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A finite-element scheme based on a coupled arbitrary Lagrangian–Eulerian and Lagrangian
approach is developed for the computation of interface flows with soluble surfactants. The
numerical scheme is designed to solve the time-dependent Navier–Stokes equations and
an evolution equation for the surfactant concentration in the bulk phase, and simulta-
neously, an evolution equation for the surfactant concentration on the interface. Second-
order isoparametric finite elements on moving meshes and second-order isoparametric
surface finite elements are used to solve these equations. The interface-resolved moving
meshes allow the accurate incorporation of surface forces, Marangoni forces and jumps
in the material parameters. The lower-dimensional finite-element meshes for solving the
surface evolution equation are part of the interface-resolved moving meshes. The numer-
ical scheme is validated for problems with known analytical solutions. A number of com-
putations to study the influence of the surfactants in 3D-axisymmetric rising bubbles have
been performed. The proposed scheme shows excellent conservation of fluid mass and of
the total mass of the surfactant.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The presence of surface active agents (surfactants) significantly alters the dynamics of multiphase flows. Surfactants low-
er the surface tension on the interface and since, in general, their concentration along the interface is not uniform, Marangoni
forces are induced. These properties of surfactants offer the possibility of controlling the dynamics of multiphase flow
systems.

Surfactant-controlled multiphase flow systems are widely used in scientific, engineering and biomedical applications. For
example, surfactants can be used to manipulate very small droplets and bubbles [6,11] which is useful in flow-focusing de-
vices [2,29]. The presence of surfactants in pulmonary alveoli is essential for the proper functioning of the defense mecha-
nism of lungs [9,17,25]. A lack of pulmonary surfactants in premature neonates causes the respiratory distress syndrome
(RDS) [3].

A mathematical model describing interface flows with soluble surfactants consists of the time-dependent Navier–Stokes
equations coupled with the bulk and the surface evolution equations for the concentration of surfactants in the bulk fluid
phase and on the interface, respectively. Since the interface has to be captured/tracked during the computations, the solution
of the surface evolution equation on the deforming interface is one of the main challenges in the computation of flows with
. All rights reserved.
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surfactants. The exchange of surfactants between the interface and the bulk phase increases the complexity further. The
force balance along the interface couples the surfactant concentration on the interface with the dynamics of the flow field
and makes the computation even more challenging. Thus, a realistic study of the effect of surfactants in interface flows de-
pends largely on the accuracy of the numerical scheme used.

Most of the previous numerical studies on the effect of surfactants in interface flows are confined to flows with insoluble
surfactant, where the surfactant mass transfer between the interface and the bulk phase is neglected. For interface flows
with insoluble surfactants a number of numerical schemes based on popular interface capturing/tracking methods such
as volume-of-fluid [19,27], level set [33] and arbitrary Lagrangian–Eulerian method [14,26] have been proposed by several
authors. Boundary integral methods [4,11,23] and immersed boundary methods [21,22] have also been used to study the
effect of insoluble surfactants in interface flows. The complexity of computations increases when the surfactant mass trans-
fer between the interface and the bulk phase is taken into consideration. In particular, the conservation of the total mass of
surfactants is a challenge in the computation of interface flows with soluble surfactants. A narrow transition layer in which
the concentration of the bulk surfactants varies rapidly will occur adjacently to the interface when the bulk Peclet number is
large [5]. It is well known that standard Galerkin finite-element discretizations applied to convection-dominated convec-
tion–diffusion equations induce spurious oscillations in the numerical solution unless the mesh size is small enough to cap-
ture the transition layer. In this case, stabilization methods [28] like the streamline-upwind Petrov–Galerkin (SUPG) method
[8] or the local projection stabilization method [15] could be applied to stabilize the bulk concentration equation. Alterna-
tively, layer-adapted meshes [28] near the interface combined with standard discretizations can be used. In the considered
test examples, we followed the second way and have chosen the mesh very fine near the interface. Note that the ALE ap-
proach produces a convection term with a relative velocity vanishing on the interface. This might be the reason that in
our computations no stabilization was needed. However, a complete discussion of this topic is beyond the scope of the paper.

Recently, a front-tracking method has been developed for computations of interface flows with soluble surfactants [34].
In the front-tracking method, the interface is represented by connected Lagrangian marker points, which move with the local
fluid velocity interpolated from the background stationary Eulerian grid. In [34], the adsorption and desorption balance con-
dition for the surfactant mass transfer between the interface and the bulk phase has been incorporated at the interface,
which is constructed from the Lagrangian marker points. Unfortunately, this method does not conserve the total surfactant
mass. Another variant of the front-tracking method for interface flows with soluble surfactants has been proposed in [24].
With the assumption that the surfactant mass transfer occurs within a thin adsorption layer adjacent to the interface, a bet-
ter conservation of the total mass of surfactants has been achieved. Also, a meshfree smoothed-particle hydrodynamics
(SPH) method has been proposed in [1] for two-dimensional Stokes interface flows with soluble surfactants. In the SPH
method, Lagrangian particles are marked with a color function to distinguish different fluid phases. The authors incorporated
surface and Marangoni forces into the SPH model using the continuum surface force (CSF) technique [7]. Further, the surface
evolution-equation has been approximated in a transition layer adjacent to the interface in [1].

In this paper, we present an accurate and efficient sharp interface numerical method based on a coupled arbitrary
Lagrangian–Eulerian and Lagrangian approach. Since the interface is resolved by this method, surface forces, Marangoni
forces and jumps in the material parameters can be accurately incorporated into the model. As shown in [12] spurious veloc-
ities can be successfully suppressed using isoparametric finite elements, discontinuous pressure approximations, and the La-
place–Beltrami technique for representing the curvature. Furthermore, no separate lower-dimensional interface mesh is
needed for approximating the surface evolution-equation; instead we use the discrete representation of the interface di-
rectly. In addition, the incorporation of the adsorption and desorption balance condition for the surfactant mass transfer rela-
tion is straightforward in the sharp interface method considered.

The paper is organized as follows. In Section 2, the governing equations and the transformation into their dimensionless
form are presented. The finite-element scheme based on the coupled arbitrary Lagrangian–Eulerian and Lagrangian method
for interface flows with soluble surfactants is described in Section 3. The accuracy of the proposed numerical scheme is val-
idated for test examples with known analytical solutions in Section 4. Furthermore, numerical results for a rising bubble are
given. Finally, in Section 5 we summarize the results.

2. Governing equations

We consider an incompressible two-phase flow with a soluble surfactant in a bounded domain X � R3 with Lipschitz con-
tinuous boundary oX. We assume that a liquid droplet filling X1(t) is completely surrounded by another liquid filling
X2ðtÞ ¼ X nX1ðtÞ and the liquids are immiscible. Here, t is the time in a given time interval [0,T]. The interface between
the liquids is denoted by oXF(t) :¼ oX1(t) \ oX2(t). The concentration of the soluble surfactants on the interface oXF(t) influ-
ences the surface tension and thus the dynamics of the flow.

2.1. Navier–Stokes equations

The two-phase flow in X is described by the time-dependent incompressible Navier–Stokes equations
qk
@u
@t
þ ðu � rÞu

� �
�r � ðTkðu; pÞÞ ¼ qkge; r � u ¼ 0; in XkðtÞ � ð0;T� ð1Þ
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for k = 1, 2. The Navier–Stokes equations are completed by the initial condition,
Xð0Þ ¼ X0; ujt¼0 ¼ u0;
the kinematic and force balancing conditions
w � m ¼ u � m; ½u� ¼ 0; m � ½Tðu;pÞ� � m ¼ rðCÞK; si � ½Tðu;pÞ� � m ¼ si � rrðCÞ; on @XFðtÞ
for i = 1, 2. Further, we assume that the boundary oX of X is fixed in time, and impose homogeneous Dirichlet boundary con-
ditions on it. For the Newtonian incompressible fluid, the stress tensor Tkðu; pÞ and the velocity deformation tensor DðuÞ are
given by
Tkðu; pÞ ¼ 2lkDðuÞ � pI; DðuÞ ¼ 1
2

@ui

@xj
þ @uj

@xi

� �
; i; j ¼ 1; . . . ;3:
Here, u = (u1,u2,u3) is the fluid velocity, p is the pressure, qk and lk are the density and the dynamic viscosity of the respec-
tive fluid phases, w on oXF(t) is the interface velocity and K is the sum of the principal curvatures. Further, m and si, i = 1, 2
denote the unit outward normal and tangential vectors on oXF(t), e an unit vector in the opposite direction of the gravita-
tional force, I the identity tensor, and [�] denotes the jump across the interface oXF(t). Further, C denotes the surfactant con-
centration on the interface and r(C) the surface tension coefficient depending on C. In our model, we consider both the
linear and nonlinear equation of states for the surfactant and the surface tension relation. Henry’s linear equation of state
(LEOS)
rðCÞ ¼ r1 þ RTaðC1 � CÞ ð2Þ
can be used when the variation of the surfactant concentration around a reference surfactant concentration, C1, is small, see
for example [19,26]. Here, r1 corresponds to the surface tension in the reference phase, R is the ideal gas constant and Ta is
the absolute temperature. The nonlinear Langmuir equation of state (NLEOS) is given by
rðCÞ ¼ r0 þ RTaC1 lnð1� C=C1Þ; ð3Þ
where r0 is the surface tension coefficient of the surfactant-free (clean) liquid and C1 is the maximum surface packing sur-
factant concentration. Note that due to the log singularity the NLEOS produces negative values of surface tension when
C ? C1. In some papers, this effect is taken into consideration by introducing a cut-off value for the minimum surface ten-
sion [24]. However, in the case of high surface concentrations we believe that a more detailed model is needed to account for
the tendency of soluble surfactants to form micelles in the bulk. Nevertheless, we always checked the size of the surface ten-
sion reduction to avoid unphysical regimes in our computations.

2.2. Soluble surfactant transport equations

In the present study, it is assumed that the surfactant is soluble only in the outer fluid phase X2(t). The transport of the
surfactant concentration C in X2(t) is described by the scalar convection–diffusion equation
@C
@t
þ u � rC ¼ r � DcrC in X2ðtÞ � ð0; T�: ð4Þ
Eq. (4) is completed with the initial and boundary conditions:
Cjt¼0 ¼ C0 in X2ð0Þ;
m � DcrC ¼ �SðC;CÞ on @XFðtÞ;
m � DcrC ¼ 0 on @X:
Here, Dc is the diffusive coefficient of the outer phase surfactant concentration C. The source term S(C,C) is given by
SðC;CÞ ¼ KaCðC1 � CÞ � KdC; ð5Þ
where Ka and Kd are adsorption and desorption coefficients, respectively. The surfactant concentration C on the interface
@XF(t) is described by the surface convection–diffusion equation [30,32]
@C
@t
þ U � rCþ Cr � u ¼ r � ðDsrCÞ þ SðC; CÞ ð6Þ
for a given initial concentration Cjt=0 = C0. Here, Ds is the diffusive coefficient of C and U = (u � (u � m) � m) is the velocity along
the interface. The surface (tangential) gradient operator r is defined by
rC :¼ rC� ðm � rCÞm:
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In this definition, we have assumed that C is defined not only on oXF(t) but also in a certain neighborhood. However, it is
well known that the restriction of rC on oXF(t) depends only on values of C on oXF(t). In Eq. (6), r � u is the tangential
divergence of the fluid velocity, which is defined as
r � u ¼ trððI� m � mÞruÞ;
where � denotes the vector direct product. Since oXF(t) \ oX = ;, i.e., oXF(t) is a closed interface, no boundary condition is
needed for Eq. (6).

2.3. Non-dimensional form of the equations

The governing equations are solved in nondimensional form. Let U1, L, q2, C1, be the characteristic values for velocity,
length, density and surfactant concentration C. We define the nondimensional density q(x) and Reynolds number Re(x) in
different parts of the domain X as
qðxÞ ¼
q1=q2 for x in X1ðtÞ;
1 for x in X2ðtÞ;

�
ReðxÞ ¼

Re2l2=l1 for x in X1ðtÞ;
Re2 for x in X2ðtÞ;

�
Re2 ¼

q2U1L
l2

:

Furthermore, we define the nondimensional variables as
~x ¼ x
L
; ~u ¼ u

U1
; ~w ¼ w

U1
; ~t ¼ tU1

L
; ~p ¼ p

q2U2
1
; eC ¼ C

C1
; eC ¼ C

C1
:

Using these nondimensional variables and omitting the tilde afterwards, we can write the nondimensional form of the time-
dependent Navier–Stokes equations (1) as
qðxÞ @u
@t
þ ðu � rÞu

� �
�r � ðSkðu;pÞÞ ¼ qðxÞ e

Fr
; r � u ¼ 0: ð7Þ
The nondimensional form of the kinematic condition becomes
w � m ¼ u � m; ½u� ¼ 0
and the force-balancing boundary condition with the linear equation of state (2) can be written as
m½Sðu; pÞ� � m ¼ 1
We

1þ E1
C1

C1
� C

� �� �
K; si½Sðu;pÞ� � m ¼ �

E1

We
si � rC; i ¼ 1;2:
Here, E1 is the surfactant elasticity defined as E1 = RTaC1/r1. Similarly, the nondimensional form of force balancing boundary
conditions with the nonlinear equation of state (3) can be written as
m½Sðu; pÞ� � m ¼ 1
We
ð1þ E0 lnð1� CÞÞK; si;F ½Sðu;pÞ� � m ¼ �

E0

We
si �

rC
1� C

� �
;

where E0 is the surfactant elasticity defined as E0 = RTaC1/r0. Finally, the nondimensional form of the stress tensor Skðu; pÞ
and the nondimensional Weber and Froude numbers are given by
Skðu; pÞ :¼ 2
ReðxÞDðuÞ � pI; We ¼ q2U2

1L
r1

; Fr ¼ U2
1

Lg
:

Note that r0 instead of r1 has to be used in the definition of the Weber number when the nonlinear equation of state (3) is
used.

Remark 1. Often the characteristic velocity in interface flows is defined as U1 ¼
ffiffiffiffiffi
Lg

p
. In this case the Froude number

reduces to 1 and the Weber number becomes the Eötvös number
Eo ¼ q2gL2

r1
:

Next, using these nondimensional variables in Eq. (4), and omitting the tilde afterwards, the nondimensional form of the
surfactant concentration equation in the outer phase is given by
@C
@t
þ u � rC ¼ r � 1

Pec
rC

� �
: ð8Þ
The corresponding boundary condition on oXF(t) with the source term (5) becomes
m � 1
Pec
rC ¼ �bCð1� CÞ þ BiDaC:
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Similarly, using the nondimensional variables in Eq. (6), and omitting the tilde afterwards, we obtain the nondimensional
form of the surfactant concentration equation in the interface with the source term (5) as
Fig. 1.
an elas
@C
@t
þ U � rCþ Cr � u ¼ r � 1

Pes
rCþ b

Da
Cð1� CÞ � BiC: ð9Þ
Here, the nondimensional numbers (Peclet,Biot,Damköhler and b) in Eqs. (8) and (9) are given by
Pec ¼
U1L
Dc

; Pes ¼
U1L
Ds

; Bi ¼ KdL
U1

; Da ¼ C1
LC1

; b ¼ KaC1
U1

:

3. Numerical solution procedure

3.1. ALE approach for time-dependent domains

In the model problem considered, the boundary of X is fixed over time but the interface oXF(t) between the two sub-do-
mains Xk(t), k = 1, 2, has to be tracked. For this, we use, as in [14] for free surface flows, the arbitrary Lagrangian–Eulerian
(ALE) approach. The domain X is decomposed in such a way that the interface oXF(t) is represented in each time step by
certain faces of mesh cells. The collection of mesh cells belonging to X1 will be called the inner mesh, those in X2 the outer
mesh. On this interface-resolving inner and outer mesh we discretize the time-dependent Navier–Stokes equation (7) and
the surfactant concentration Eq. (8) in space. Note that we do not need a separate lower-dimensional mesh to discretize
the interface surfactant concentration Eq. (9) in space, we use directly the discrete representation of the interface oXF(t).

In order to find the new shape of the subdomains X1 and X2 for the next time step t = tn, we solve first the time-depen-
dent Navier–Stokes equations (7) with the surfactant concentration C at the interface from the previous time step t = tn�1,
and then solve Eqs. (8) and (9). We move the interface with the fluid velocity un, see Fig. 1, left. Let Wn

F be the resulting dis-
placements of the nodes at the interface. Then, we compute the displacements Wn

1 and Wn
2 of nodes inside both phases by

solving the linear elasticity problem (elastic mesh update [13,20])
r � TðWn
kÞ ¼ 0 in Xkðtn�1Þ; Wn

k ¼ Wn
F on @XFðtn�1Þ; Wn

2 ¼ 0 on @X ð10Þ
for k = 1, 2. Here, T denotes the stress tensor given by
Tð/Þ ¼ k1ðr � /ÞIþ 2k2Dð/Þ;
where k1 and k2 are the Lame constants (chosen to be k1 = k2 = 1 in our numerical tests). From the displacement vectors
Wn

k ; k ¼ 1;2, we compute the mesh velocity wn
k � Wk=ðtn � tn�1Þ at time t = tn in Xk, k = 1, 2, which appears in the ALE form

of the time-dependent Navier–Stokes equations (7):
qðxÞ @u
@t
þ ððu�wÞ � rÞu

� �
�r � ðSkðu;pÞÞ ¼ qðxÞ e

Fr
; r � u ¼ 0: ð11Þ
Similarly, the ALE formulation of the surfactant concentration equation in the outer phase reads:
@C
@t
þ ðu�wÞ � rC ¼ r � 1

Pec
rC

� �
: ð12Þ
Since we move the interface with the fluid velocity in the ALE approach, the domain oXF(t) for the surface concentration Eq.
(9) is treated in a Lagrangian manner. As a consequence, the Lagrangian form of Eq. (9) will be used:
@C
@t
þ Cr � u ¼ r � 1

Pes
rCþ bCCð1� CÞ � BiC: ð13Þ
Mesh handling. Step 1: move the interface points with the velocity to the new position (left). Step 2: compute the displacements of inner points by
tic mesh update (right).
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Occasionally, the distortion of the cells may become very large after several time steps. In such situations, we remesh the
domain and interpolate the solutions from the old mesh to the new mesh. In general, the interpolated fluid velocity will
not be discretely divergence free on the new mesh. Therefore, an additional fixed point iteration step of the Navier–Stokes
solver with the interpolated velocity as an initial guess is performed before continuing the time stepping scheme.

3.2. Variational form

The finite-element method for solving the governing equations (11)–(13) of the two-phase flows with soluble surfactants

is based on a variational form. Let V :¼ H1
0ðXÞ

� �3
and Q :¼ L2

0ðXÞ be the usual Sobolev spaces. We multiply the momentum

and mass balance equations (11) by test functions v 2 V and q 2 Q, respectively, integrate over X, and integrate by parts in
each sub-domain Xk(t), k = 1, 2, separately. Incorporating the boundary conditions, we get the variational form of (11):

For given X0, u0, and w, find (u,p) 2 V � Q such that
qðxÞ @u
@t
;v

� �
þ aððu�wÞ;u;vÞ � bðp;vÞ þ bðq;uÞ ¼ ðf ;vÞ; 8ðv; qÞ 2 V � Q : ð14Þ
Here, (�, �) denotes the inner product in L2(X) and its vector-valued versions. The bilinear forms aðû; �; �Þ and b(�, �) are given by
aðû;u;vÞ ¼ 2
Z

X

1
ReðxÞDðuÞ : DðvÞdxþ

Z
X
qðxÞðû � rÞu � vdx;

bðq;vÞ ¼
Z

X
qr � vdx:
Furthermore, for the linear equation of state (2), we have
ðf ;vÞ ¼ 1
Fr

Z
X
qðxÞe � vdx� 1

We

Z
@XF ðtÞ

1þ E1
C1

C1
� C

� �� �
ðv � mÞKdS� E1

We

Z
@XF ðtÞ

ðv � siÞðrCÞ � sidS ð15Þ
and for the nonlinear equation of state (3), we have
ðf ;vÞ ¼ 1
Fr

Z
X
qðxÞe � vdx� 1

We

Z
@XF ðtÞ

ð1þ E0 lnð1� CÞÞðv � mÞKdS� E0

We

Z
@XF ðtÞ

ðv � siÞ
rC

1� C

� �
� sidS: ð16Þ
The curvature K in the surface integrals of Eqs. (15) and (16), respectively is replaced by the Laplace–Beltrami operator D of
the identity id, more precisely, Km ¼ �Did. Then, applying integration by parts we reduce one order of differentiation asso-
ciated with the curvature. Hence, the surface integrals in Eqs. (15) and (16), which contain the curvature K, become
� 1
We

Z
@XF ðtÞ

rid : r v 1þ E1
C1

C1
� C

� �� 	� �
dS ¼ � 1

We

Z
@XF ðtÞ

rid : 1þ E1
C1

C1
� C

� �� 	
rv � E1rC� v

� �
dS
and
� 1
We

Z
@XF ðtÞ

rid : rðv½1þ E0 lnð1� CÞ�ÞdS ¼ � 1
We

Z
@XF ðtÞ

rid : ½1þ E0 lnð1� CÞ�rv � E0

1� C
rC

� 	
� v

� �
dS;
respectively.
Next, for deriving a variational form of the soluble surfactant concentration Eqs. (8) and (9), we define G :¼ H1(X2(t)) and

M :¼ H1(@FX(t)). Multiplying Eqs. (8) and (9) by test functions / 2 G and w 2M, integrating over X2(t) and @FX(t), respec-
tively, incorporating the boundary conditions for C, we obtain the coupled problem for the soluble surfactant concentration:
For given (C0,C0,w), find (C,C) 2 G �M such that for all (/,w) 2 G �M
@C
@t
;/

� �
X2ðtÞ
þ acððu�wÞ; C;/Þ þ bcðC;C;/Þ ¼ scðC;/Þ; ð17Þ

@C
@t

;w

� �
@XF ðtÞ

þ aCðu;C;wÞ þ bCðC;C;wÞ ¼ sCðC;wÞ; ð18Þ
where
acðu;C;/Þ ¼
1

Pec

Z
X2ðtÞ
rC � r/dxþ

Z
X2ðtÞ
ðu � rÞC/dx;

bcðC;C;/Þ ¼ b
Z
@XF ðtÞ

ð1� CÞC/dS;

scðC;/Þ ¼ BiDa
Z
@XF ðtÞ

C/dS;
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aCðu;C;wÞ ¼
1

Pes

Z
@XF ðtÞ

rC � rwdSþ
Z
@XF ðtÞ

Cr � uwdS;

bCðC;C;wÞ ¼
b

Da

Z
@XF ðtÞ

CCwdSþ Bi
Z
@XF ðtÞ

CwdS;

sCðC;/Þ ¼
b

Da

Z
@XF ðtÞ

CwdS:
3.3. Spatial and temporal discretization

Let 0 = t0 < t1 < � � � < tN = T be a decomposition of the considered time interval [0,T] and dt = tn � tn�1 the time step when
going from tn�1 to tn. Then, the time derivative is discretized by the fractional-step-h scheme [31, Chapter 3.2.1] which is – on
fixed domains – strongly A-stable and of second-order convergent.

The choice of an appropriate discretization in space for the Navier–Stokes equations depends on several aspects. In our
numerical computations, we consider a 3D-axisymmetric configuration, which allows two-dimensional finite elements for
the quantities on the cross-section and one-dimensional elements for approximating C. Since first derivatives of the fluid
velocity are present in the surfactant transport Eq. (18), second-order approximations for the fluid velocity are advisable.
Next we are interested in inf-sup stable discretizations [16] for velocity and pressure. Furthermore, we prefer discontinuous
pressure approximations which guarantee the local mass conservation of the fluid. From the approximation point of view,

one possibility would be the Scott–Vogelius finite-element pair P2; P
disc
1

� �
, i.e., continuous piecewise quadratic polynomials

for the velocity components and discontinuous piecewise linears for the pressure. Unfortunately, this pair is not inf-sup sta-
ble on general shape-regular meshes and it seems hopeless to try to satisfy the additional mesh constraints that guarantee

stability on moving meshes. Therefore, we propose the inf-sup stable finite-element pair Pbubble
2 ; Pdisc

1

� �
, i.e., continuous piece-

wise quadratic polynomials enriched by a cubic bubble function for the velocity components and discontinuous piecewise
linears for the pressure [16]. For the spatial discretization of the surfactant concentration in the bulk and on the interface,
continuous piecewise quadratic finite elements are used. Suppressing spurious velocities is an important challenge in the
computation of two-phase flows. As shown in [12], errors in the approximation of the boundary and its curvature as well
as in the discontinuous pressure are the main causes for the generation of spurious velocities in finite-element methods.
We suppress spurious velocities by using an interface-resolving mesh, a discontinuous pressure approximation, and isopara-
metric finite elements close to the interface for a better approximation of curved boundaries [12]. For the elastic mesh up-
date we need only the position of vertices in the mesh. Thus, continuous piecewise linear finite elements are sufficient to
approximate the displacement components in Eq. (10). Fig. 2 gives an overview of the finite elements used.

3.4. Linearization of the nonlinear discrete systems

The nonlinear convection term in the Navier–Stokes equations (14) is handled by a fixed point iteration as in [13]. At time
tn, starting with un

0 :¼ un�1; wn
0 :¼ wn�1 and replacing the form a(un �wn,un,v) by a un

i�1 �wn
i�1;u

n
i ;v


 �
; i ¼ 1;2; . . ., we iter-

ate until the residual of the Navier–Stokes equations becomes less than 10�8. Note that in each step of the fixed point iter-
ation, the linear elasticity problem has to be solved to determine the mesh velocity wn

i ; i ¼ 1;2; . . . ; ‘virtually’ without
moving the mesh.

After stopping the fixed point iteration, we first solve the surfactant Eqs. (17) and (18) before moving the mesh to a new
position. For the linearization of the coupled Eqs. (17) and (18) a Gauss–Seidel type fixed point iteration has been used. For
instance, with the backward Euler time differencing scheme, the semi-discrete (in time) linearized equations (17) and (18) at
time tn read:

Let Cn
0 :¼ Cn�1, for i = 1,2, . . . compute Cn

i ;C
n
i


 �
from
Cn
i ;/


 �
þ dt ac ðun �wnÞ;Cn

i ;/

 �

þ bc Cn
i ;C

n
i�1;/


 �� 
¼ Cn�1;/
� �

þ dt sc Cn
i�1;/


 �
Cn

i ;w

 �

þ dt aC un;Cn
i ;w


 �
þ bC Cn

i ;C
n
i ;w


 �� 
¼ ðCn�1;wÞ þ dt sC Cn

i ;w

 �

:
ð19Þ
In our computations, we stop this iteration when the residual of the first equation becomes less than 10�12. Our numerical
study shows that in general this condition is fulfilled within 2 to 4 iteration steps. Also, the computational cost for the ALE
Finite elements for approximating each component of the velocity, pressure, surfactant concentration in the bulk and on the interface, and
ements of nodes in the elastic mesh update.
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elastic mesh tracking (computation of the mesh velocity in all fixed point iteration steps and the mesh movement) is around
2% of the entire computational cost.

4. Numerical experiments

To validate the proposed numerical scheme a number of numerical tests are performed in 3D-axisymmetric configura-
tions. The numerical results are compared with analytical and experimental values. Since the proposed numerical scheme
has already been validated in [14] for free surface flows and two-phase flows with insoluble surfactants, we mainly consider
here tests related to soluble surfactants. First, a simple test is designed to validate the numerical approximation of the con-
vection terms in the surface concentration equation. Then, an analytical approximation for the diffusion of the bulk concen-
tration including surfactant transport from the bulk phase to the interface is compared with the numerical solution. Finally,
an array of computations for a rising bubble problem with and without soluble surfactants are performed.

4.1. Convection test (insoluble)

We consider a unit sphere which is continuously expanding in the normal direction with the prescribed divergence-free
velocity
Fig. 3.
differen
u ¼ 1
R3 ðxðtÞ; yðtÞ; zðtÞÞ; RðtÞ ¼ ðx2ðtÞ þ y2ðtÞ þ z2ðtÞÞ1=2

;
dx
dt
¼ u:
We assume that there is no diffusion on the interface, i.e., Ds = 0, the initial surfactant concentration on the interface is uni-
form, and there is no mass transfer between the bulk phase and the interface, i.e., ka = kd = 0. For this configuration, the sur-
factant concentration on the interface changes solely due to the change in the surface area of the sphere. Since the mass of
the surfactant is constant over time, we have C(t) = 1/R(t)2 for an initial surfactant concentration C0 = 1, and the mass loss
xðtÞ :¼ 4p�
Z
@XF ðtÞ

CðtÞds
is zero.
In the numerical computation, we started with a coarse mesh of 51 degrees of freedom for the surfactant concentration

and generated the finer meshes by uniform refinements (from mesh size h = 1/8 for level 1 to mesh size h = 1/128 for level 5).
Furthermore, in order to keep the temporal discretization error small enough, a very small time step dt = 6.25 � 10�5 has
been used. The mean value of the obtained numerical solution Ch(t) on different mesh levels 1, 3, 5 and the analytical solu-
tion C(t) are plotted in Fig. 3 (left). The numerical and the analytical solutions are in excellent agreement. Due to the scaling
in Fig. 3 (left), differences in the numerical solutions obtained on different mesh levels are not visible. Therefore, we com-
puted also the relative error in the mean value of Ch(t)
rel: errorin Cmean :¼ 1�
R
@XF ðtÞ

ChðtÞdsR
@XF ðtÞ

CðtÞds
:

The relative error in Cmean for all mesh levels are plotted in Fig. 3 (right), and the mesh convergence behaviour can be seen
clearly. The mass loss xh(t) in the surfactant concentration over a period of time has been computed for different mesh levels
with respect to the L1 and L2 norm as follows
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kmass loss inCk1 ¼max
ð0;TÞ
jxhðtÞj; kmass loss in Ck0 ¼

Z T

0
jxhðtÞj2dt

� �1=2

:

The results for T = 2 are shown in Fig. 4. Even on the coarsest mesh, the mass loss is less than one percent and reduces further
with order 2 when refining the mesh. These results demonstrate the high accuracy and the convergence of the numerical
scheme.

4.2. Bulk concentration diffusion and mass transfer test

In this test case we verify the diffusion of the bulk concentration and the mass transfer from the bulk phase to the inter-
face. A similar test has been performed for the front-tracking method in [24]. We consider a sphere with radius r0 = 1 sus-
pended in a large cylinder. We assume that the interface is initially clean, i.e. C0 = 0, and that the initial bulk concentration
C0 = 1. Furthermore, we assume that the mass transfer is solely due to the molecular diffusion. Moreover, a simplified version
of the source term (5) as S(C,C) = kaC is considered, so that the mass transfer takes place always from the bulk phase to the
interface. For a short period of time or in an infinite domain, an analytical approximation of the dimensionless bulk concen-
tration C is given by
C ¼ 1� ka
ffiffiffiffiffiffiffiffiffiffiffi
pDct
p

=Dc

1þ
ffiffiffiffiffiffiffiffiffiffiffi
pDct
p

1þ kar0=Dcð Þ=r0

r0

r
erfc

r � r0

2
ffiffiffiffiffiffiffi
Dct
p

� �
; ð20Þ
where erfc(x) is the complementary error function. Using (20), the analytical approximation of the dimensionless interface
concentration is given by
C ¼ C0 þ kaC1 t � ax
g3 g2t � 2g

ffiffi
t
p
þ 2 ln 1þ g

ffiffi
t
p� �� �� �

; ð21Þ
where x ¼ ka=Dc; a ¼
ffiffiffiffiffiffiffiffiffi
pDc
p

and g = a(1 + r0x)/r0. The droplet is placed at the center of the cylindrical tube that extends five
and eight droplet radii in the radial (r-) and axial (z-) directions, respectively. In our computation, an unstructured grid has
been used with 401 and 8804 degrees of freedom for C and C, respectively. Furthermore, we used ka = 1, Dc = 0.1 and C1 = 1.
For illustrating the transport of the bulk concentration to the interface, contour plots of the bulk surfactant concentration at
various times are shown in Fig. 5. As expected, the contours of C are symmetric which validates qualitatively the computa-
tional results. For a quantitative comparison with the analytical approximation (20), the bulk concentration profiles taken
along the horizontal plane through the center of the droplet are presented in Fig. 6 (left) at different times. The computa-
tional results are in good agreement with the analytical approximation. Finally, to validate the mass transfer from the bulk
phase to the interface, we compare the computational results for the interface concentration with the analytical approxima-
tion (21) in Fig. 6 (right) over a period of time.The figure clearly shows that the numerical solution agrees well with the ana-
lytical approximation. Furthermore, as in the previous example, we performed a mesh convergence test and observed that
the numerical solution converges to the analytical approximation when the mesh is refined. In Fig. 6 (right), we skip numer-
ical results obtained on different grids since there are no visible differences as in the previous example.

4.3. Rising bubble with surfactants

In the next section, we first compare a few quantities such as the terminal velocity and the sphericity of a clean bubble
with the experimental observations reported in [10]. Then, for the same test example (which will be called the experimental
bubble configuration in the following), we study the influence of surfactants on the dynamics of the rising bubble for
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Fig. 5. Bulk concentration diffusion. Contours of the bulk surfactant concentration at dimensionless times t = 1, 5, 8, and 10.
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different values of C0, Bi and Pec. In the final test example, we provide a set of reference values for the benchmark rising
bubble (test case 1 in [18]) with soluble surfactants in a 3D-axisymmetric configuration.

In both, the experimental and the benchmark bubble configurations, we consider a rising bubble driven by buoyancy
force in quiescent water. In our model, X1 and X2 denote the air and water column, respectively. Furthermore, in all com-
putations of the rising bubble problem with surfactants we used an uniform initial concentration C0 = 1 in the bulk phase. For
the experimental bubble, the following material parameters are used: the density q1 = 1.23 kg/m3, q2 = 1000 kg/m3, the dy-
namic viscosity l1 = 1.73 � 10�5 N s/m2, l2 = 1 � 10�3 N s/m2, the surface tension 0.073 N/m and the gravitational constant
g = 9.8 m/s2. It is assumed that the initial shape of the bubble is spherical with the diameter d0 = 2.5 � 10�3 m, and the bub-
ble is at rest initially, i.e. u(0,x) = 0. The computational domain X, which contains the bubble X1, is a cylindrical vessel with
diameter 2 � 10�2 m and height 2 � 10�1 m, respectively. For the benchmark bubble, the following material parameters are
used: the density q1 = 100 kg/m3, q2 = 1000 kg/m3, the dynamic viscosity l1 = 1 N s/m2, l2 = 10 N s/m2, the surface tension
24.5 N/m and a reduced gravitational constant g = 0.98 m/s2. Furthermore, it is assumed that the initial shape of the bubble is
spherical with the diameter d0 = 5 � 10�1 m, and that the bubble is at rest initially. The resulting dimensionless numbers
Table 1
Dimensionless numbers for both the experimental and benchmark bubble examples.

Re2 Eo Fr q2/q1 l2/l1 Pec Pes Da

Experimental 1107 3.36 1 813 57.8 1 10 200
Benchmark 99 40 1 10 10 1 10 200
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obtained by choosing the characteristic values L = 2d0 and U1 ¼
ffiffiffiffiffi
Lg

p
for both the experimental and benchmark bubbles, are

given in Table 1. Furthermore, the behaviour of the LEOS Eq. (2) and NLEOS Eq. (3) for the test examples considered with
E0 = E1 = 0.5 and C1 = 0 are depicted in Fig. 7. It can be seen clearly that the LEOS and the NLEOS behave almost identically
when the surfactant concentration is low. Thus, the effects of both the LEOS and the NLEOS on the bubble dynamics can be
expected to be very similar, and this is observed in our numerical computations. Therefore, for both the experimental and the
benchmark test example, we present the numerical results only for the LEOS.
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Fig. 7. Normalized surface tension in dependence of the surfactant concentration for a linear (LEOS) and nonlinear (NLEOS) equation of state. The case
E0 = E1 = 0.5 and C1 = 0.
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In order to study the influence of the surfactants on the dynamics of the rising bubble, we compute the rise velocity, the
kinetic energy, the center of mass (z variable) and the sphericity of the bubble. The velocity component directed opposite and
parallel to the gravitational force is referred to as the rise velocity. The rise velocity and the kinetic energy are computed by
Fig. 9.
At t = 2
arrows
rise velocity ¼ 1
jX1ðtÞj

Z
X1ðtÞ

uzr dr dz; kinetic energy ¼ 1
jX1ðtÞj

Z
X1ðtÞ

u � ur dr dz;
where jX1ðtÞj ¼
R

X1ðtÞ
r dr dz. If the rise velocity reaches a stationary value for t ?1, then the stationary value is called the

terminal velocity. The center of mass in the z component and the sphericity of the bubble are computed by
center of mass ¼ 1
jX1ðtÞj

Z
X1ðtÞ

zr dr dz; sphericity ¼ surface area of volume-equivalent sphere
surface area of the bubble

:

This implies that the sphericity of a spherical bubble will be 1 and for any other deformed bubble it will be less than 1.

4.4. Experimental bubble

4.4.1. Influence of C0

First, to study the influence of the initial surface surfactant concentration C0 on the dynamics of the rising bubble we con-
sider the following four cases: (i) clean bubble, (ii) Case A: C0 = 0, (iii) Case B: C0 = 0.2, and (iv) Case C: C0 = 0.5. In all three
surfactant cases, we used Bi = 1 and b = 200. The numerically computed rise velocity, the kinetic energy, the center of mass
and the sphericity of the bubble are presented in Fig. 8. For the clean bubble, the dimensionless rise velocity reaches a sta-
tionary value (terminal velocity) of 1.4 (approximately), which is equivalent to 3.09 � 10�1 m/s. Furthermore, it is observed
that the shape of the spherical bubble deforms to an elliptic shape during this transition. In experiments, it has been reported
that the terminal velocity of 3 � 10�1 m/s (approximately) and the shape of the bubble belongs to the ellipsoidal regime for
the clean bubble data [10]. In the Case A, the bubble is clean initially, and thus the rise velocity is initially similar to the clean
Position and the flow dynamics of the rising bubble at dimensionless times t = 0.5, 1.0, 1.5, and 2.0, in the case A (top row) and case C (bottom row).
.0, the position of the bubble in the case A is approximately z = 2.4, whereas the position of the bubble in the case C is approximately z = 0.9. The
represent the flow direction and the colours represent the magnitude of the fluid velocity.
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bubble case. However, a retarding effect on the rising bubble is observed when the surfactant concentration C increases
gradually due to the domination of adsorption over desorption. In the Cases B and C, initially the rise velocity increases sim-
ilar to the clean bubble. However, after a very short period of time, the rise velocities in both cases decrease considerably and
reach stationary values quickly. In all cases, the kinetic energies of the bubbles behave similarly to their corresponding rise
velocity. The center of mass of the bubble indicates how far the bubble rose. The interesting observations are related to the
Cases B and C, in which the bubble rose significantly slow. The surfactant tends to immobilize the surface and reduce the slip
(or tangential) velocity, and slows the bubbles rise by increasing the viscous drag on it. For insoluble, diffusion-free surfac-
tant in the steady state, parts of an interface that are covered by surfactant have zero slip velocity. Furthermore, the bubble
remains spherical when the surface surfactant concentration is high. In Fig. 9 the positions reached and the different shapes
of the bubbles at dimensionless times t = 0.5,1.0,1.5, and 2.0, for the Cases A and C are shown.

4.4.2. Influence of Bi
In order to study the influence of Bi on the dynamics of a rising bubble, we fix the values of b and the initial surface con-

centration C0 as 100 and 0.2, respectively. For these data, we performed an array of computations with (i) clean bubble, (ii)
Case D : Bi = 0, (iii) Case E: Bi = 1, and (iv) Case F: Bi = 10. The rise velocity, the kinetic energy, the center of mass and the
sphericity of the bubble obtained from the numerical computations are presented in Fig. 10. For the Cases D and E, the rise
velocities lead to stationary values very quickly due to high surface surfactant concentration. When Bi is large, the surfactant
leaves the interface quickly and it accelerates the rise velocity. A similar effect is observed on the kinetic energy of the rising
bubble and it shows that the rise velocity dominates the radial velocity of the bubble. It is clear from the behavior of rise
velocity that the rate of change in the center of mass with respect to time increases when Bi increases. The sphericity of
the bubble depends on the acceleration of the rise velocity, i.e., the bubbles keep their sphericity when the acceleration
of the rise velocity is low.

4.4.3. Influence of bulk Peclet number (Pec)
In the previous computations of contaminated rising bubbles with Pec = 1, the value of bulk diffusivity Dc = 1.1 � 10�3 m2/

s is used. However, many surfactants consist of large molecules that have low bulk diffusivity, i.e., high Pec. In such cases, a
narrow transition layer in which the concentration of the bulk surfactants varies rapidly will appear close to the interface. As
mentioned in the introduction, spurious oscillations in the numerical solution can be avoided by choosing the mesh size (at
least near the interface) small enough. We considered three test cases, Pec = 1, Pec = 10 and Pec = 1000 and used very fine
meshes close to the interface. The values of the remaining parameters are chosen from the previous test Case F, see Section
4.4.2. As expected no oscillations, even in the case Pec = 1000, have been observed in our computations. The surface surfac-
tant concentration (C) along the interface at different times is depicted in Fig. 11. The value of C along the entire interface is
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smaller than the values of C in the other two cases. Furthermore, for Pec = 1 it is nearly zero at the top of the bubble. The
curve for t = 0.125 intersects the curve for t = 0.5 which is cut by the curve for t = 1. The increase in surface surfactant con-
centration toward the rear stagnation point (arclength = 0) can be explained by the advection of surfactant along the inter-
face while the bubble rises. Later on, the surfactant near the rear part of the bubble starts to leave the interface into the bulk
phase by desorption when a sufficiently high surface concentration develops. This can also be seen in Fig. 12, where the
Fig. 12. The contour plots of the bulk surfactant concentration at time t = 4 for the experimental bubble test case with C0 = 0.2 and Pec = 1 (left), Pec = 10
(middle), Pec = 1000 (right).
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contour plots of the bulk surfactant concentration at time t = 4 for the test cases Pec = 1, Pec = 10, and Pec = 1000 are plotted.
The bulk surfactant concentration adjacent to the interface, especially, at the bottom of the rising bubble, is higher for low
bulk diffusivity cases; see the scales of different pictures in Fig. 12. Therefore, the adsorption dominates the desorption (refer
Eq. (5)) and increases C when the bulk diffusivity is reduced. It eventually slows the bubble’s rise.
4.5. Benchmark bubble

Next, for the benchmark bubble example we consider the following three cases: (i) clean bubble, (ii) Case G: Bi = 1,
C0 = 0.2, and (iii) Case H: Bi = 10, C0 = 0.5, and use b = 50 in surfactant cases. The computationally obtained maximum sur-
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Fig. 14. The rise velocity, the kinetic energy, the center of mass and the sphericity of the benchmark bubble for different cases.
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face surfactant concentration Cmax at any point x 2 oXF(t) and the mass of the surface surfactant over the period of time are
plotted in Fig. 13. Even though the value of Cmax is high at the initial stage in the Case H, it decreases quickly and becomes
less than the value of Cmax in the Case G. A similar effect is observed for the mass of C in the Case H. However in the Case G,
initially the mass of C reduces slightly, while later on it remains almost constant. For these three test cases, the rise velocity,
the kinetic energy, the center of mass, and the sphericity obtained from the computations are presented in Fig. 14. The
dimensionless terminal velocity of 0.51 (approximately) is observed for the clean bubble case. Here, the shape of the clean
bubble changes from spherical to ellipsoidal over the period of time. An interesting effect of variation in Bi can be seen in the
rise velocity of the bubble. Even though the rise velocity in the Case H is slightly smaller than the clean bubble initially, the
large desorption of the surfactant from the interface to the bulk accelerates the rise velocity of the bubble. Since the desorp-
tion of the surfactant from the interface is less in the Case G, the rise velocity acceleration effect has not been observed.

4.6. Mass conservation

An important property reflecting the accuracy of a numerical scheme for two-phase flows with surfactants is the conser-
vation of mass. To verify this property for the proposed numerical scheme, we evaluate the mass fluctuation in both the li-
quid and surfactants. The relative mass fluctuation of the bubble over time is given by
Fig.

Fig
dX1ðtÞ ¼
jX1ðtÞj � jX1ð0Þj

jX1ð0Þj
� 100%; jX1ðtÞj ¼

Z
X1ðtÞ

rdrdz:
The relative fluctuation of the total surfactant mass over time is computed by
dC
C ¼

MðtÞ �Mð0Þ
Mð0Þ � 100%; MðtÞ ¼

Z
X2ðtÞ

Crdrdzþ Da
Z
@XF ðtÞ

Crds:
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The relative mass fluctuation of the bubble and the total surfactant mass fluctuation observed in the experimental bubble for
the Cases A, B, and C, are presented in Fig. 15. In the high rise velocity Case A, the mass variation in the bubble is less than
0.08% at the dimensionless time t = 4. Furthermore, in all cases the total surfactant mass variation has been less than 0.8%
during the time interval considered. Next, the relative mass fluctuation of the bubble and the total surfactant mass fluctu-
ation observed in the benchmark bubble Cases G and H of our computations are presented in Fig. 16. In all benchmark bubble
cases, the mass variations in the bubble are around 0.02% at the dimensionless time t = 5. Furthermore, the total surfactant
mass variation among all computations of the benchmark bubble cases is less than 0.25% during the time interval consid-
ered. In general, the mass fluctuation is more when the rise velocity and the deformation of the bubble are high.

5. Conclusions

An interface-resolving moving mesh finite-element scheme has been proposed for the simulation of 3D-axisymmetric
two-phase flows with soluble surfactants. In this scheme, the surface partial differential equation describing the surfactant
transport on the interface is treated in a Lagrangian manner, while all other equations are handled with the arbitrary
Lagrangian–Eulerian approach. In our model, we considered a formulation of the surface partial differential equation which
avoids the approximation of the curvature of the interface. The curvature arising in the force balance at the interface is re-
placed by the Laplace–Beltrami operator and incorporated as a boundary condition into the weak formulation of the Navier–
Stokes equation. Applying integration by parts to the curvature term, the order of differentiation can be reduced by one. This
technique allows us to treat the curvature term semi-implicitly, and to approximate the curvature term with continuous fi-
nite-element basis functions. The inf-sup stable finite-element pair ðPbubble

2 ; Pdisc
1 Þ, i.e., continuous piecewise polynomials of

second order enriched with cubic bubble functions and discontinuous piecewise polynomials of first order, has been used
for the spatial discretization of velocity and pressure. This choice of finite-element pair guarantees the mass conservation
cell-wise. Even more importantly, the discontinuous pressure approximation together with an interface-resolving mesh sup-
presses spurious velocities. The mesh update of the moving meshes is realized by solving a linear elasticity equation at each
time step on the previous domain as reference domain. An automatic remeshing algorithm has been implemented to remesh
the domain when the quality of the mesh become very poor, say if the minimum angle is less than 10�.

The numerical scheme has been validated for a set of simple test examples with known analytical solutions. Furthermore,
an array of computations have been performed for a rising bubble with or without insoluble surfactants. The computed rise
velocity and the developed shape of a clean rising bubble have been compared with experimental observations and are in
good agreement. In our numerical study of the rising bubble with soluble surfactants the following phenomena have been
observed: (1) The presence of surfactant retarding the rising bubble. (2) Large desorption of the surfactant from the interface
to the bulk phase accelerates the rise velocity. (3) The presence of very high surfactant concentration on the interface dom-
inates the buoyancy force on the bubble and thus the rise velocity becomes almost zero.

Finally, the accuracy of the numerical scheme is demonstrated through the verification of the mass conservation property
for both the fluid and the total surfactant mass. Overall the mass variation in the bubble and the total surfactants are 0.08%
and 0.8%, respectively during the time interval considered. Thus, the proposed numerical scheme can also be used to com-
pute reference values to verify newly-developed numerical schemes.
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