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a b s t r a c t

A finite element scheme for the solution of a cancer invasionmodel is proposed. The cancer
dynamics model consists of three coupled partial differential equations which describe the
evolution of cancer cell density, extra cellular matrix and the matrix degrading enzymes.
Themodel incorporates proliferation and haptotaxis effect of cancer cells, their interaction
with extracellular matrix, the production of matrix degrading enzymes and consequent
degradation of the extracellular matrix. The coupled partial differential equations are
discretized in space with the standard Galerkin finite elements and in time with the
Crank–Nicolson method. Moreover, the nonlinear terms in the coupled equations are
treated semi-implicitly in the finite element scheme. The numerical scheme is validated
with numerical results taken from the literature. In addition to the mesh convergence
study, the effects of haptotactic rate, proliferation rate and remodelling rate of matrix
components of the considered mathematical model are investigated.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

All living organisms are composed of a collection of cells, which grow and divide in a controlled manner with a certain
order for the proper functioning of the organism. Sometimes cells start to grow without considering the normal balance
between the growth and the death. Also, there is a cell migration between neighbouring tissues. Cells with these hostile
behaviours are called cancer cells or tumour. In order to understand this disease better and to analyse the response of
cancer cells to treatments, an increasing number of mathematical models have been applied, see, for example [1–9] and the
references therein. Many researchers are actively involved in the cancer modelling over the past three decades. Not only
the clinical applications, but also the mathematical and numerical challenges associated with the solution of the coupled
nonlinear cancer growthmodels have attractedmany appliedmathematicians.We briefly recall the dynamics of the tumour
growth that involves proliferation, invasion of the host tissue and spread to other parts of the body. Subsequently, various
mathematical models proposed in the literature for the tumour growth are reviewed in this section.

Tumour growth is a process that involves a sequence of complex events. In vivo cancer evolution starts with seeding and
growth of primary tumours in particular location or in organ of the body. In this initial avascular stage, the tumour size is
restricted up to a few millimetres of diameter. Cancer cells produce degrading enzymes (e.g. matrix metalloproteinases)
that help to invade the host tissue (e.g. extra cellular matrix). Further, the tumour becomes malignant when the primary
tumour locally invades the host tissue, and spreads to over distant sites of the body to establish secondary tumours. The
process of spreading and formation of secondary tumours are called metastasis [10,11].
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Moreover, a blood supply is necessary for the transition of avascular phase to the vascular phase. Cancer cells induce
chemical signals that stimulate angiogenesis, i.e. the formation of new blood vessels or proliferation of capillaries, to obtain
blood supply [4,12] and it is called tumour angiogenesis. Further, the growth of tumour cell is only possible when the
capillaries penetrate into the tumour. Experimental and theoretical observations confirm that the capillary proliferation
is stimulated by the tumour angiogenesis factor released by the solid tumours [4,5,13]. This process occurs in vascularized
phase.

In order to detect the progression of tumour in a relatively less time without a huge cost of laboratory experiments, a
number of mathematical models have been proposed in the literature. These models can be classified (see, [10]) into three
categories: (i) ordinary differential equation (ODE) models, (ii) partial differential equation (PDE) models, and (iii) discrete
models. ODE models describe the evolution of the cancer cells population growth rather than the growth of an individual
cancer cell [14,15]. Since the tumour growth decelerates as it grows bigger, dynamic growth models have also been used in
the ODE models, see [16,17] and the references therein for an overview of ODE models.

Even though the ODE models have successfully been used to compute the time evolution of the cancer cell population,
the consideration of spatially independent population growth is the most apparent shortcoming of the ODE models. In
addition to the tumour invasion, the spread of primary cancer cells to other parts of the body to establish secondary
tumours (metastasis) is themain cause ofmortality among cancer patients. Therefore, the spatial dependency of the tumour
invasion and the metastasis are also need to be considered in the mathematical models to realistically simulate the clinical
observations. It necessitates the PDE models in the field of cancer biology.

Originally, Gatenby and Gawlinski [7] proposed a spatio-temporal cancer invasion model that contains three coupled
PDEs to describe the development of the tumour, the interaction of tumour with the normal cells and the production of H+

ions by tumour, respectively. The authors compared the numerical results with the existing experimental data and clinical
observations. Recently, the same model has been generalized to incorporate the competitive growth of cells and the acid
mediated cancer cell death [18]. Also we refer to the papers [19–22] for more details on acid mediated cancer invasion
models. In general, cancer cells produce matrix degrading enzymes (MDE) that degrade the extracellular matrix (ECM). This
micro environment process has been modelled in [23] together with the spatio-temporal cancer invasion model proposed
in [7].

Haptotaxis is the movement of cancer cells towards the gradient direction of the ECM density. This effect plays a key
role in the cancer cell invasion process. Anderson et al. [24] proposed a PDE model with haptotaxis effect which de-
scribes the growth of the cancer density, the ECM density and the MDE concentration. However, the cancer growth rate
has not been considered in [24]. Later, the haptotaxis PDE model proposed in [24] has been extended in [25] to incor-
porate the competitive growth (proliferation) of the cancer cells and the ECM density. Instead of considering a single
MDE concentration equation, Chaplain and Lolas [6] have proposed a model with urokinase-type plasminogen activator
(uPA) system. This model describes the interaction of cancer cells, ECM, uPA, plasminogen activators and plasmin. Alter-
native to the uPA system, Deakin and Chaplain [26] proposed a PDE model to study the role of membrane-bound matrix
metalloproteinases.

The cancer cell invasion is also achieved through the loss of cell–cell adhesion and enhanced cell–matrix adhesion. This
process has beenmodelled by replacing the local haptotaxis flux term proposed in [25] with a non-local (spatially) flux term
in [27]. This model has further been studied in [28] to demonstrate that themodel is capable of supporting both noninvasive
and invasive tumour growth according to the relative strength of cell–cell to cell–matrix adhesion. Very recently, Domschke
et al. [29] extended the model proposed in [27] for multiple cancer cell populations.

More studies on the above mentioned models with applications to glioma growth [30], breast tumours [31–33] as well
as to metastasis tumours [34,35] have been presented in the literature. Mathematical analysis such as linear stability anal-
ysis, pattern formation of solutions, existence of solutions, have also been performed by several authors, see for example,
[4,36–40]. Moreover, mathematical models that describe the tumour angiogenesis [2,4,5,41–44,71] and deal the vascular-
ized tumours [4,45,46] and tumour growth on basis of the continuum theory of mixtures [47] have also been developed and
studied in the literature. In addition to the continuum models, hybrid continuum-discrete mathematical models have also
been proposed [1,48]. For more detailed reviews on the modelling of tumour invasion, we refer to [3,10,49,50,9].

In this paper, we proposed a finite element scheme for the avascular cancer invasion model. The considered PDE model
is one of the variants of themodels proposed in [24,6,32,40]. This model is capable of describing the invasion andmetastasis
behaviours of the tumour in a detailed manner using cancer cell migration, cancer cell proliferation, ECM degradation and
ECM remodelling. Nevertheless, the extension of the proposed numerical scheme for the advanced cancer invasion model
is straightforward. Numerical schemes based on the method of lines have been widely used for simulations of the cancer
invasion process, see for example, [29,27]. In addition, finite difference method [51], finite volume method [52,53], spectral
element method [71] have also been proposed in the literature for the related cancer invasion model.

Even though finite element schemes such as positivity preserving finite element method [54], discontinuous Galerkin
element method [55], level set/adaptive finite element method [56–58,8,59], a hybrid finite volume/finite element [60]
have been proposed in the literature for chemotaxis and angiogenesis models. It is the purpose of this paper to develop and
implement an accurate and efficient finite element scheme for the PDEmodelwith avascular cancer invasion andmetastasis.
Though a standard Galerkin finite element scheme is used in this paper, the application of stabilization method such as
streamline upwind/Petrov Galerkin (SUPG), local projection stabilization (LPS) [61], extension to higher dimensions and
other advanced models is straightforward in the used in-house code [62]. Thus, the main focus of this paper is to develop
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and validate a finite element scheme for the considered cancer model. The optimal order of convergence for the proposed
scheme is shown for problems with known analytical solutions. Further, the scheme is validated by comparing with the
existing numerical results in the literature. Simulations of cancer cell density growth as well as its interaction with ECM and
the degradation of ECM by MDE are performed.

Moreover, the tumour evolution depends on several parameters, and the influence of each parameter needs to be
understood for an effective cancer treatment. Therefore, in addition to the implementation and validation of the proposed
finite element scheme, our goal is also to understand the effects of haptotactic rate, proliferation rate and remodelling rate of
ECMon cancer invasion for different parameters. Thus, different numerical experiments are performed tomake a parametric
study for the parameters used in the model.

The paper is organized as follows. In Section 2, cancer invasionmodel consisting of cancer density equation, ECM density
equation andMDE concentration equation is presented. Further, the dimensionless formof themodel equations is presented
in this section. Finite element variational formulation, spatial–temporal discretizations, solution procedure for the nonlinear
system are presented in Section 3. The mesh convergence and validation of the proposed numerical scheme are presented
in Section 4 together with the effects of haptotactic rate, cancer cell proliferation rate and ECM remodelling. Finally, we
summarize the observations of this study and conclude the paper with an outlook.

2. Mathematical model

We consider a two-dimensional partial differential equation model for cancer invasion and growth. The model consists
of three unknown variables namely the cancer cell density, ECM density andMDE concentration and denoted by u, v, andw
respectively. A brief description of the biological process and its correspondingmodels are given here. LetΩ = [0, 1]×[0, 1]
be the computational domain and ∂Ω be its boundary. Further, the derivation of the dimensionless form of the model
equations is provided here for the completeness.

Wehave considered the cancer invasionmathematicalmodel proposed in [24], andmodified in [32] to incorporate cancer
cell proliferation and added the effects of ECM remodelling in [40]. Further, we have extended themodel to two dimensions
and hence, the corresponding model is given by

∂u
∂t

− Du1u + ∇ · (χ0u∇v) = µu

1 −

u
U

−
v

V


in Ω × (0, I),

∂v

∂t
= −kvw + ρvv


1 −

u
U

−
v

V


in Ω × (0, I),

∂w

∂t
− Dw1w = ζu


1 −

w

W


− γw in Ω × (0, I),

 (2.1)

where diffusion coefficients Du and Dw of u and w respectively are assumed as constants and t ∈ [0, I] is the time. Here, χ0
is the haptotactic rate, and µ is a proliferation rate of cancer cells. Further, k and ρv are degradation and remodelling rate
of ECM respectively. Moreover, the growth and decay rate of MDE are given by ζ and γ respectively. Further, χ0, µ, k, ρ, ζ
and γ are positive constants.

2.1. Dimensionless form

Let L = 0.1 cm and τ =
L2
D , (where D ≃ 10−6 cm2 s−1 [25]) be the characteristic length and time scales, respectively and

we define the dimensionless variables as

ũ =
u
U

, ṽ =
v

V
, w̃ =

w

W
, x̃ =

x
L
, t̃ =

t
τ

.

Further, the values of reference densities u, and v are assumed 6.7 × 107 cell/cm3, 10−10 M respectively as in [1,27] and
the reference MDE concentration is unspecified due to difficulties in obtaining suitable experimental values, see [1,27].
Applying these dimensionless variables to system (2.1), and omitting the tilde afterwards, the dimensionless form of the
model equations (2.1) in Ω × (0, I) becomes:

∂u
∂t

− d11u + ∇ · (χu∇v) − λu(1 − u − v) = 0,
∂v

∂t
+ ηvw − ρv(1 − u − v) = 0,

∂w

∂t
− d21w − αu(1 − w) + βw = 0.

 (2.2)

Here,

d1 =
τDu

L2
, d2 =

τDw

L2
, λ = τµ, χ =

χ0Vτ

L2
, η = τkW ,
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Fig. 1. Initial conditions of the cancer cell density, ECM density and MDE concentration.

Table 1
Parameter choice of the model.

Parameters Dimensional range Non-dimensional range References

Cancer diffusion coefficient (d1) 10−9–10−11 cm2 s−1 10−3–10−5 [63,5,6,64,65]
MDE diffusion coefficient (d2) 10−9–10−11 cm2 s−1 10−3–10−5 [63,5,6,64,65]
Cancer proliferation rate (λ) 0.02–0.72 h−1 0.05–2 [25,45,64,66]
MDE decay rate (β) – 0.1–1 [67,25,6,40]
Haptotaxis coefficient (χ ) – 0.001–1 [25,6]
ECM degradation rate (η) – 1–20 [25,6,40]
ECM remodelling rate (ρ) – 0.15–10 [25,6,40]
MDE growth rate (α) – 0.05–1 [25,6,40]

α = τζ
U
W

, β = τγ , ρ = ρvτ

are dimensionless quantities and see Table 1.

2.2. Initial and boundary conditions

It is assumed that both the interactions of cancer cells with the ECM and degradation of the ECM by MDE takes place
in an isolated system. Hence, the zero-flux type boundary conditions for the unknown space–time functions u and w are
imposed as in [27], that is,

(−d1∇u + χu∇v) · n = 0, (−d2∇w) · n = 0, on ∂Ω × [0, I]

where n is the outward normal vector on ∂Ω . Further, the following initial conditions

u(x, 0) =

exp


−r2

ϵ


, r ∈ [0, 0.25]

0, r ∈ (0.25, 1].

v(x, 0) = 1 − 0.5u(x, 0), (2.3)
w(x, 0) = 0.5u(x, 0), in Ω

are considered for the given system (2.2) with ϵ = 0.01 and presented in Fig. 1.

3. Finite element scheme

The mathematical model considered in the previous section is a highly nonlinear coupled system of partial differential
equations. Thus solving the system (2.2) analytically is a tough task. Therefore, a finite element scheme is presented in
this section. We first derive variational forms of the cancer cells density equation, ECM density equation and the MDE
concentration equation. Further, temporal discretizations of the model equations are presented. In addition an iteration
of fixed point type is described to handle the nonlinear terms in the cancer parabolic system. Finally, we define the finite
element ansatz functions for each unknown and provide the spatial discretization of the system (2.2).

3.1. Variational formulation

Let L2(Ω) andH1(Ω) be the usual Lebesgue andHilbert spaces, respectively, and (·, ·) denotes the inner product in L2(Ω).
Let L2(0, I,H1(Ω)) be the solution space for the cancer cell density, ECM density and MDE concentration.

We now derive the variational form of the cancer invasion system (2.2) by multiplying each equation in the system by a
test function φ ∈ H1(Ω), and integrate over Ω . After applying integration by parts to the higher order derivative terms and
imposing the no flux boundary condition, the variational form of the system reads:
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For given u0, v0, w0 ∈ L2(Ω) find u, v, w ∈ L2(0, I,H1(Ω)) with u′, v′, w′
∈ L2(0, I,H−1(Ω)) such that

∂u
∂t

, φ


+ au(u; u; v, φ) = 0,

∂v

∂t
, φ


+ av(v; v; u; w, φ) = 0,

∂w

∂t
, φ


+ aw(w; u, φ) = f (u, φ),


(3.1)

for all φ ∈ H1(Ω), where

au(u; u; v, φ) = d1


Ω

∇u · ∇φ dx − χ


Ω

u∇v · ∇φ dx − λ


Ω

u(1 − u − v)φ dx,

av(v; v; u; w, φ) = η


Ω

vwφ dx − ρ


Ω

v(1 − u − v)φ dx,

aw(w; u, φ) = d2


Ω

∇w · ∇φ dx +


Ω

w(αu + β)φ dx,

f (u, φ) =


Ω

αuφ dx.

Note that u ∈ L2(0, I,H1(Ω)) and u′
∈ L2(0, I,H−1(Ω)) imply that t → u(t) as amapping from [0, I] in L2(Ω) is continuous.

Here H−1(Ω) is the dual space of H1(Ω).

3.2. Discrete problem

In this section, we first present the temporal discretization of the coupled variational system (3.1). In particular, the
application of Crank–Nicolson time discretization is discussed for the system.

3.2.1. Temporal discretization
Let 0 = t0 < t1 < · · · < tN = I be a decomposition of the considered time interval [0, I], and δt = tn+1

− tn, n =

0, 1, . . . ,N−1 denotes the uniform time step. Also, we use un(x) := u(x, tn), vn(x) := v(x, tn), wn(x) := w(x, tn) to denote
the approximation of the solutions at time tn. After applying the implicit Crank–Nicolson discretization scheme, which is
second order and A-stable, the semi-discrete (continuous in space) form of the system (3.1) reads:

For given un−1, vn−1 and wn−1 with u0
= u0, v

0
= v0 and w0

= w0, find un, vn, wn
∈ H1(Ω) such that

un
− un−1

δt
, φ


+

1
2
au(un

; un
; vn, φ) = −

1
2
au(un−1

; un−1
; vn−1, φ),

vn
− vn−1

δt
, φ


+

1
2
av(v

n
; vn

; un
; wn, φ) = −

1
2
av(v

n−1
; vn−1

; un−1
; wn−1, φ),

wn
− wn−1

δt
, φ


+

1
2
aw(wn

; un, φ) = −
1
2
aw(wn−1

; un−1, φ) + f

un

+ un−1

2
, φ


,


(3.2)

for all φ ∈ H1(Ω).

3.2.2. Solution of the nonlinear system
In addition to the nonlinearity in the semi-discrete form of the system (3.2), the coupling between the equations makes

the computations more challenging. A fully implicit treatment of the nonlinear and coupled terms leads to a coupled,
nonlinear algebraic system, and it will be very challenging to solve this system with a nonlinear solver. Contrarily, an
explicit treatment of the nonlinear and the coupled terms leads to a linearized system in which the equations can be solved
simultaneously. However, it may impose a severe restriction on the time step. Therefore, we propose an iteration of fixed
point type [68] to treat the nonlinear and coupled terms semi-implicitly.

Let us briefly explain the fixed point iteration steps for a nonlinear term in the cancer density equation in the time interval
(tn−1, tn). Let un

0 = un−1 and the nonlinear integral terms in the cancer density equation are replaced with
Ω

un
k∇vn

k · ∇φ dx ≃


Ω

un
k∇vn

k−1 · ∇φ dx,
Ω

un
k(1 − un

k − vn
k )φ dx ≃


Ω

un
k(1 − un

k−1 − vn
k−1)φ dx
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for k = 0, 1, 2, . . . . We iterate until the residual of the system (3.2) is less than the prescribed threshold value (10−8) or
until the given maximal number of iteration is reached. Finally, we set, un

= un
k and advance to the next time step. Using

the above prescribed iteration of fixed point type, the nonlinear and coupled terms in all other equations are also handled
in a similar way. Thus the linearized (semi-implicit) form of the semi-discrete system (3.2) in the interval (tn−1, tn) reads:

For given un
0 = un−1, vn

0 = vn−1 and wn
0 = wn−1 with u0

= u(x, 0), v0
= v(x, 0) and w0

= w(x, 0), find un
k, v

n
k and wn

k
such that for all φ ∈ H1(Ω)

un
k, φ


+

δt

2
au


un
k; u

n
k−1; vn

k−1, φ


=

un−1, φ


−

δt

2
au


un−1

; un−1
; vn−1, φ


,

wn
k , φ


+

δt

2
aw


wn

k ; u
n
k, φ


= δt f


un
k + un−1

2
, φ


+


wn−1, φ


−

δt

2
aw


wn−1

; un−1, φ

,

vn
k , φ


+

δt

2
av


vn
k ; vn

k−1; u
n
k; wn

k , φ


=

vn−1, φ


−

δt

2
av


vn−1

; vn−1
; un−1

; wn−1, φ

,


(3.3)

for k = 0, 1, 2, . . . .
The system (3.3) satisfies the residual condition within two or three iteration steps for the considered parameters and

time step, thus the application of the fixed point iteration is sufficient. Nevertheless, the number of iterations will increase
when the time step δt is increased.

3.2.3. Finite element discretization
Let Ωh be a triangulation of Ω into triangles. Suppose Vh ⊂ H1(Ω) is a conforming finite element (finite dimensional)

subspace of H1(Ω) with basis functions φh := φi, i = 1, 2, . . . , N such that Vh := span{φi}, where N is the number of
degrees of freedom (solutions points). Further, define the finite element ansatz functions and its gradient as

un
h(x) =

N
i=1

un
i φi(x), vn

h(x) =

N
i=1

vn
i φi(x), wn

h(x) =

N
i=1

wn
i φi(x),

∇un
h(x) =

N
i=1

un
i ∇φi(x), ∇vn

h(x) =

N
i=1

vn
i ∇φi(x), ∇wn

h(x) =

N
i=1

wn
i ∇φi(x),

where un
i , v

n
i and wn

i are the unknown solution coefficients. Using the discrete form of the functions in (3.3) and testing for
each basis functions lead to a set of linearized (semi-implicit) system of algebraic equations

M +
δt

2
Au


Un

=


M −

δt

2
Ãu


Un−1,

M +
δt

2
Aw


Wn

=


M −

δt

2
Ãw


Wn−1

+ δt


F + F̃


,

M +
δt

2
Av


Vn

=


M −

δt

2
Ãv


Vn−1,


(3.4)

where Un
= vec(Un), Vn

= vec(Vn) and Wn
= vec(Wn) are the vectorization of the solution matrices Un

= [un
j ], Vn

=

[vn
j ], and Wn

= [wn
j ], respectively. Further, denote the fully discrete solutions by un

h,k, v
n
h,k and wn

h,k at a fixed point step
k = 0, 1, 2, . . . . Moreover, the entries of the mass, stiffness matrices and source vector at a fixed point iteration step k are
given by

Mij =


Ωh

φi(x) φj(x) dx,

Au
ij = d1


Ωh

∇φi(x) · ∇φj(x) dx − χ


Ωh

φi(x) ∇vn
h,k−1 · ∇φj(x) dx

− λ


Ωh

φi(x) (1 − un
h,k−1 − vn

h,k−1) φj(x) dx,

Ãu
ij = d1


Ωh

∇φi(x) · ∇φj(x) dx − χ


Ωh

φi(x) ∇vn−1
h · ∇φj(x) dx

− λ


Ωh

φi(x) (1 − un−1
h − vn−1

h ) φj(x) dx,

Aw
ij = d2


Ωh

∇φi(x) · ∇φj(x) dx +


Ωh

φi(x) (αun
h,k + β) φj(x) dx,
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Ãw
ij = d2


Ωh

∇φi(x) · ∇φj(x) dx +


Ωh

φi(x) (αun−1
h + β) φj(x) dx,

Fi = α


Ωh

un
h,k φi(x) dx

F̃i = α


Ωh

un−1
h φi(x) dx

Av
ij = η


Ωh

φi(x) wn
h,k φj(x) dx − ρ


Ωh

φi(x) (1 − un
h,k − vn

h,k−1) φj(x) dx,

Ãv
ij = η


Ωh

φi(x) wn−1
h φj(x) dx − ρ


Ωh

φi(x) (1 − un−1
h − vn−1

h ) φj(x) dx.

4. Numerical experiments

First, we perform a convergence study for the proposed numerical scheme with known analytical solutions, and then a
mesh convergence study with the cancer model parameters. After that proposed finite element scheme will be validated
using existing numerical results in the literature for the coupled nonlinear cancer invasion model. Further, throughout
the subsequent sections initial cancer density and ECM density and MDE concentration are assumed as in Section 2.2.
Finally, an array of computations are performed to study the effects of the proliferation rate, haptotactic coefficient and
ECM remodelling rate on the cancer invasion.

The computations are performed on the unit square domain Ω = [0, 1] × [0, 1], discretized uniformly using triangular
elements withmesh size h = 0.0220971. Further, piecewise linear finite elements for all unknown variables and a time step
δt = 0.001 in the Crank–Nicolson scheme are used. The numerical scheme is implemented in our in-house finite element
package [62], and the system of algebraic equations is solved using UMFPACK [69,70]. Computations are performed using
Intel(R) Core(TM) i7-3770s CPU with 3.10 GHZ and 8 GB RAM.

4.1. Convergence study with known analytic solution

In this section, we consider the coupled model (2.2) with source terms,

∂u
∂t

− d11u + ∇ · (χu∇v) − λu(1 − u − v) = fu,
∂v

∂t
+ ηvw − ρv(1 − u − v) = fv,

∂w

∂t
− d21w − αu(1 − w) + βw = fw.

 (4.1)

The source terms fu, fv and fw are chosen so that the system (4.1) satisfies the analytical solution

u = et sin(2πx) sin(2πy), v = e−t sin(2πx) sin(2πy), w = et sin(2πx) sin(2πy),

with the dimensionless parameters

d1 = 0.001, d2 = 0.008, λ = 0.75, χ = 0.005, η = 5, ρ = 1, α = 0.25, β = 0.5.

A set of finite element computations on uniformly refined meshes with δt = h are performed. The coarsest triangular
mesh level contains 25 degrees of freedom (DOF) for each unknown u, v, and w with the mesh size h = 0.353553, and a
sequence of fine mesh levels are obtained by refining the coarsest mesh uniformly. It results in 4225 DOF for each unknown
function with h = 0.0220971 on the finer mesh.

Furthermore, to compare the discretization errors at different mesh levels and to verify the order of convergence of the
numerical scheme, the following errors are computed

E1 := L2

0, I; L2(Ω)


=

 I

0


∥u(t) − uh(t)∥2

L2(Ω)


dt,

E2 := l∞

0, I; L2(Ω)


= sup

n=1,...,N
∥u(tn) − uh(tn)∥L2(Ω).

The obtained numerical errors are depicted in Fig. 2. As expected, Fig. 2(i) shows a second order convergence of the error
with L2-norm in space and time. Similarly, Fig. 2(ii) also shows a second order convergence of the error with L∞ norm in
time and L2-norm in space. These plots confirm that the optimal order of convergence (approximately two) for both cases
with the piecewise linear triangular (P1) finite elements is acquired.
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Fig. 2. Error plots of the cancer cell density, ECM density and MDE concentration obtained with different mesh levels for the scheme convergence study.
Panel (i) and (ii), respectively represent the logarithmic values of E1 and E2 errors of the solution of the system (2.2) against the logarithmic value of the
DOF.

4.2. Mesh independent test for cancer model

Mesh convergence study is one of the standard numerical tests used to obtain a mesh independent solution. Further, it
evaluates the robustness of a numerical scheme. In order to perform the mesh convergence study for the proposed finite
element scheme, the following dimensionless parameters are used:

d1 = 0.0001, d2 = 0.0005, λ = 0.75, χ = 0.005, η = 10, ρ = 1.5,
α = 0.25, β = 0.5.

Moreover, the initial mesh level (L0) consists of 1089 degrees of freedom (unknown solution coefficients) for each unknown
variable with themesh size h = 0.0441942. The successive mesh levels (L1 and L2) are obtained by refining the initial mesh
uniformly.

The mesh convergence results are depicted in Fig. 3 and to better visualize their behaviour, the cancer cells density, ECM
density and MDE concentration are plotted along the line y = x, that is, along the arc length from origin r =

√
2 x in Ω .

Moreover, the solutions need not be radially symmetric due to the choice of diffusion and haptotaxis coefficients in the
model equations, and therefore the behaviours of the solution need not be same for all lines over the domain.

The first row in Fig. 3 represents the cancer cell density obtained with L0, L1 and L2 meshes at different times t = 10
and t = 20, whereas the second and third rows of Fig. 3 show the ECM density and the MDE concentration respectively.
The evolution of the cancer cell and its interaction with ECM by producing MDE can clearly be seen in Fig. 3. Cancer cells
grow according to λ = 0.75, while haptotaxis accelerates the invasion of cancer cells into the ECM. The process of invasion
is clearly visible in Fig. 3, for instance, the cancer cells invaded nearly half away of the ECM domain at t = 20. It is achieved
through the production of more MDE by the cancer cells, see the third row of Fig. 3.

Even though the difference between the solutions obtained with L0, L1 and L2 meshes is very small, a close look at these
plots clearly show themesh convergence behaviour. The solutions obtainedwith L1 and L2meshes are almost identical, and
it shows that a mesh with h = 0.0220971 is sufficient for a mesh independent solution. Therefore, the L1 mesh is used in
all our further computations, and it results in 4225 degrees of freedom for each equation, that is, 12,675 degrees of freedom
all together for the system.

4.3. Validation

To validate the proposed finite element scheme for the cancer model, we compare the computed solution with the
numerical results published in [32]. In the validation test example, we use the same dimensionless values used in [32],
that is,

d1 = 0.0001, d2 = 0.0005, λ = 0.75, χ = 0.00005, η = 10, ρ = 0.0,
α = 0.1, β = 0.

A finite element computation is performed in the unit square domain with L1mesh. However, in order to compare the finite
element solution with the numerical results in [32], the cancer cell density, ECM density andMDE concentration are plotted
only along the line y = 0, that is along the arc length from origin r = x in Fig. 4. The continuous lines denote the finite
element solutions, whereas the dotted lines are the solutions reported in [32]. The finite element solutions, the density of
cancer cells, ECM density and concentration of MDE agree well with the solutions reported in [32].
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Fig. 3. Evolution of the cancer cell density, ECM density andMDE concentration along the line y = x at different times, t = 10, 20, obtained with different
mesh levels. The second and fourth columns are the magnification of the first and third columns, respectively.

Fig. 4. Comparison of the finite element solutions along the line y = 0, with the results presented in Enderling et al. [32].

4.4. Effects of haptotactic coefficient

We first study the influence of the haptotactic coefficient on the cancer invasion dynamics by varying χ . In this study, we
consider three variants of haptotactic coefficient: (i) χ = 0.05, (ii) χ = 0.15 and (iii) χ = 0.25 with a small proliferation
rate of cancer cells, that is, λ = 0.01. Further, it is assumed that there is no remodelling effect of ECM, that is, ρ = 0.
Moreover, we used α = 0.50 and β = 0.4, whereas all other parameters are chosen as in the previous validation example
in Section 4.3. All computations have been performed imposing I = 30 and time step δt = 0.001. Further we triangulate
the domain uniformly with maximummesh size h = 0.0220971.

The obtained numerical results of the cancer cells density ((i), (iii), (v)) and the ECM density ((ii), (iv), (vi)) at different
instances, t = 5, 10, 15, 20 are depicted in Fig. 5 for all three variants, showing the effects of haptotactic coefficient. In the
first test case, χ = 0.05, the snapshot at t = 5, shows that the cancer density reduces at the origin, and starts migrating
towards the direction of the gradient of ECM: this last eventually degrades by increasing MDE production, see the first
snapshot in the second row of Fig. 5. A similar behaviour is observed at t = 10, where the migration of the cancer cells
becomes more clear. Moreover, the haptotaxis effect can clearly be seen at t = 15 and t = 20, where the small cluster of
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Fig. 5. Sequence of images showing the effects of haptotactic coefficients on cancer cell density ((i), (iii), (v)) and ECM density ((ii), (iv), (vi)) at different
times t = 5, 10, 15, 20 and haptotaxis coefficient values of χ = 0.05, 0.15, 0.25. All other parameters of the model (2.2) are fixed as in Section 4.4.
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cancer cells becomes larger at this stage. Further, the cancer cells migrate along the direction of the ECM gradient and reach
the boundary of the domain, see the last snapshot in the first and second rows of Fig. 5.

Haptotaxis effect increases when the haptotactic coefficient rapidly increases, see the cancer cells and ECM snapshots
for χ = 0.15 and χ = 0.25 in Fig. 5. An increase in χ value accelerates the cancer cells migration, and degrades the ECM by
MDE rapidly even at low proliferation rate of cancer cells. Also, the cancer cells reach the boundary of the domain quickly,
at t = 10 for χ = 0.15 and at t = 5 for χ = 0.25, due to the acceleration induced by the large value of χ . Moreover, the
density of cancer cells increases near to the boundary of the domain when χ = 0.15, 0.25 at dimensionless time 10 and 15.

4.5. Effects of cancer cell proliferation rate

Here, next we have shown the influence of the cancer cell proliferation coefficient on the cancer invasion model, for,
λ = 0.0, 0.25, 0.5, 0.75, 1.0, 1.5. In all these simulations, we used χ = 0.005, η = 10, ρ = 0.5, α = 0.5, and β = 0.4,
whereas d1, d2, and δt are chosen as in Sections 4.2 and 4.3.

Snapshots of the cancer cell density obtained with different proliferation rates, λ = 0.0, 0.5, 1.5, for t = 5, 10, 20, 30,
are depicted in Fig. 6((i)–(iii)). Further, the cancer cell density, ECM density and MDE concentration along the line y = x
are also plotted in Fig. 6((iv)-(vi)). Here, initial in last three panel rows, ((iv)–(vi)), of Fig. 6 represents the imposed initial
conditions as in Section 2.2. It should be noted that an increase in the growth rate of tumours, due to malignant mutations
as well changes in the tumour micro-environment, cause an accelerated invasion of cancer cells into the ECM domain.

Let us now consider the variant λ = 0.0, that is, no growth in the cancer cell density. In this variant, there is nomalignant
effect in the cancer invasion during the initial stage, at time t = 5, see first plot of Fig. 6(i). Further, cancer cell density and
MDE concentration decrease from initial level due to diffusion and λ = 0.0 value, even though a small cluster of cancer cells
is formed over the initial period, which migrates nearly half of the ECM domain. Similar effects also appeared at different
times, t = 10, 20, 30, see Fig. 6.

Now, let us consider the variant λ = 0.5. Though the density of the cancer cell slightly decreases from the initial value,
the reduction is not as in the variant λ = 0.0, and the malignant effect starts at t = 10. However, over the period, from
t = 10 to t = 30, the cancer invasion increases, and it can clearly be seen from the snapshots in the second row of Fig. 6.
Eventually, the cancer cells degrade more than half of the ECM domain.

Finally, the malignant effect is observed at the initial stage itself, on t = 5 in the variant λ = 1.5, as expected, due to the
high proliferation rate, see first plot of Fig. 6(iii). Cancer cells produce more degrading enzymes with a higher proliferation
rate, see the last row of Fig. 6. Eventually, the higher concentration of MDE degrades more region of ECM. It helps the cancer
cells to invade the ECM domain rapidly through the haptotactic effect. Further, the density of the cancer cells attains the
threshold value in more than half of the ECM domain, see the third row of Fig. 6 at t = 20 and t = 30. In particular, cancer
cells complete invasion in three-quarters of the ECM region at t = 30, when λ = 1.5 is used.

We finally undertake some computational experiments for different values of proliferation rate and comparison plots
are given in the last three rows of Fig. 6 respectively to establish the interactions of cancer density, ECM density and MDE
concentration where the numerical experiments are carried out for different time steps namely at t = 5, 10, 20 and 30. As
expected, increasing the λ value, both MDE production and ECM degradation increase, as well the invasion speed of cancer
cells, for all the considered time intervals, see Fig. 6((iv)–(vi)), resulting in a growing degree of malignancy.

4.6. Effects of ECM remodelling rate

Finally,we study the influence of remodelling rate of ECMdensity on the cancer invasionmodel. In this study,we consider
the following variants of the ECM remodelling rate: (i) ρ = 0, (ii) ρ = 1, (iii) ρ = 1.5, (iv) ρ = 2.5 and (v) ρ = 3.5 with the
cancer cell proliferation rate λ = 0.5. Moreover, all other parameters of the dimensionless cancer invasion model (2.2) are
chosen as in Section 4.5.

The results obtained for t = 5, 10, 20, 30, along the line y = x are presented in Fig. 7. Further, initial in the panel rows of
Fig. 7 represents the imposed initial conditions of ECM as in Section 2.2. Over the period, the cancer cells continue tomigrate
to the ECM. In the variant ρ = 0, the invasion process is dominant over the ECM remodelling rate, and thus the cancer cells
invaded almost half of the ECM domain. An increase in the ECM remodelling rate slows down the invasion process, for
instance, the cancer invaded area in the variant ρ = 1 is less than the invaded area in the variant ρ = 0. This effect can
clearly be seen in the variant ρ = 3.5, where the cancer invaded area is comparatively small among all other considered
variants.

5. Summary

A mathematical model that describes the invasion of cancer cells into the ECM domain by producing MDE is considered.
A finite element scheme using the Galerkin finite element method is proposed for computations of the cancer invasion
model to study the interactions of cancer cells with the ECM and the degradation of the ECM by MDE. The nonlinear terms
in the coupled equations are treated semi-implicitly using an iteration of fixed point type, and therefore a nonlinear solver
such as Newtons solver is not necessary. In addition to the convergence with analytical solution and the mesh convergence
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Fig. 6. Sequence of images in first three rows ((i)–(iii)) shows the evolution of cancer density at different times t = 5, 10, 20, for different cancer cell
proliferation rates λ = 0, 0.5, 1.5. All other parameters of the model (2.2) are fixed as in Section 4.5. The effects of cancer cell proliferation rate on the
cancer density, ECM density and MDE concentration along the line y = x at different times and different proliferation values are shown in the last three
rows ((iv)–(vi)).
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Fig. 7. Effects of ECM remodelling rate on u and v along the line y = x. All other parameters are fixed as in Section 4.6.

study, the numerical scheme is validated using existing results in the literature. A number of computations are performed to
understand the spatio-temporal behaviours of the cancer invasion process for different values of cancer proliferation rate,
haptotactic coefficient and remodelling rate of the ECM.

We have observed that an increase in the haptotactic rate increases the formation of cancer cells and their invasion into
the ECM domain rapidly, also helping them to break away from the primary tumour to form secondary cancer cells, which
migrate towards regions of growing ECM gradient. However, to invade the remaining ECM components, the secondary
cancer cells migrate backwards from the boundary of the domain. Since the growth rate of MDE depends on the cancer
density, an increase in the cancer cell proliferation rate enhances the cancer density aswell as theMDEconcentration. Finally,
the cancer cells successfully invade the ECM domain even in the case of high values of remodelling rate. Nevertheless, an
increase in the remodelling rate of ECM delays the invasion process.

The computations are performed in a two-dimensional domain, the extension of the proposed finite element scheme
to three-dimensional domains is straightforward, and in particular to realistic geometries such as breast, brain and other
regions. It is the topic of our next paper. Further, stabilization method such as SUPG, LPS for the approximation of solutions
with interior and boundary layers in the cancer model will be a subject of our future research work.
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