ax and AL represent physical phenomena (convection, diffusion, reaction etc.) in XX and XL, respectively.
To solve the Eq. (1) in X, the standard finite element method can be used when the dimension of the problem is small en-
ough, say d 6 3. However, when d > 3 or as mentioned in the introduction, when d is higher than the dimension of the other
equations in the system, the numerical solution of (1) with the conventional methods become more expensive. In such cases,
we can use the operator-splitting method provided that the high-dimensional domain can be defined as a Cartesian product
of low-dimensional subdomains. The basic idea is to split the operators in (1) based on their dependency on the subdomains,
and solve a system of low-dimensional (say, less than or equal to 3) problems in subdomains separately. To solve the system
of low-dimensional problems, we can use the standard finite element method. However, special algorithms have to be
implemented in order to apply the idea of operator-splitting in finite element computations. As already mentioned in the
introduction, we can use tailored numerical methods to solve the low-dimensional equations in the system. Since the pres-
ent study emphasizes on developing algorithms for the implementation of the operator-splitting method, we restrict our
representation to a simple model problem and on the standard Galerkin finite element method applied to all equations in
the collection.

2.1. Model equation

For the methodological development of operator-splitting algorithms for solving high-dimensional problems in the con-
text of the finite element method, let us consider the following parabolic problem:
@u
@t
� Du ¼ f in ð0; T� �X;

u ¼ 0 on ð0; T� � @X;
uð0; x; ‘Þ ¼ u0:

ð2Þ
As mentioned above, we assume that the domain X can be defined as a Cartesian product of two subdomains,
i:e:;X :¼ XX �XL, and let for simplicity XX ¼ ð0;1Þ2; XL ¼ ð0;1Þ. Here, uðt; x; ‘Þ is the unknown, t is the time in the given time
interval ½0; T�; x ¼ ðX1;X2Þ 2 XX ; ‘ 2 XL; f is a given source, and u0 is an initial value.
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2.2. Weak formulation

Let ð�; �Þ and jj � jj be the L2-inner product and norm over X :¼ XX �XL:
ðv ; qÞ :¼
Z

XX�XL

vðx; ‘Þqðx; ‘Þ; jjv jj2 ¼ ðv ;vÞ 8v; q 2 L2ðXÞ:
With these definitions, the weak form of (2) reads: For given u0 2 L2ðXÞ and f 2 L2ðð0; T� �XÞ, find u 2 L2ð0; T; H1
0ðXÞÞ

withu0 2 L2ð0; T; H�1ðXÞÞ such that
d
dt

uðtÞ;vð Þ þ ruðtÞ;rvð Þ ¼ ðf ðtÞ;vÞ 8v 2 H1
0ðXÞ;

uð0Þ; vð Þ ¼ ðu0; vÞ 8v 2 L2ðXÞ;
ð3Þ
where f ðtÞ :¼ f ðt; �Þ. Note that u 2 L2ð0; T; H1
0ðXÞÞ and u0 2 L2ð0; T; H�1ðXÞÞ implies that t#uðtÞ as a mapping from [0,T] in L2ðXÞ

is continuous. Thus, uð0Þ is well defined.

2.3. Finite element spaces for operator-splitting method

Let HmðXXÞ and HmðXLÞ;m P 0 be the usual Sobolev spaces containing L2-functions with weak derivatives of order m in L2.
Then, we define
Hm;mðXÞ :¼ HmðXX ; HmðXLÞÞ \ HmðXL; HmðXXÞÞ; ð4Þ
with associated norms and seminorms
kvk2
m;m :¼

X
jbj6m;

X
jaj6m

k@b
‘ @

a
x vk

2
L2ðXÞ; jv j2m;m :¼

X
jbj¼m;

X
jaj¼m

k@b
‘ @

a
x vk

2
L2ðXÞ:
The space H1;1ðXÞ is slightly more regular than the standard space H1ðXÞ, in particular the mixed partial derivatives of second
order are bounded in L2ðXÞ.

Suppose Vh � H1
0ðXXÞ and Wh � H1

0ðXLÞ are conforming finite element spaces with basis functions /h :¼ /i; i ¼ 1;2; . . . ;M
and wh :¼ wk; k ¼ 1;2; . . . ;N , respectively such that
Vh ¼ spanf/ig; Wh ¼ spanfwkg: ð5Þ
Now,
Vh �Wh ¼ nh : nh ¼
XM
i¼1

XN
k¼1

ni;k/iwk; ni;k 2 R

( )
� H1;1ðXÞ:
Further, we define the finite element ansatz and test functions as
uhðt; x; ‘Þ ¼
XM
j¼1

XN
l¼1

uj;lðtÞ/jðxÞwlð‘Þ; vh ¼
XM
i¼1

XN
k¼1

v i;k/iwk;

rxuh ¼
XM
j¼1

XN
l¼1

uj;lðrx/jÞwl; r‘uh ¼
XM
j¼1

XN
l¼1

uj;l/jðr‘wlÞ;
ð6Þ
where rx and r‘ are the gradient operators in XX and XL, respectively. Using the above definitions, the semi-discrete (in
space) form of (3) can be written as: For given u0 and f ðtÞ, find uhðtÞ 2 Vh �Wh such that
d
dt

uhðtÞ; vhð Þ þ ruhðtÞ;rvhð Þ ¼ ðf ðtÞ;vhÞ 8vh 2 Vh �Wh;

uhð0Þ;vhð Þ ¼ ðu0;vhÞ 8vh 2 Vh �Wh:

ð7Þ
2.4. Temporal discretization

Let 0 ¼ t0 < t1 < . . . < tN ¼ T be a uniform decomposition of the considered time interval ½0;T�, and
dt ¼ tn � tn�1;1 6 n 6 N, be the time step size. The general form of the h-scheme for the semi-discrete form (7) in the interval
ðtn�1; tnÞ can be written as
un
h � un�1

h

dt
;vh

� �
þ ð1� hÞðrun�1

h ;rvhÞ þ hðrun
h;rvhÞ ¼ ðf n�1þh;vhÞ; ð8Þ
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where f n�1þh ¼ ð1� hÞf ðtn�1Þ þ hf ðtnÞ. To rewrite the discrete form into an algebraic form, we define the mass and stiffness
matrices and the load vector as follows
M :¼ Mx �M‘; A :¼ Ax �M‘ þMx � A‘; Fn�1þh
i;k :¼

Z
X

f n�1þh/iwk; ð9Þ
where
Mxij
¼
Z

XX

/i/j; Axij
¼
Z

XX

rx/i � rx/j;

M‘kl
¼
Z

XL

wkwl; A‘kl
¼
Z

XL

r‘wk � r‘wl;

ð10Þ
where � denotes the Kronecker product of two matrices. For example, theMN �MN entries in the mass matrix are given
by
M ¼ Mx �M‘ :¼

U1;1½ �k;l � � � U1;M½ �k;l
� � �
� � �
� � �

UM;1½ �k;l � � � UM;M½ �k;l

26666664

37777775
MN�MN

;

where the entries in the N �N block matrix Ui;j
� �

k;l;1 6 k; l 6 N are evaluated by
Ui;j
� �

k;l :¼
Z

XX

/i/j

Z
XL

wkw‘:
2.4.1. Backward Euler scheme
Choosing h ¼ 1 in (8), we get the backward Euler scheme in the time interval ðtn�1; tnÞ
un
h � un�1

h

dt
;vh

� �
þ ðrun

h;rvhÞ ¼ ðf n;vhÞ: ð11Þ
Substituting the definitions of the finite element functions (6), we have
Z
X

un
hvh ¼

XM
j¼1

XN
l¼1

XM
i¼1

XN
k¼1

Z
X

un
j;l/jwl/iwk;

Z
X
run

h � rvh ¼
XM
j¼1

XN
l¼1

XM
i¼1

XN
k¼1

Z
X

un
j;l ðrx/jÞwl � ðrx/iÞwk þ /jðr‘wlÞ/i � ðr‘wkÞ
� �

:

Applying these representations in (11) and employing the definition of the matrices (10), the algebraic form of the backward
Euler scheme reads:
ðMx �M‘Þ þ dtððAx �M‘Þ þ ðMx � A‘ÞÞf gUn ¼ dtFn þ ðMx �M‘ÞUn�1: ð12Þ
Here, Un ¼ vecðUnÞ is the vectorization of the solution matrix Un ¼ ½un
j;l�M�N . Using the Kronecker product definitions (9), we

get the standard representation in the algebraic form:
ðM þ dtAÞUn ¼ dtFn þMUn�1: ð13Þ
For the backward Euler scheme, we can derive an error estimate with first order accurate in time.

Theorem 1 (See Theorem 1.5 in [21]). Let u and un
h be the solutions of (2) and (11), respectively. Further, let Vh �Wh be a finite

element space of order r, and the initial solution u0 be approximated by uhð0Þ of order r. Then, we have for n P0
jjun
h � uðtnÞjj 6 Chr jju0jjr þ

Z tn

0
jjut jjrds

 !
þ dt

Z tn

0
jjutt jjds;
where ut and utt are the first and second derivatives of u with respective to time t.
Remark 1. Choosing h ¼ 0:5 in (8), we get the Crank–Nicolson scheme in the time interval ðtn�1; tnÞ as
un
h � un�1

h

dt
;vh

� �
þ 1

2
ðrun

h;rvhÞ ¼ ðf n�1=2;vhÞ �
1
2
ðrun�1

h ;rvhÞ: ð14Þ
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The algebraic form of the Crank–Nicolson scheme can be written as:
ðMx �M‘Þ þ
dt
2
ððAx �M‘Þ þ ðMx � A‘ÞÞ

� 	
Un ¼ dtFn�1=2 þ ðMx �M‘Þ �

dt
2
ððAx �M‘Þ þ ðMx � A‘ÞÞ

� 	
Un�1: ð15Þ
For the Crank–Nicolson scheme, the following error estimate holds.
Theorem 2 (See Theorem 1.6 in [21]). Let u and un
h be the solutions of (2) and (14), respectively. Further, let Vh �Wh be a finite

element space of order r, and the initial solution u0 be approximated by uhð0Þ of order r. Then, we have for n P 0
kun
h � uðtnÞk 6 Chr ku0kr þ

Z tn

0
kutkrds

 !
þ CðdtÞ2

Z tn

0
ðkutttk þ kDuttkÞds;
where uttt is the third derivative of u respective to time t.
3. Operator-splitting method

In the previous section, we derived the standard Galerkin discrete form of the considered problem (2). In this section, we
first split the continuous problem (2) into two subproblems based on the dependency of the Laplace operator on the spatial
directions. After that we derive a discrete form for the operator-split equations.

3.1. Operator-split equations

To apply the operator-splitting method for the considered model problem (2), we denote
D ¼ Dx þ D‘; Dx ¼
@2

@X2
1

þ @2

@X2
2

; D‘ ¼
@2

@‘2 :
Using this notation in (2), we get
@u
@t
� Dxu� D‘u ¼ f in ð0; T� �XX �XL;

u ¼ 0 on ð0; T� � @X;
uð0; x; ‘Þ ¼ u0:

ð16Þ
After applying the temporal discretization, we split the semi-discrete form of the above problem (16) into two subproblems,
(one in L-direction and another in X-direction) in the interval ðtn�1; tnÞ as follows:

Step 1 (L-direction)
Find ûðt; x; ‘Þ for all x 2 XX such that
@û
@t
� D‘û ¼ f in ðtn�1; tnÞ �XL;

û ¼ 0 on ðtn�1; tnÞ � @XL;

ûðtn�1; x; ‘Þ ¼ un�1:

ð17Þ
Step 2 (X-direction)
Find ~uðt; x; ‘Þ for all ‘ 2 XL such that
@~u
@t
� Dx~u ¼ 0 in ðtn�1; tnÞ �XX ;

~u ¼ 0 on ðtn�1; tnÞ � @XX ;

~uðtn�1; x; ‘Þ ¼ ûðtn; x; ‘Þ:

ð18Þ
Here, we used the Lie’s operator-splitting method for the Eq. (16), for other variants of operator-splitting methods we refer to
[8].

Remark 2. For brevity, the diffusion coefficient values in (16) are assumed to be one. Nevertheless, different diffusion
coefficients �x and �‘ in X- and L-directions, respectively, can be used, and it will result in an �x�‘ factor in the mixed
derivative term of the bilinear form (23). However, in practical applications the values of �x and �‘ will always be less than
one, and therefore we expect a reduction of the operator-splitting error.
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Remark 3. The source term f in (16) is included in the L-direction Eq. (17). Nevertheless, when the contribution of the source
term is significant to the diffusive phenomena in XX , it is natural to include it in the X-direction Eq. (18). Another possibility
is to split the right-hand side into the convex linear combination f ¼ af þ ð1� aÞf ; a 2 ½0;1�, and to include the first part in
the L-direction equation and the second part in the X-direction equation, respectively.
Remark 4. Note that, we have Dirichlet boundary condition on the entire boundary @X, thus in the L-direction, it is enough
to solve the Eq. (17) for the inner points of the X-direction space, i:e., for all x 2 XX . Similarly, in the X-direction, it is enough
to solve the Eq. (18) for the inner points of L-direction space, i:e., for all ‘ 2 XL.
3.2. Discrete form of the operator-split equations

Let xj 2 XX ; j ¼ 1; . . . ;N XP, and ‘l 2 XL; l ¼ 1; . . . ;N LP be the Cartesian coordinates which are necessary to evaluate nodal
functionals of the finite element spaces Vh and Wh, respectively. Further, we define the finite element functions ûhðxj; �Þ 2Wh

and ~uhð�; ‘lÞ 2 Vh as
ûhðxj; ‘Þ :¼
XN LP

l¼1

ûj;lwlð‘Þ; ~uhðx; ‘lÞ :¼
XN XP

j¼1

~uj;l/jðxÞ:
Using these definitions in the spatial discretization, the discrete forms of (17) and (18) in the time interval ðtn�1; tnÞ read:
Step 1 (L-direction)
For given ûn�1

h ðxj; ‘Þ ¼ un�1
h ðxj; ‘Þ and f n�1þh, find ûn

hðxj; ‘Þ 2Wh such that for all wh 2Wh and for all j ¼ 1; . . . ;N XP,
ûn
h � ûn�1

h

dt
;wh

� �
XL

þ ð1� hÞðr‘ûn�1
h ;r‘whÞXL

þ hðr‘ûn
h;r‘whÞXL

¼ ðf n�1þh;whÞXL
: ð19Þ
Step 2 (X-direction)
For the given ~un�1

h ðx; ‘lÞ ¼ ûn
hðx; ‘lÞ, find ~un

hðx; ‘lÞ 2 Vh such that for all /h 2 Vh and for all l ¼ 1; . . . ;N LP,
~un
h � ~un�1

h

dt
;/h

� �
XX

þ ð1� hÞðrx~un�1
h ;rx/hÞXX

þ hðrx~un
h;rx/hÞXX

¼ 0: ð20Þ
Finally, we retrieve the global discrete solution
un
hðx; ‘Þ ¼

XN XP

j¼1

XN LP

l¼1

un
j;l/jðxÞwlð‘Þ; ð21Þ
by setting un
j;l ¼ ~un

j;l, and use it as the initial solution for (19) in the next time step.
In the above Eq. (19), the discrete nodal points xj can also be the quadrature points, which are necessary to evaluate inte-

grals over XX . It gives another variant of the discrete form of the operator-split Eqs. (17) and (18), see Section 4.

3.3. Analysis of the operator-splitting finite element method

In order to show the role of the additional regularity condition in the operator-splitting finite element method, we derive
an error estimate of the operator-split backward Euler discrete equation. Furthermore, we show that the approximation or-
der of the operator-splitting finite element method is same as the classical finite element method provided the additional
regularity condition is satisfied. To illustrate these, we first derive the associated one-step discrete form of the operator-split
Eqs. (19) and (20) in the following.

Lemma 3. The associated one-step backward Euler discrete form of the operator-split discrete Eqs. (19) and (20) is
un
h � un�1

h

dt
;vh

� �
þ aOSðun

h;vhÞ ¼ ðf n;vhÞ; ð22Þ
where the operator-split bilinear form is given by
aOSðun
h; vhÞ ¼

Z
X
run

h � rvh þ dt
Z

X
rxrlun

h : rxrlvh: ð23Þ
Proof. Taking h ¼ 1 in (19) and (20), we get the algebraic form of the Eq. (19) as
M‘ þ dtA‘ð ÞbUn ¼ dtFn
‘ þM‘U

n�1 ð24Þ
and the algebraic form of the Eq. (20) as
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Mx þ dtAxð ÞeUn ¼ MxðbUnÞT: ð25Þ
Here,
bUn ¼ ðUnÞT; eUn ¼ Un; Fn
‘ :¼

Z
XL

f nwh;
and we recall the definition of the solution matrix Un ¼ ½un
j;l�M�N . Now, multiply (24) by Mx � I, and (25) by I� ðM‘ þ dtA‘Þ,

we get
ðMx �M‘Þ þ dtðMx � A‘Þf gUn ¼ dtðMx � Fn
‘ Þ þ ðMx �M‘ÞUn�1
and
ðMx �M‘Þ þ dt ðAx �M‘Þ þ ðMx � A‘Þf g þ ðdtÞ2ðAx � A‘Þ
n o

Un ¼ ðMx �M‘Þ þ dtðMx � A‘Þf gUn;
respectively. Equating the above equations, we get
ðMx �M‘Þ þ dt ðAx �M‘Þ þ ðMx � A‘Þf g þ ðdtÞ2ðAx � A‘Þ
n o

Un ¼ dtðMx � Fn
‘ Þ þ ðMx �M‘ÞUn�1: ð26Þ
Using (9) and (21), the above Eq. (26) can be written as
M þ dtAþ ðdtÞ2ðAx � A‘Þ
n o

Un ¼ dtðMx � Fn
‘ Þ þMUn�1 ð27Þ
For the cross matrix term in (27), we have
ðAx � A‘ÞUn :¼
XM
j¼1

XN
l¼1

XM
i¼1

XN
k¼1

Z
X

un
j;lrx/j � rx/i : r‘wl � r‘wk ¼

XM
j¼1

XN
l¼1

XM
i¼1

XN
k¼1

Z
X
rxðun

j;l/jr‘wlÞ : rxð/ir‘wkÞ

¼
XM
j¼1

XN
l¼1

XM
i¼1

XN
k¼1

Z
X
rxðr‘ðun

j;l/jwlÞÞ : rxðr‘ð/iwkÞÞ ¼
Z

X
rxr‘un

h : rxr‘vh: ð28Þ
Next, to show Mx � Fn
‘ ¼ Fn in (27), we write their discrete form to get
Mx � Fn
‘ :¼

Z
XX

Z
XL

XM
i¼1

XM
j¼1

/i/j

XN
k¼1

f nwk: ð29Þ
Further, each equation in the algebraic system (27) is obtained by applying summation to the ansatz indices j and l. Thus,
applying summations to the indices j and l in (29), the right hand side vector rhsi;k, for i ¼ 1; . . . ;M, and k ¼ 1; . . . ;N becomes
rhsi;k ¼
Z

XX�XL

f n/iwk

XM
j¼1

/j ¼
Z

X
f n/iwk ¼ Fn

i;k ð30Þ
see (9). Thus, we have Mx � Fn
‘ ¼ Fn. Substituting the bilinear form of the cross term(28) and the right hand side vector (30) in

(27) we get the desired result. h
Remark 5. Note the additional mixed derivative term in the discrete Eq. (22) due to the application of operator-splitting.
This error term scales with the time step dt.

Next, we derive an a priori error estimate for the operator-splitting backward Euler scheme (22). Let us first introduce the
approximation properties of the finite element spaces Vh and Wh, (cf. Theorem 4.8.12 and Corollary 4.8.15 in [2]).

(A1.) Approximation property of Vh: We assume that there is an interpolation operator IX 2 LðH1
0ðXXÞ; VhÞ such that for all

1 6 s 6 r þ 1
kIXukHsðXX Þ 6 CkukHsðXX Þ;u 2 H1
0ðXXÞ \ HsðXXÞ;

ku� IXukL2ðXX Þ þ hku� IXukH1ðXX Þ 6 ChsjujHsðXX Þ;u 2 H1
0ðXXÞ \ HsðXXÞ:
(A2.) Approximation property of Wh: We assume that there is an interpolation operator IL 2 LðH1
0ðXLÞ; WhÞ such that for all

1 6 s 6 r þ 1
kILukHsðXLÞ 6 CkukHsðXLÞ; u 2 H1
0ðXLÞ \ HsðXLÞ;

ku� ILukL2ðXLÞ þ hku� ILukH1ðXLÞ 6 ChsjujHsðXLÞu 2 H1
0ðXLÞ \ HsðXLÞ:
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Here, LðX; YÞ denotes the set of linear and continuous mappings from X into Y. Now, we define the interpolation operator
Ih 2 LðH1;1

0 ðXÞ \ Hrþ1;rþ1ðXÞ;Vh �WhÞ by
Ih : IXIL ¼ ILIX :
For the error estimate we decompose the error into two parts, the first part measures the projection error whereas the sec-
ond part measures the error of the solution to the interpolation. Define
en
h :¼ uðtnÞ � un

h ¼ ðuðtnÞ � IhuðtnÞÞ þ ðIhuðtnÞ � un
hÞ ¼: gn þ nn:
Theorem 4. Let the solution u of (2) be smooth enough and the approximation properties (A1) and (A2) be satisfied. Then, the
error estimate
ken
hk

2 þ
Xn

k¼1

dtkrek
hk

2
6 Cu h2r þ dt2


 �
; n ¼ 1; . . . ;N
holds true where Cu is a constant depending on certain norms of the solution specified within the proof of the Theorem.

Proof. For estimating the error nn 2 Vh �Wh, we take nn ¼ uðtnÞ � un
h � gn, use (22) with vh ¼ nn, and (3) for t ¼ tn and v ¼ nn

to obtain
nn � nn�1

dt
; nn

 !
þ aOSðnn; nnÞ ¼ uðtnÞ � uðtn�1Þ

dt
; nn

� �
þ aOSðuðtnÞ; nnÞ � ðf n; nnÞ � gn � gn�1

dt
; nn

� �
� aOSðgn; nn ¼ uðtnÞ � uðtn�1Þ

dt
� @uðtnÞ

@t
; nn

� �
þ dtðrxr‘uðtnÞ;rxr‘n

nÞ � gn � gn�1

dt
; nn

� �
� ðrgn;rnnÞ � dtðrxr‘gn;rxr‘n

nÞ: ð31Þ
From nnj@Xx
¼ 0 it follows that r‘n

nj@Xx
¼ 0, thus with nnj@X‘

¼ 0 we have by integration by parts
ðrxr‘uðtnÞ;rxr‘n
nÞ ¼ ðDxD‘uðtnÞ; nnÞ:
Multiplying (31) with 2dt and using the identity 2aða� bÞ ¼ a2 � b2 þ ða� bÞ2 for the first term on the left hand side, we get
knnk2 þ knn � nn�1k2 þ 2dtkrnnk2 þ 2dt2krxr‘n
nk2
6 knn�1k2 þ 2dtjðSn; nnÞj þ 2dtjðrgn;rnnÞj
þ 2dt2jðrxr‘gn;rxr‘n

nÞj;
where
Sn :¼ uðtnÞ � uðtn�1Þ
dt

� @uðtnÞ
@t

� gn � gn�1

dt
þ dtDxD‘uðtnÞ:
Using Cauchy–Schwarz’s and Young’s inequality, we get
2dtjðSn; nnÞj 6 dtkSnk2 þ dtknnk2
;

2dtjðrgn;rnnÞj 6 dtkrgnk2 þ dtkrnnk2
;

2dt2jðrxr‘gn;rxr‘n
nÞj 6 dt2

2
krxr‘gnk2 þ 2dt2krxr‘n

nk2
:

Applying Taylor’s theorem with integral remainder for the Sn term, we have
dtkSnk2
6 C dt2

Z tn

tn�1

@2uðsÞ
@s2

�����
�����

2

dsþ
Z tn

tn�1

@gðsÞ
@s

���� ����2

dsþ dt3kDxD‘uðtnÞk2

0@ 1A:

Collecting all estimates above we end up with
ð1�dtÞknnk2þdtkrnnk2
6knn�1k2

þC dt2
Z tn

tn�1

@2uðsÞ
@s2

�����
�����

2

dsþdt3kDxD‘uðtnÞk2þ
Z tn

tn�1

@gðsÞ
@s

���� ����2

dsþdtkrgnk2þdt2krxr‘gnk2

0@ 1A:

Divide the inequality by ð1� dtÞ, use 1 6 1=ð1� dtÞ 6 1þ 2dt 6 2 for dt 6 1=2, and sum over n ¼ 1; . . . ;N to get
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knNk2 þ
XN

n¼1

dtkrnnk2
6 kn0k2 þ 2

XN

n¼1

dtknn�1k2 þ Cdt2
Z T

0

@2uðsÞ
@s2

�����
�����

2

dsþ
XN

n¼1

dtkDxD‘uðtnÞk2

0@ 1A
þ C

Z T

0

@gðsÞ
@s

���� ����2

dsþ
XN

n¼1

dtkrgnk2 þ dt
XN

n¼1

dtkrxr‘gnk2

 !
:

Finally, we apply a discrete form of Gronwall’s Lemma resulting in
knNk2 þ
XN

n¼1

dtkrnnk2
6 C expð2TÞ

kn0k2 þ dt2 @2u
@s2

�����
�����

2

L2ð0;T;L2ðXÞÞ

þ dt2kDxD‘uk2
l2ð0;T;L2ðXÞÞ þ

Z T

0

@gðsÞ
@s

���� ����2

dsþ
XN

n¼1

dtkrgnk2 þ dt
XN

n¼1

dtkrxr‘gnk2

0@ 1A: ð32Þ
It remains to estimate the interpolation error for which we have the L2ðXÞ-bound:
kgk ¼ ku� IXILuk 6 ku� IXuk þ kIXu� ILIXuk 6
Z

XL

ku� IXuk2
L2ðXX Þ

� �1=2

þ
Z

XX

kIXu� ILIXuk2
L2ðXLÞ

� �1=2

6 Chr
Z

XL

juj2HrðXX Þ

� �1=2

þ Chr
Z

XX

kIXuk2
HrðXLÞ

� �1=2

6 Chr kukL2ðXL ;HrðXX ÞÞ þ kukL2ðXX ;HrðXLÞÞ


 �
:

Similarly we get the following bounds for the derivatives
@g
@s

���� ���� 6 Chr @u
@t

���� ����
L2ðXL ;HrðXX ÞÞ

þ @u
@t

���� ����
L2ðXX ;HrðXLÞÞ

 !
;

krxgk 6 krxu�rxIXuk þ krxIXu� ILrxIXuk 6 Chr kukL2ðXL ;Hrþ1ðXX ÞÞ þ kukH1ðXX ;HrðXLÞÞ


 �
;

kr‘gk 6 kr‘u�r‘ILuk þ kr‘ILu� IXr‘ILuk 6 Chr kukL2ðXX ;Hrþ1ðXLÞÞ þ kukH1ðXL ;Hr ðXX ÞÞ


 �
;

krxr‘gk 6 krxr‘u�rxIXr‘uk þ kr‘rxIXu�r‘ILrxIXuk 6 Chr kukH1ðXL ;Hrþ1ðXX ÞÞ þ kukH1ðXX ;Hrþ1ðXLÞÞ


 �
:

Taking into consideration that krgk2 ¼ krxgk2 þ kr‘gk2, substituting the estimates above, and using kn0k 6 kg0k, we get the
statement of the theorem. h

Remark 6. From the estimate (32), it is clear that we need a slightly higher regularity condition, that is, the mixed derivative
DxD‘uðtnÞ has to be bounded. Thus, it requires that the source f should be more regular than in L2ðð0; T� �XÞ, and this restricts
the class of problems for which the operator-splitting can be used. However, we can derive profit by using operator-splitting
for high-dimensional problems when we have higher regularity for f, see the numerical results in Section 5.
4. Implementations of the operator-splitting method

In this section, we discuss the following two variants of implementations of the operator-splitting method in the context
of the finite element method.

1. Quadrature point based operator-splitting method.
2. Nodal point based operator-splitting method.

4.1. Quadrature point based operator-splitting method

The basic idea in the quadrature point based operator-splitting method is to solve (19) at every quadrature point of XX ,
and then solve (20) at every nodal point of Wh.

Let xj 2 XX ; j ¼ 1; . . . ;N XP be the Cartesian coordinates of all quadrature points which are necessary to evaluate all inte-
grals in (20). For simplicity, let us assume that all quadrature points are inside the cells, see Fig. 1. Next, let
‘l 2 XL; l ¼ 1; . . . ;N LP be the Cartesian coordinates of all nodal points of L-direction finite element space Wh. To explain
the algorithm, let us assume that all nodal functionals of Wh are defined by point values. Further, to store the solutions
in L-and X-directions we define two-dimensional arrays UQ ½N XP�½N LP� and its transpose UTr

Q ½N LP�½N XP�, respectively.
After gathering all these information at the beginning, we first solve N XP number of L-direction Eq. (19), that is, we solve

(19) for each quadrature point xj; j ¼ 1; . . . ;N XP. Then, we transpose the L-direction solution array UQ to get UTr
Q , which is

needed in the solution of X-direction Eq. (20) in Step 2.



Fig. 1. Representation of quadrature points xj 2 XX for the nodal point ‘2 2 XL (left), and the nodal points ‘l 2 XL of Wh for the quadrature point x3 2 XX

(right).
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In Step 2, we solve N LP number of X-direction Eq. (20), that is, we solve (20) for each nodal point ‘l; l ¼ 1; . . . ;N LP of Wh.
In this step, the key point is the assembling of the right-hand side of the X-direction equations from the L-direction solution
UTr

Q . For example at t ¼ tn in the backward Euler scheme, i:e., for h ¼ 1 in (20), we have to assemble Mx
eUn�1 on the right hand

side. However, we do not have eUn�1 explicitly, instead we have only Un;Tr
Q , which is the transpose of Un

Q . Therefore, we cannot
assemble Mx

eUn�1 by the classical matrix multiplication. Thus, we provide the following algorithm. We have
Mx½~un�1
j;l �M�1 :¼

Z
XX

~un�1
h ðx; ‘lÞ/h ¼

XN Cells

m¼1

Z
Km

~un�1
h ðx; ‘lÞ/h; l ¼ 1; . . . ;N :
Then, for each l, the ith component ði ¼ 1; . . . ;MÞ of the right-hand side vector Mx½~un�1
j;l � can be evaluated as
rhs½i� ¼
XN Cells

m¼1

Z
Km

XM
j¼1

~un�1
j;l /j/i ¼

XN Cells

m¼1

Xm�N KQP

k¼ðm�1ÞN KQP

xk

XM

j¼1
~un�1

j;l /jðxkÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Un;Tr

Q
½l�½k�

/iðxkÞ ¼
XN Cells

m¼1

Xm�N KQP

k¼ðm�1ÞN KQP

xkUn;Tr
Q ½l�½k�/iðxkÞ: ð33Þ
Here, N KQP is the number of Gaussian quadrature points in a cell. In addition, the Ax
eUn�1 matrix has to be assembled on the

right hand side when the Crank–Nicolson scheme is used in (19) and (20). However, it is not straightforward to assemble this
term as like Mx

eUn�1. Actually from Step 1, at each quadrature point xj, we only have
XM
j¼1

~un�1
j;l /jðxkÞ ¼ Un;Tr

Q ½l�½k�
from the L-direction. However, to assemble Ax
eUn�1, we need
XM
j¼1

~un�1
j;l rx/jðxkÞ:
To overcome this challenge, for each l, we calculate the nodal functionals ~un�1
j;l from the L-direction solution Un;Tr

Q ½l�½k� using
the L2 � projection. That is, in each cell Km 2 T h; m ¼ 1; . . . ;N Cells, we solve
Z
Km

~un�1
j;l /j/i ¼

Xm�N KQP

k¼ðm�1ÞN KQP

xk

XM

j¼1
~un�1

j;l /jðxkÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Un;Tr

Q
½l�½k�

/iðxkÞ
to obtain ~un�1
j;l . Since the above L2 � projection is local, the degrees of freedoms of Vh on the vertices, edges and faces will get

different values from all cells associated with them. Thus, in our implementation, we take the average of all these values
arising from all associated cells. Finally, we assemble Ax

eUn�1 by the classical matrix multiplication.
Overall, the calculation of the right hand side in the X-direction Eq. (20) (Step 2) from the L-direction finite element solu-

tion is not straightforward in the quadrature point based operator-splitting method. Further, a special technique such as
L2 � projection as proposed above is needed when the right hand side of (20) contains the derivative of the L-direction finite
element solution. An advantage is that the L-direction Eq. (20) are independent each other, and thus (20) can be solved in
parallel without communication when the quadrature points xj of XX are inside the cells.
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4.2. Nodal point based operator-splitting method

In the nodal point based operator-splitting method, we solve the L-direction Eq. (19) at each nodal point of the X-direc-
tion finite element space Vh. Thus, immediately after the solution of Step 1, we have the nodal values, and hence we assemble
the right-hand side of (20) by the classical matrix multiplication.

As in Section 3.2, let xj 2 XX ; j ¼ 1; . . . ;N XP, and ‘l 2 XL; l ¼ 1; . . . ;N LP be the Cartesian coordinates which are necessary
to evaluate nodal functionals of the finite element spaces Vh and Wh, respectively. To explain the algorithm, let us consider
Q1 and P1 finite element spaces in X- and L-directions, respectively. Further, assume that the nodal points are the vertices of
the computational mesh, see Fig. 2. Next, we define two-dimensional arrays, UN½N XP�½N LP� and its transpose UTr

N ½N LP�½N XP�
to store the solutions of L- and X-directions, respectively.

Now, we first solve N XP number of L-direction Eq. (19), that is, we solve (19) for each nodal point xj; j ¼ 1; . . . ;N XP, of
Vh. Then, we transpose the solution UN to get UTr

N , which is needed in the right-hand side of X-direction Eq. (20) in Step 2.
In Step 2, we solve N LP number of X-direction Eq. (20), that is, we solve (20) for each nodal point ‘l; l ¼ 1; . . . ;N LP of L-

direction finite element space Wh. Since the nodal functionals of Vh are defined by point values, at t ¼ tn we get eUn�1 ¼ Un;Tr
N

directly. Even if we define the nodal functionals of Vh using some quadrature formulas, we can easily evaluate eUn from Un;Tr
N .

Also, note that in the nodal point based operator-splitting algorithm we do not need any special method or L2 � projection to
assemble the right-hand side of X-direction equation from the L-direction update.

5. Numerical experiments

For the validation we consider a simple problem with smooth solution and source term (see, Remark 6), and compare the
numerical results with the analytical solution. Let X :¼ XX �XL, with XX ¼ ð0;1Þ2 and XL ¼ ð0;1Þ. Consider the problem (2)
with f ¼ ð3p2 � 0:1Þe�0:1t sinðpX1Þ cosðpX2Þ cosðp‘Þ. The initial and non-homogeneous boundary values are chosen such that
the solution of (2) is u ¼ e�0:1t sinðpX1Þ cosðpX2Þ cosðp‘Þ. First, we performed an array of 3D computations for different levels
of meshes and temporal discretizations. Further, we perform the convergence study for these algorithms. The L2 error is com-
puted by applying a quadrature rule on each cell of the decomposition of X � R3. Further, to calculate the error in space and
time we use
Fi
‘1ð0; T; L2ðXÞÞ :¼ sup
n¼1;...;N

kuðtnÞ � uhðtnÞkL2ðXÞ;

‘2ð0; T; L2ðXÞÞ :¼
XN

n¼1

dtkuðtnÞ � uhðtnÞk2
L2ðXÞ

 !1=2

:

5.1. Standard 3D Computations with finite element method

To perform the standard (without dimensional splitting) 3D computations using finite element method, first we triangu-
late the 3D domain X using hexahedra. The computational meshes for successive levels are obtained by successively refining
the initial coarse mesh uniformly. This results into 35937 degrees of freedom on level 5. Here, we compare the numerically
computed solutions for different temporal discretizations with the analytical solution. Computations are performed up to
level 5. To perform the convergence study, we consider the following cases

A1 : Q1 in space and backward Euler for time with dt / h2,
A2 : Q1 in space and Crank–Nicolson for time with dt / h,
g. 2. Representation of Q1 space nodal points xi in XX (left) at the second nodal point level ‘2 of L-direction finite element space Wh (right).



Table 1
Errors in ‘1ðL2Þ and ‘2ðL2Þ norms for the case A1 using standard 3D computations.

Level h dt ‘1ðL2Þ � 10�4 Order ‘2ðL2Þ � 10�4 Order

1 0.866025 0.75 1577.52 1728.91
2 0.4330127 0.1875 477.545 1.72395 589.388 1.55257
3 0.2165064 0.046875 124.894 1.93493 155.772 1.91978
4 0.1082532 0.0117187 32.6134 1.93717 39.4336 1.98194
5 0.0541265 0.00292969 8.50921 1.93837 9.890197 1.99535

Table 2
Errors in ‘1ðL2Þ and ‘2ðL2Þ norms for the case A2 using standard 3D computations.

Level h dt ‘1ðL2Þ � 10�4 Order ‘2ðL2Þ � 10�4 Order

1 0.866025 0.866025 1559.33 1805.57
2 0.4330127 0.4330127 477.363 1.70777 555.513 1.70056
3 0.2165064 0.2165064 128.247 1.89616 152.758 1.86257
4 0.1082532 0.1082532 32.1604 1.99557 38.6183 1.98389
5 0.0541265 0.0541265 7.87806 2.02937 9.7161 1.99084

Table 3
Interpolation error in L2 norm for the 2D + 1D operator-splitting method.

Level h� 10�2 L2 � 10�5 order

3 35.3553 3206.654
4 17.6776 673.5361 2.2512
5 8.8388 139.0634 2.2760
6 4.4194 29.9046 2.2173
7 2.2097 6.7593 2.1454
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The obtained numerical errors in both cases are presented in Table 1 and Table 2. The optimal order of convergence (two
in L2 norm) for the trilinear hexahedral elements (Q1) finite element is obtained in both cases.

5.2. Computations with the operator-splitting method (2D + 1D)

To perform 2D + 1D computations with the operator-splitting method, we triangulate XX and XL using the quadrilaterals
and subintervals, respectively. The successive mesh levels of the X- and L-direction equations are obtained by successively
refining their respective initial coarse mesh uniformly. In the initial coarse mesh (level 2) of XX and XL, we have 16 quad-
rilaterals and 4 subintervals, respectively. Further, the Q1 and P1 finite elements are used to spatial discretization in all com-
putations. The L2 error is computed by applying quadrature rules in X- and L-direction, i.e.,
kuk2
L2ðXÞ ¼

Z
X

u2 ¼
Z

XX

Z
XL

u2ðx; ‘Þd‘
� �

dx 	
X
KX

i

XN KXQP

m¼1

wx
m

Z
XL

u2ðxm; ‘Þd‘ 	
X
KX

i

XN KXQP

m¼1

wx
m

X
KL

j

XN KLQP

l¼1

w‘
l u

2ðxm; ‘lÞ;
where KX
i and KL

j are cells in XX and XL, respectively. Here, N KXQP;wx
m and N KLQP;w‘

l are the number of quadrature points,
quadrature weights in each KX

i and KL
j , respectively.

5.2.1. Interpolation error
For verifying the implementation of the operator-splitting routines, we interpolate the initial solution

u0 ¼ sinðpX1Þ cosðpX2Þ cosðp‘Þ in the L-direction and compute the interpolation error in the L2-norm. Table 3 shows optimal
convergence of second order.

5.2.2. Quadrature point based operator-splitting method
To validate the quadrature point based implementation of operator-splitting method presented in the Section 4.1, we per-

formed an array of computations for the considered test example with the backward Euler and Crank–Nicolson time discret-
izations up to the mesh level 6. In the fine mesh (level 6), we have 36864 number of quadrature points in X-direction finite
element space Vh and 65 number of nodal points in the L-direction space Wh. Thus, we solved 65 times a 2D equation and
36864 times a 1D equation in the level 6 for the 3D problem. To perform the numerical study, the following cases are
considered



Table 4
Errors in ‘1ðL2Þ and ‘2ðL2Þ norms for the case B1 using quadrature point based operator-split computations.

Level h� 10�2 dt � 10�4 ‘1ðL2Þ � 10�4 Order ‘2ðL2Þ � 10�4 Order

2 35.3553 1250 348.5833 452.4036
3 17.6776 312.5 89.1769 1.9667 115.3489 1.9716
4 8.8388 78.125 22.3227 1.9981 28.82934 2.0003
5 4.4194 19.5312 5.5839 1.9991 7.208633 1.9997
6 2.2097 4.8828 1.3966 1.9993 1.653322 2.1243

Table 5
Errors in ‘1ðL2Þ and ‘2ðL2Þ norms for the case B2 using quadrature point based operator-split computations.

Level h� 10�2 dt � 10�4 ‘1ðL2Þ � 10�4 Order ‘2ðL2Þ � 10�4 Order

2 35.3553 35.3553 314.4611 433.9884
3 17.6776 17.6776 75.7352 2.0538 104.4342 2.0550
4 8.8388 8.8388 18.11561 2.0637 23.9513 2.1244
5 4.4194 4.4194 4.15197 2.1253 5.3987 2.1494
6 2.2097 2.2097 0.94167 2.1404 1.1455 2.2365

Table 6
Errors in ‘1ðL2Þ and ‘2ðL2Þ norms for the case C1 using nodal point based operator-split computations.

Level h� 10�2 dt � 10�4 ‘1ðL2Þ � 10�4 Order ‘2ðL2Þ � 10�4 Order

2 35.3553 1250 350.8710 456.4965
3 17.6776 312.5 92.3602 1.9256 118.1260 1.9502
4 8.8388 78.125 23.8848 1.9511 29.95218 1.9795
5 4.4194 19.5312 6.0921 1.9710 7.537856 1.9904
6 2.2097 4.8828 1.5344 1.9892 1.888839 1.9966

Table 7
Errors in ‘1ðL2Þ and ‘2ðL2Þ norms for the case C2 using nodal point based operator-split computations.

Level h� 10�2 dt � 10�4 ‘1ðL2Þ � 10�4 Order ‘2ðL2Þ � 10�4 Order

2 35.3553 35.3553 324.3398 418.7031
3 17.6776 17.6776 78.09492 2.0542 95.3343 2.13486
4 8.8388 8.8388 18.01345 2.1161 22.3156 2.09494
5 4.4194 4.4194 4.05971 2.1496 5.2474 2.08837
6 2.2097 2.2097 0.90164 2.1707 1.1464 2.19447

Table 8
Computational costs in seconds for one time step on different mesh levels.

Level Full 3D Quadrature based OS Nodal based OS

3 0.04 0.03 0.007
4 0.36 0.2 0.05
5 7.7 1.4 0.4
6 – 11.6 3.4

6194 S. Ganesan, L. Tobiska / Applied Mathematics and Computation 219 (2013) 6182–6196
B1 : Q1 � P1 in space, and backward Euler for time with dt / h2,
B2 : Q1 � P1 in space, and Crank–Nicolson for time with dt / h.

The computed errors are presented in Tables 4 and 5 for the cases B1 and B2, respectively. The numerical error obtained
with the Crank–Nicolson scheme is marginally less than the numerical error obtained with the backward Euler scheme. How-
ever, in both backward Euler and Crank–Nicolson schemes, we obtained the optimal order of convergence for the Q1 and P1

finite elements in the X- and L-direction, respectively, in both ‘1ðL2Þ and ‘2ðL2Þ norms. Interestingly, the numerical error
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obtained from 2D + 1D computation with the quadrature point based implementation of operator-splitting method is slightly
better than the numerical error obtained from the 3D computation with the standard finite element method.
5.2.3. Nodal point based operator-splitting method
To validate the nodal point based implementation of the operator-splitting method presented in the Section 4.2, a set of

computations is performed for the considered test example with the backward Euler and Crank–Nicolson time discretiza-
tions up to the mesh level 6. In the fine mesh (level 6), we have 4225 nodal points in X-direction finite element space Vh

and 65 nodal points in the L-direction space Wh. Thus, we solved 65 times a 2D equation and 3969 times a 1D equation
(excluding 256 Dirichlet boundary nodal points) in the level 6 of the 3D problem. To perform the numerical study, the fol-
lowing cases are consider

C1 : Q1 � P1 in space and backward Euler for time with dt / h2,
C2 : Q1 � P1 in space and Crank–Nicolson for time with dt / h.

The numerical errors obtained in both cases are presented in the Table 6 and Table 7. As in the quadrature point based
operator-splitting method, the numerical error obtained with the Crank–Nicolson scheme is marginally less than the numer-
ical error obtained with the backward Euler scheme. Moreover, the optimal order of convergence is obtained in both cases.
Even though, we solved less number of 1D equations in the nodal point based implementation compared to the quadrature
point based implementation, we obtained a similar numerical errors in the nodal point based implementation. Thus, from
the computational point of view the nodal point based implementation of the operator-splitting method is more efficient
than the quadrature point based implementation. Further, transferring the solution from the L-direction to the X-direction
is much simpler in the nodal point based implementation.

The following Table 8 gives some impression on the numerical costs for the solution of the considered examples when
using a direct solver. We see that the nodal based operator-splitting approach is very efficient, in particular, on finer meshes.
The expected gain by splitting a 4D problem into two 2D problems should be even higher.

6. Conclusion

An operator-splitting finite element method for solving high-dimensional parabolic problems is presented in this paper.
For the backward Euler scheme, the equivalence up to a perturbation term of order ðdtÞ2 between the variational forms of the
high-dimensional equation and the operator-split equations is shown. An a priori error estimate for the operator-splitting
finite element method applied to a parabolic equation is presented. It is shown that the mixed partial derivatives of the solu-
tion has to be bounded in order to apply the operator-splitting method. Further, two variants of operator-splitting algorithms
(i) quadrature point based operator-splitting algorithm, and (ii) nodal point based operator-splitting algorithm, in the con-
text of the finite element method are presented in detail.

The proposed operator-splitting algorithms are validated using a 3D test problem, which is split into 2D and 1D subprob-
lems. It is demonstrated that the numerical solutions obtained with these two variants of algorithms for the 2D + 1D sub-
problems are in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in
both variants. Even though, the obtained numerical errors and the order of convergence are similar in both variants, the no-
dal point based operator-splitting algorithm is more efficient due to less number of nodal points in comparison with the
number of quadrature points.
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