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An arbitrary Lagrangian–Eulerian (ALE) finite element scheme for computations of soluble 
surfactant droplet impingement on a horizontal surface is presented. The numerical scheme 
solves the time-dependent Navier–Stokes equations for the fluid flow, scalar convection–
diffusion equation for the surfactant transport in the bulk phase, and simultaneously, 
surface evolution equations for the surfactants on the free surface and on the liquid–
solid interface. The effects of surfactants on the flow dynamics are included into the 
model through the surface tension and surfactant-dependent dynamic contact angle. In 
particular, the dynamic contact angle (θd) of the droplet is defined as a function of the 
surfactant concentration at the contact line and the equilibrium contact angle (θ0

e ) of the 
clean surface using the nonlinear equation of state for surface tension. Further, the surface 
forces are included into the model as surface divergence of the surface stress tensor that 
allows to incorporate the Marangoni effects without calculating the surface gradient of 
the surfactant concentration on the free surface. In addition to a mesh convergence study 
and validation of the numerical results with experiments, the effects of adsorption and 
desorption surfactant coefficients on the flow dynamics in wetting, partially wetting and 
non-wetting droplets are studied in detail. It is observed that the effects of surfactants 
are more in wetting droplets than in the non-wetting droplets. Further, the presence of 
surfactants at the contact line reduces the equilibrium contact angle further when θ0

e is less 
than 90◦, and increases it further when θ0

e is greater than 90◦. Nevertheless, the presence 
of surfactants has no effect on the contact angle when θ0

e = 90◦. The numerical study 
clearly demonstrates that the surfactant-dependent contact angle has to be considered, in 
addition to the Marangoni effect, in order to study the flow dynamics and the equilibrium 
states of surfactant droplet impingement accurately. The proposed numerical scheme 
guarantees the conservation of fluid mass and of the surfactant mass accurately.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Liquid droplets impinging on a solid substrate is encountered in many applications such as spray cooling, spray forming, 
spray coating, ink-jet printing, fuel injecting, etc. Apart form these applications, computations of impinging droplets are 
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Nomenclature

� Mesh displacement
� Boundary of �
�1 Free surface
�2 Liquid–solid interface
� Computational domain
β Slip number
βε Slip coefficient
ν1 Unit outward normal vector on �1
ν2 Unit outward normal vector on �2
νζ Co–normal vector at the contact line
τ 1,2 Scaled projection of ν1 onto the plane �2(t)
τ 2,2 Tangential vector on �2(t)
�̂ Reference domain
σ̂ Surface tension factor
K Sum of the principle curvatures
μ Dynamic viscosity of fluid
⊗ Tensor product
ρ Density of fluid
σ ls

0 Interfacial tension on the clean liquid–solid in-
terface

σ
sg
0 Interfacial tension on the clean solid–gas inter-

face
σ0 Surface tension of a clean surface
σref Reference surface tension
θd Dynamic contact angle
θ0

e Equilibrium contact angle on a clean surface
ζ Contact line
∇�1 Surface gradient on �1
∇�2 Surface gradient on �2
At ALE mappings
D Deformation tensor
I Identity tensor
Pν1 Projection operator onto the tangential plane 

of �1
S Stress tensor
S�1 Surface stress tensor
FY Unbalanced Young force
C Surfactant concentration in the bulk phase
C∞

� Maximum surface packing surfactant concen-
tration

C�1 Surfactant concentration on the free surface

C�2 Surfactant concentration on the liquid–solid 
interface

C�1,0 Initial concentration on �2
C�1,0 Initial surfactant concentration on �1
D1 Surface diffusion coefficient of C�1

D2 Surface diffusion coefficient of C�2

Dc Diffusion coefficient of bulk phase surfactant
E Surfactant elasticity
K a

1, K a
2 Adsorption coefficients of surfactant on �1, �2

K d
1, K d

2 Desorption coefficients of surfactant on �1, �2
R Ideal gas constant
T Absolute temperature
Uτ Tangential fluid velocity on the free surface/in-

terface
e Unit vector in the direction opposite to gravi-

tational force
u Fluid velocity
v Test function of velocity
w Domain velocity
c0 Initial concentration of surfactants in the bulk 

phase
p Pressure
q Test function of pressure
uimp Impact speed
I Given end time
L Characteristic length
Q Pressure space
U Characteristic velocity
V Velocity space
g Gravitational constant
t Time
Bi1 Biot number of C�1

Bi2 Biot number of C�2

Da Damköhler number
Fr Froude number
Pe1 Peclet number of C�1

Pe2 Peclet number of C�2

Pec Peclet number
Re Reynolds number
We Weber number

also of a scientific interest for many researchers due to the challenges associated with it. Main challenges associated with 
computations of impinging droplets are to prescribe the boundary condition on the liquid–solid interface, especially at the 
moving contact line, and to incorporate the wetting effects, in particular, the inclusion of the contact angle into the model 
equations. In addition to these challenges, the presence of soluble surfactants in the droplet will complicate the model 
further.

Numerous studies on the choice of the boundary condition on the liquid–solid interface, especially in the vicinity of 
moving contact line, have been reported in the literature [8,10,12,32,41,52,53,60,64,71]. Using the usual no-slip boundary 
condition on the liquid–solid interface could induce an unbounded stress singularity at the moving contact line. This singu-
larity is also called as kinematic paradox in the literature. Different types of slip boundary conditions have been proposed in 
the literature [12,41,71] to alleviate this singularity. Among all, the Navier-slip boundary condition is widely accepted, but it 
introduces the so-called slip coefficient. This unknown slip coefficient is also called as momentum transfer coefficient [36]. 
Even though a number of expressions have been proposed for the slip coefficient, it is often determined by comparing the 
computationally obtained wetting diameter with their corresponding experimental results [17]. Based on this approach, an 
expression for the slip coefficient has recently been proposed in [25] for computations of impinging droplets.
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Another challenge associated with the computation of the moving contact line flow is the inclusion of the contact angle. 
This subject has also been studied by several researchers to a great extent, see for example, [5,26,28,31,34,36]. In the 
lubrication theory approximations, the contact angle has been imposed as a boundary condition at the moving contact line, 
see for example [28,33]. However, the inclusion of the contact angle is not straight forward in discretization based numerical 
schemes for moving contact line models [14,16,23,54,59,69]. Moreover, an appropriate choice of the contact angle value in 
computations has also been a topic of research, see for example [17].

One of the main components in a free surface flow solver is the interface capturing/tracking method, and the inter-
face capturing/tracking methods can be classified into Eulerian and Lagrangian methods. In the Eulerian methods such as 
Volume-of-Fluid [29,50,54–56,70], Level set [27,48,57,61,62,72], Front Tracking [65,67], etc., the Navier–Stokes equations are 
solved in a fixed domain with variable material coefficients. Contrarily, the Navier–Stokes equations are solved in each phase 
simultaneously with a deforming domain in the Lagrangian methods such as arbitrary Lagrangian–Eulerian [7,20,21,30,46,
47] and pure Lagrangian [14,15] approaches. Although, a number of numerical studies have been reported in the literature 
for free surface and two-phase flows with insoluble surfactants [2,13,22,37,38,40,42,43,51,55,72,74], the effects of soluble 
surfactants have been considered only in a few recent studies [1,3,6,24,44,45,63,76]. In all these studies, numerical schemes 
have been developed for surfactant flow models with closed boundaries, that is, for flows without moving contact lines.

Due to the challenges in handling the moving contact line, only a few works have been reported in the literature for flows 
with surfactants and moving contact line. The effect of insoluble surfactants on a droplet attached to a plane wall subjected 
to an over passing Stokes flow has been studied in [75] using a boundary integral method. The authors used marker points 
to track the interface, and assumed that the contact line remains circular and the interfaces having the shape of sections of 
a sphere. An immersed boundary method using the Marker-and-Cell method has been proposed in [39] for computations 
of two-dimensional (2D) semicircular droplet deformation with insoluble surfactants on a horizontal surface. The authors 
assumed that the initial velocity in the droplet is zero, and incorporated the surfactant effects on the contact angle as an 
unbalanced Young force [26]. Numerical studies for different equilibrium contact angles and surfactant concentrations have 
been performed in [39]. Recently, a finite difference scheme using the level-set method for computations of 2D semicircular 
droplet deformation with insoluble surfactants on a horizontal surface and for the detachment of a pendant droplet from a 
wall under gravity has been proposed in [73]. A contact angle condition, which relates the unbalanced Young force and the 
slip velocity at the contact line, has been used to include the effects of surfactants on wetting. One of the main challenges 
in the applications of level-set method is the conservation of mass, and an additional mass correction step is needed in 
order to conserve mass [73]. For an overview of moving contact line flows with insoluble surfactants, we refer to [77].

In all the previous studies, a hemispherical/semicircular droplet subjected to an external or non-equilibrium forces with 
insoluble surfactants has been considered. To the best of the authors knowledge, numerical studies of impinging droplets 
with soluble surfactants have not been reported in the literature so far. In particular, a sharp interface model, which is 
known for conserving mass without additional correction and suppressing spurious velocities when appropriate solution 
spaces are used [18], has not been reported for computations of moving contact lines with soluble surfactants.

In this paper, we present a finite element scheme using the arbitrary Lagrangian–Eulerian approach for computations of 
impinging droplets with soluble surfactants. Since the free surface is resolved by the moving mesh in the ALE approach, the 
surface forces including Marangoni effects can accurately be incorporated into the numerical scheme. Moreover, the surface 
evolution-equation is approximated on the discrete representation of the free surface directly. In addition, the inclusion of 
the dynamic contact angle and the adsorption/desorption balance condition for the surfactant mass transfer are straightfor-
ward in the considered sharp interface model. More importantly, an additional correction is not needed in order to conserve 
the mass of the fluid and of the total surfactants.

The paper is organized as follows. In Section 2, the governing equations of the impinging droplet with soluble surfactants 
are presented. The dynamic contact angle that depends on surfactants is described in Section 3. The dimensionless form of 
the model equations, ALE approach, finite element formulations and mesh handling techniques are presented in Section 4. 
The mesh convergence study for the proposed numerical scheme and the numerical results for an impinging droplet with 
soluble surfactants are given in Sections 5 and 6. Finally, in Section 7 we summarize the key observations of this study.

2. Governing equations

We consider a surfactant liquid droplet impingement on a horizontal solid substrate. The computational domain of the 
droplet is denoted by �(t), whereas ζ(t) denotes the moving contact line, �1 and �2 denote the free surface and the liquid–
solid interface, respectively. Moreover, �(t) := �1(t) ∪ �2(t) ∪ ζ(t) is the boundary of �(t), and θd is the dynamic contact 
angle. The schematic view of the considered problem is shown in Fig. 1. We assume that the liquid is incompressible and 
the effects of the surrounding gas on the flow dynamics of the droplet are negligible. The computation starts immediately 
after the droplet impinges on the solid surface, and it ends at a specified final time, I.

2.1. Navier–Stokes equations

The fluid flow in the droplet is described by the time-dependent incompressible Navier–Stokes equations

∇ · u = 0,
∂u + (u · ∇)u − 1 ∇ · (S(u, p)) = ge in �(t) × (0, I), (1)

∂t ρ
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Fig. 1. Schematic view of a droplet: (a) during the deformation, and (b) the equilibrium shape of the droplet after impingement.

where the set �(t) × (0, I) has to be understood as {(x, t) ∈ R
4 : x ∈ �(t), t ∈ (0, I)}. Here, u is the velocity, p is the 

pressure, ρ is the density of the fluid, g is the gravitational constant, t is the time, e is an unit vector in the opposite 
direction of the gravitational force. We assume that the droplet impinges on the solid surface perpendicularly with the 
impact velocity

u(·,0) = (0,0,−uimp) in �(0), (2)

where uimp is the impact speed of the droplet. Furthermore, S(u, p) is the stress tensor, and for the considered Newtonian 
incompressible fluid, it is defined as

S(u, p) := 2μD(u) − pI, D(u)i, j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, i, j = 1,2,3,

where μ is the dynamic viscosity, D(u) is the velocity deformation tensor and I is the identity tensor. The Navier–Stokes 
equations (1) are closed with the kinematic and force balancing conditions

u · ν1 = w · ν1, S(u, p) · ν1 = ∇�1 · S�1 on �1(t), (3)

and the Navier-slip boundary condition

u · ν2 = 0, βε(τ i,2 · S(u, p) · ν2) = −u · τ i,2, i = 1,2, on �2(t).

Here, w is the velocity of the computational domain �(t) and βε is a given slip coefficient. Further, ν1 = (n1, n2, n3) and ν2
denote the unit outer normal vector on �1(t) and �2(t), respectively. Moreover, τ 1,2 is the scaled projection of ν1 onto the 
plane �2(t), and τ 2,2 is a tangential vector that is perpendicular to τ 1,2 and ν2, defined by

τ 1,2 := ν1 − (ν1 · ν2)ν2

‖ν1 − (ν1 · ν2)ν2‖ , τ 2,2 = τ 1,2 × ν2

‖τ 1,2 × ν2‖ . (4)

The surface gradient, ∇�1 (·), of a scalar function � , and the surface divergence, ∇�1 · (·), of a vector v on the surface �1(t)
are defined by

∇�1� = Pν1∇�, ∇�1 · v = tr
(
Pν1∇v

)
,

where Pν1 = I − ν1 ⊗ ν1 is the projection onto the tangential plane. The surface stress tensor, S�1 , in the force balance 
condition (3) is modeled by

S�1 = σ(C�1)Pν1 .

Moreover,

∇�1 · S�1 = tr
(∇�1

(
σPν1

)) = Pν1∇�1σ + σ tr
(∇�1Pν1

)
.

Since the surface gradient is in the tangential plane, we have Pν1∇�1σ = ∇�1σ . Further, for 1 ≤ n j ≤ 3,

tr
(∇�1Pν1

) =
3∑

i=1

∂

∂xi

(
δi, j − nin j

) −
3∑

i,k=1

∂

∂xk

(
δi, j − nin j

)
nkni

= −
3∑

i=1

n j
∂ni

∂xi
−

3∑
i=1

ni
∂n j

∂xi
+

3∑
k=1

nk
∂n j

∂xk

3∑
i=1

n2
i︸ ︷︷ ︸

=1

+1

2

3∑
k=1

n jnk
∂

∂xk

(
3∑

i=1

n2
i

)
︸ ︷︷ ︸

=1

= −Kν1,

where K is the sum of the principle curvatures. Hence, we have
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∇�1 · S�1 = ∇�1 · (σ(C�1)Pν1

) = ∇�1σ(C�1) − σ(C�1)Kν1,

which is the standard form used in the literature to include the Marangoni effects. However, we prefer the surface diver-
gence form due to the advantage that it avoids the calculation of ∇�1 σ(C�1 ) and the handling of K in the variational form, 
see (32). Next, the surfactant-dependent surface tension, σ(C�1 ) > 0, can be defined using the Henry linear equation of 
state

σ(C�1) = σref + RT
(

c�
ref − C�1

)
, (5)

where σref is the reference surface tension corresponds to the surfactant concentration c�
ref , see for example [37,51]. For 

instance, if c�
ref = 0 then σref = σ0, the surface tension coefficient of the surfactant free (clean) free surface. Further, R is 

the ideal gas constant, T is the absolute temperature. The linear equation of state is valid only for a small variation of the 
surfactant around their reference value. Moreover, a non-linear Langmuir equation of state

σ(C�1) = σ0 + RT C∞
� ln

(
1 − C�1/C∞

�

)
, (6)

cal also be used, see for example [13,38,51]. Here, C∞
� is the maximum surface packing surfactant concentration.

2.2. Surfactant transport equations

In a soluble surfactant model, surfactant transport in the bulk phase (inside the droplet), and on the boundaries of 
the droplet, that is, on the free surface and on the liquid–solid interface, have to be modeled by a set of scalar transport 
equations. The exchange of surfactants between the bulk phase and the boundaries is modeled by a source term that 
contains adsorption and desorption coefficients. The transport of surfactant concentration in the liquid droplet is described 
[24] by the scalar convection–diffusion equation

∂C

∂t
+ u · ∇C = ∇ · (Dc∇C) in �(t) × (0, I) (7)

with the initial and boundary conditions

C(·,0) = c0 in �(0)

−νk · (Dc∇C) = S(C�k , C) on �k(t)

for k = 1, 2. Here, C is the surfactant concentration in the bulk phase, C�1 is the surfactant concentration on the free surface, 
C�2 is the surfactant concentration on the liquid–solid interface, Dc is the diffusion coefficient of the surfactant in the bulk 
phase and c0 is the initial concentration of surfactants in the bulk phase. The source term S(C�k , C) is given by

S(C�k , C) = K a
k C

(
C∞

� − C�k

) − K d
k C�k , (8)

where K a
k and K d

k are adsorption and desorption coefficients, respectively, on �k(t), k = 1, 2. The surfactant transport on the 
moving boundaries �k(t) is described [22] by the surface transport equation

∂�C�k

∂t
+ Uτ · ∇�k C�k + C�k∇�k · w = ∇�k · (Dk∇�k C�k ) + S(C�k , C) on �k(t), (9)

for k = 1, 2, together with the initial and the continuity condition on the moving contact line, ζ(t)

C�k (·,0) = C�k,0 in �k(0) (10)

C�1 = C�2 , −νζ · (D1∇�1 C�1

) = τ 1,2 · (D2∇�2 C�2

)
on ζ(t) (11)

Here, D1, and D2 are the surface diffusive coefficients of C�1 and C�2 , respectively, Uτ is the tangential velocity of the free 
surface/interface, C�k,0 , initial concentrations on �k . Further, the time derivative in (9) is the normal time derivative of C�k

following the motion of the free surface along its normal trajectories [11,49]. In the continuity condition (11) at the moving 
contact line, νζ is the co-normal vector that is normal to ζ(t) and tangent to �1(t), see Fig. 1.

3. Dynamic contact angle at the moving contact line

3.1. Equilibrium contact angle

In thermal, mechanical, and chemical equilibrium state, the equilibrium contact angle, θ0
e , of a liquid droplet on a clean, 

homogeneous, and smooth surface satisfies the Young–Dupré equation

θ0
e = cos−1

(
σ

sg
0 − σ ls

0

σ0

)
, (12)
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where σ sg
0 and σ ls

0 are interfacial tension of the clean (surfactant free) solid–gas and liquid–solid interfaces, respectively. 
In general, the contact angle and the surface tension are measured experimentally, and used in computations to describe 
the wetting behavior. However, the experimental measurements of σ sg

0 and σ ls
0 are seldom available. The contact angle 

θ0
e in (12) is also referred to as the static contact angle, and is unique for the considered gas, liquid and solid material 

phases at the equilibrium state. Nevertheless, the contact angle deviates from the equilibrium value when the contact line 
moves, and the difference between the advancing contact angle and the receding contact angle is referred to as a contact 
angle hysteresis. In general, the contact angle that incorporates the hysteresis is called the dynamic contact angle θd . Surface 
roughness, contamination on surfaces, thermal effects are also some of the reasons for the dynamic behavior of the contact 
angle. The evidence for the dynamic behavior of the contact angle can be found in experiments, see for example, [9,35]. 
The measurement of the contact angle in experiments depends on the resolution of the microscope, and the contact angle 
is measured a certain distance away from the contact line. Hence, the experimentally measured angle is referred to as an 
apparent or macroscopic contact angle.

3.2. Contact angle in computations

Several models have been proposed in the literature for the choice of the contact angle in computations of flows with 
moving contact lines, see [17] for a recent comparative study of different contact angle models in computations of droplet 
impingement. In general, the contact angle, irrespective of the contact angle model, is incorporated as a surface force at 
the contact line in discretization based numerical schemes. Further, the equilibrium contact angle has been preferred in 
computations when a sharp interface model is used [17]. In an equilibrium state, the Young–Dupré equation satisfies

σ0 cos θ0
e = σ

sg
0 − σ ls

0 .

However, an unbalanced Young force [26]

FY = σ
sg
0 − σ ls

0 − σ0 cos θd = σ0(cos θ0
e − cos θd)

is induced at the contact line during the droplet deformation since θd 
= θe , see Fig. 1. Moreover, we have

σ0 cos θd = σ0 cos θ0
e + FY .

We now impose FY = 0 in the model, and it results in

θd = θ0
e , (13)

in the numerical scheme (33). Thus, the surface force at the contact line becomes unbalanced for the geometry with θd , see 
Fig. 1. The imbalance in the surface force induces a non-zero slip velocity, that is, the surface force is translated into a kinetic 
energy. Consequently, the slip velocity drives the contact line into the equilibrium position. Moreover, the dynamic contact 
angle will attain the prescribed equilibrium value when the contact line attains its equilibrium position. To incorporate this 
phenomenon, it is necessary to allow the liquid to slip in the vicinity of the contact line. Further, the calculated value of 
θd varies when the contact line moves, see Fig. 1. Thus, the slip velocity directly influences the dynamics of the contact 
angle in sharp interface models. Therefore, it is necessary to use an “appropriate slip” in computations of moving contact 
line flows when a sharp interface model is used.

Several boundary conditions for the fluid velocity on the liquid–solid interface have been proposed in the literature 
for moving the contact line problems, see [12] for an overview. Among all, the Navier-slip boundary condition is widely 
accepted. However, an appropriate choice of the slip length (friction coefficient) in the Navier-slip boundary condition is a 
main challenge. The experimental evidences show that the slip length varies for different flows at different configurations. 
Although, a number of expressions have been proposed for the slip length [5,8,32], an exact mathematical expression is 
missing. A more complicate non-linear form of the slip length has been proposed for a Newtonian liquid in molecular 
length scale [64]. Recently, an expression for the numerical slip as a function of Re and We has been proposed in [25] for 
impinging droplets, and it is used in this paper.

3.3. Surfactant-dependent contact angle

Suppose that the interfaces are clean, then we have the balanced Young–Dupré equation (12). However, a nonuniform 
distribution of surfactants on interfaces induces an unbalanced Young force

FY = σ sg(C�3) − σ ls(C�2) − σ(C�1) cos θd

at the contact line. Here, C�3 denotes the surfactant concentration on the solid–gas interface. It is impractical to use the 
above relation since the values of σ sg(C�3 ) and σ ls(C�2 ) are still needed in computations, and are seldom available. How-
ever, using the nonlinear equation of state (6) for σ sg(C�3 ) and σ ls(C�2 ) in the above relation, we get

FY = σ0 cos(θ0
e ) + RT C∞

� ln(M) − σ(C�1) cos(θd), M = C∞
� − C�3

C∞ − C
. (14)
� �2
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As before, we impose FY = 0 in the model, and it results in

θd = cos−1

(
σ0 cos(θ0

e ) + RT C∞
� ln(M)

σ C�1

)
. (15)

Contrary to the clean case (13), the dynamic contact angle (15) will not attain the equilibrium value θ0
e when the contact 

line attains its equilibrium position. The equilibrium value of (15) depends on the surfactant concentrations, C�k , k = 1, 2, 3.
An increase in C�1 reduces θd when θ0

e is less than 90◦ , and increases θd when θ0
e is greater than 90◦ . Furthermore, 

the θd decreases further when C�2 is greater than C�3 and increases when C�2 is less than C�3 even for θ0
e = 90◦ . For 

instant, the surfactant concentration on the liquid–solid interface C�2 may vary in droplets with soluble surfactants, and it 
will not be equal to the surfactant concentration on the solid–gas interface. It has been observed in experiments [4], where 
the measured equilibrium contact angle for pure water on a clean stainless steel was 90◦ , and adding 100 and 1000 ppm 
surfactants reduced the equilibrium contact angle to 55 and 20◦ , respectively.

Suppose that the solid–gas interface is clean, that is, C�3 = 0, then we have

θd = cos−1

(
σ0 cos(θ0

e ) − RT C∞
� ln(1 − C�2/C∞

� )

σ (C�1)

)
. (16)

It has to be used in computations when the effects of C�2 are taken into considerations. Nevertheless, the relation (15) can 
further be simplified to

θd = cos−1
(

σ0 cos(θ0
e )

σ (C�1)

)
= θe(C�1) (17)

by assuming C�3 = C�2 . Since the continuity condition (11) is imposed at the contact line, it is sufficient to use the relation 
(17) in computations. Note that the above relation (17) is independent of C�3 and C�2 provided that these concentrations 
are equal at the contact line. It is interesting to note that the surfactant concentration C�1 has no influence on the dynamic 
contact angle when θ0

e = 90◦ and C�3 = C�2 . A similar relation can also be derived, when the linear equilibrium of state (5)
is used.

4. Numerical scheme

We transform the model equations into an arbitrary Lagrangian–Eulerian form after writing it in a dimensionless form. 
We then derive variational forms of the Navier–Stokes equations and the surfactant concentration equations. In particular, 
we derive one-field formulation for the surfactant concentration equations on the interfaces using the continuity condition 
of surfactants at the moving contact line. After that, we briefly present the spatial and the temporal discretizations of 
the model equations. Finally, the mesh moving technique is presented briefly, and for a detailed description of the mesh 
handling, we refer to [22,24].

4.1. Dimensionless form

Let the characteristic length and velocity be L and U , respectively. Define the dimensionless variables

x̃ = x

L
, ũ = u

U
, w̃ = w

U
, t̃ = tU

L
, Ĩ = IU

L
, p̃ = p

ρU 2
, C̃ = C

c∞
C̃k

� = C�k

C∞
�

.

Applying these variables in the Navier–Stokes equations (1) in the usual way, and omitting the tilde afterwards, we get the 
dimensionless form of the Navier–Stokes problem as

∇ · u = 0,
∂u

∂t
+ (u · ∇)u − ∇ · S(u, p) = 1

Fr
e in �(t) × (0, I), (18)

u · ν1 = w · ν1, S(u, p) · ν1 = 1

We
∇�1 · (σ̂ (C�1)Pν1) on �1(t) × (0, I) (19)

u · ν2 = 0, τ i,S · S(u, p) · ν2 = −β u · τ i,S on �2(t) × (0, I), (20)

u(·,0) = u0/U in �(0), (21)

with the dimensionless numbers (Reynolds, Weber, Froude and slip, respectively)

Re = ρU L

μ
, We = ρU 2L

σ0
, Fr = U 2

Lg
, β = 1

βερU
,

and the dimensionless stress tensor S(u, p)



S. Ganesan / Journal of Computational Physics 301 (2015) 178–200 185
S(u, p) = 2

Re
D(u) − pI.

Here, the scaled surfactant-dependent surface tension in the case of linear equation of state (5) becomes

σ̂ (C�1) = σref

σ0
+ E

(
Cref

C∞
�

− C�1

)
, (22)

where E is the surfactant elasticity defined as E = RT C∞
� /σ0, and in the case of nonlinear equation of state (6) becomes

σ̂ (C�1) = 1 + E ln(1 − C�1). (23)

Using the dimensionless variables in Eq. (7), we get the dimensionless form of the surfactant transport problem in bulk 
phase as

∂C

∂t
+ u · ∇C = ∇ ·

(
1

Pec
∇C

)
in �(t) × (0, I),

C(·,0) = c0

c∞
in �(0),

−ν1 ·
(

1

Pec
∇C

)
= Sc(C�k , C) on �k(t) × (0, I), (24)

for k = 1, 2, where the non-dimensional form of the source term becomes

Sc(C�k , C) = αk C
(
1 − C�k

) − BikDa C�k .

Similarly, the dimensionless form of the surface transport equations become

∂�C�k

∂t
+ U · ∇�k C�k + C�k ∇�k · w = ∇�k ·

(
1

Pek
∇�k C�k

)
+ S�(C�k , C) on �k(t) × (0, I),

C�k (·,0) = C�k,0

C∞
�

in ∂�F (0)

C�1 = C�2 , −νζ ·
(

1

Pe1
∇�1 C�1

)
= τ 1,2 ·

(
1

Pe2
∇�2 C�2

)
on ζ(t), (25)

where

S�(C�k , C) = αk

Da
C

(
1 − C�k

) − Bik C�k , k = 1,2.

The dimensionless numbers (Peclet, Biot, Damköhler and αk) in Eqs. (24), and (25) are given by

Pec = U L

Dc
, Pek = U L

Dk
, Bik = K d

k L

U
, Da = �∞

LC∞
, αk = K a

k C∞
�

U
.

4.2. ALE formulation

The time-dependent domain is handled by the arbitrary Lagrangian–Eulerian approach using moving meshes, which 
resolve the free surface and the liquid–solid interface. Let �̂ be a reference domain of �(t). Define a family of ALE mappings

At : �̂ → �(t), At(Y) = X(Y, t), t ∈ (0, I),

where X and Y are termed as Eulerian and ALE coordinates, respectively. To derive the ALE form of the model equa-
tions, we assume that the mapping At for all t ∈ (0, I) is homeomorphic, that is, At is bijective, continuous and its 
inverse A−1

t is also continuous. Further, assume that the mappings are differentiable almost everywhere in (0, I). Conse-
quently, these assumptions impose that the topology of the domain should remains same. For the surfactant concentration
C : �(t) × (0, I) → R, which is defined on the Eulerian frame, define their corresponding Ĉ and its time derivative ∂C

∂t

∣∣
�̂

on 
the ALE frame by

Ĉ : �̂ × (0, I) →R, (Y, t) �→ C(X(Y, t), t) = C(At(Y), t)

∂C

∂t

∣∣∣∣
�̂

: �(t) × (0, I) →R, (X, t) �→ ∂ Ĉ

∂t
(A−1

t (X), t).

Furthermore, the domain velocity on the ALE frame is defined by

w(X, t) = ∂X
∣∣∣∣ (A−1

t (X), t), X ∈ �(t).

∂t �̂



186 S. Ganesan / Journal of Computational Physics 301 (2015) 178–200
Applying the chain rule to the time derivative of C in the ALE frame, we get

∂C

∂t

∣∣∣∣
�̂

= ∂C

∂t
+ ∂C

∂X

∂X

∂t

∣∣∣∣
�̂

(A−1
t (X), t) = ∂C

∂t
+ w · ∇C . (26)

The time derivatives of a vector valued functions on the Eulerian frame can also be transformed to the ALE frame 
component-wise. Note that the time derivative in the ALE form will become a material derivative when the convective ve-
locity u and the domain velocity w are same, which is the Lagrangian description of the equations. After rewriting the time 
derivatives in the soluble surfactant droplet impingement model equations using (26), the Navier–Stokes equations (18), the 
bulk surfactant concentration equation (24), and the surfactant concentration equation on the interface (25) become

∇ · u = 0,
∂u

∂t

∣∣∣∣
�̂

+ ((u − w) · ∇)u = ∇ · S(u, p) + 1

Fr
e in �(t) × (0, I) (27)

∂C

∂t

∣∣∣∣
�̂

+ (u − w) · ∇C = ∇ ·
(

1

Pec
∇C

)
in �(t) × (0, I), (28)

DC�k

Dt

∣∣∣∣
�̂k

+ C�k ∇�k · w = ∇�k ·
(

1

Pek
∇�k C�k

)
+ S�(C�k , C) on �k(t) × (0, I), (29)

for k = 1, 2. Note that the free surface and the liquid–solid interface move with the liquid velocity, and therefore the surface 
transport equations (29) are written in the Lagrangian description.

4.3. Variational formulation

Let L2(�(t)), H1(�(t)) be the Sobolev spaces, and (·, ·)� be the inner product in L2(�) and its vector-valued versions, 
respectively. Define the functional spaces for the velocity and pressure as

V (�(t)) := {v ∈ H1(�(t))3 : v · ν2 = 0 on �2(t)}, Q (�(t)) := L2(�(t)),

where the no penetration boundary condition on liquid–solid interface is incorporated in the velocity space. To derive 
the variational form of the Navier–Stokes equations, we multiply the mass and momentum balance equations (27) by test 
functions q ∈ Q and v ∈ V , respectively, and integrate over �(t). Applying integration by parts to the stress tensor, we get

−
∫

�(t)

∇ · S(u, p) · v dx = 2

Re

∫
�(t)

D(u) : D(v) dx −
∫

�(t)

p∇ · v dx −
∫

�(t)

v · S(u, p) · ν dγ .

Rewriting the boundary integral into integral over �1(t) and �2(t), decomposing the test function v into

v = (v · ν2)ν2 + (v · τ 1,2)τ 1,2 + (v · τ 2,2)τ 2,2, (30)

and after applying the Navier-slip condition, the liquid–solid interface integral becomes∫
�2(t)

v · S(u, p)· ν2 dγ = −β

2∑
i=1

∫
�2(t)

(u · τ i,2)(v · τ i,2) dγ .

This integral term will be added on the left hand side of the system, and it improves the stability of the system. Similarly, 
the free surface integrate, after incorporating the force balancing condition, will become

−
∫

�1(t)

v · S(u, p) · ν F dγ = − 1

We

∫
�1(t)

v · ∇� · (σ̂ (C�1)Pν1) dγ

= 1

We

∫
�1(t)

σ̂ (C�1)Pν1 : ∇�v dγ − 1

We

∫
ζ(t)

σ̂ (C�1)νζ · v dζ.

Again using the decomposition (30) of v in the last integral term, we obtain

−
∫

�1(t)

v · S(u, p) · ν F dγ = 1

We

∫
�1(t)

σ̂ (C�1)Pν1 : ∇�v dγ − 1

We

∫
ζ(t)

σ̂ (C�1) cos(θd)v · τ 1,2 dζ, (31)

since v · ν2 = 0, νζ · τ 2,2 = 0 and νζ · τ 1,2 = cos(θd), see Fig. 1 for a geometrical description. Now using the surfactant-
dependent dynamic contact angle, θd , (17) in the above equation (31) becomes

−
∫

v · S(u, p) · ν F dγ = 1

We

∫
σ̂ (C�1)Pν1 : ∇�v dγ − 1

We

∫
cos

(
θ0

e

)
v · τ 1,2 dζ . (32)
�1(t) �1(t) ζ(t)
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Note that the Marangoni effects induced by the nonuniform surfactant concentration are included into the numerical scheme 
without evaluating the surface gradient of the surface tension, which is different from the Laplace–Beltrami operator tech-
nique used in [19,22,24]. Now, the variational form of the Navier–Stokes equations read:
For given u(0), C�1(t), θ0

e and �(0), find (u, p) ∈ V × Q such that(
∂u

∂t
,v

)
�̂

+ a(u − w;u,v) − b(p,v) + b(q,u) = f (v) (33)

for all (v, q) ∈ V × Q , where

a(û;u,v) = 2

Re

∫
�(t)

D(u) :D(v) + (û · ∇)u · v dx + β

∫
�2(t)

2∑
i=1

(u · τ i,2)(v · τ i,2) dγ ,

b(q,v) =
∫

�(t)

q ∇ · v dx,

f (v) = 1

Fr

∫
�(t)

e · v dx − 1

We

∫
�1(t)

σ̂ (C�1(t))Pν1 : ∇�1 v dγ + 1

We

∫
ζ(t)

cos
(
θ0

e

)
v · τ 1,2 dζ.

Note that the choice of θd in (32) induce an unbalanced Young force at the contact line, which drives the contact line to the 
equilibrium position, see Sections 3.2 and 3.3.

Next, the variational forms of the surfactant concentration equation (28) is obtained in the usual way. Let G(�(t)) :=
H1(�(t)) and M(�(t)) := H1(�(t)) be the usual Sobolev spaces. Further, in order to write the surfactant concentration 
equations on the free surface and on the liquid–solid interface in a one-field formulation, we define

C�(x, t) =
{

C�1(x, t) if x ∈ �1(t),
C�2(x, t) if x ∈ �2(t),

Pe�(x) =
{

Pe1 if x ∈ �1(t),
Pe2 if x ∈ �2(t).

Bi(x) =
{

Bi1(x, t) if x ∈ �1(t),
Bi2(x, t) if x ∈ �2(t),

α(x) =
{

α1 if x ∈ �1(t),
α2 if x ∈ �2(t).

Multiplying Eqs. (28) and (29) by test functions φ ∈ G and ψ ∈ M , integrating over �(t) and �k(t), respectively, incorporating 
the boundary and continuity conditions, we obtain the coupled problem for the soluble surfactant concentration:
For given (C�,0, u, w), find (C, C�) ∈ G × M such that for all (φ, ψ) ∈ G × M(

∂C

∂t
, φ

)
�̂

+ ac(u − w; C, φ) + bc(C, C�,φ) = sc(C�,φ), (34)(
DC�

Dt
,ψ

)
�̂

+ a�(w, C�,ψ) + b�(C�, C,ψ) = s�(C,ψ), (35)

where

ac(v; C, φ) = 1

Pec

∫
�(t)

∇C · ∇φ dx +
∫

�(t)

(v · ∇)Cφ dx,

bc(C�, C, φ) =
∫

�(t)

α(1 − C�)C φ dγ ,

sc(C�,φ) = Da
∫

�(t)

Bi C�φ dγ ,

a�(w, C�,ψ) =
∫

�(t)

1

Pe�

∇�C� · ∇�ψ dγ +
∫

�(t)

C� ∇� · w ψ dγ ,

b�(C, C�,ψ) = 1

Da

∫
�(t)

α C C� ψ dγ +
∫

�(t)

Bi C� ψ dγ ,

s�(C, φ) = 1

Da

∫
�(t)

α C ψ dγ .
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4.4. Discrete problem

We first present the temporal discretization of the coupled system (33)–(35), in particular, the application of the 
fractional-step-θ scheme is discussed. Further, a fixed point type iteration for the nonlinear convective term in the Navier–
Stokes equations (33) and a Gauss–Seidel type iteration for the coupled surfactant equations are presented. The choice of 
finite elements for the spatial discretization of the system (33)–(35) is also discussed.

4.4.1. Temporal discretization
Let 0 = t0 < t1 < · · · < tN = I be a decomposition of the considered time interval [0, I] and δt = tn+1 − tn , n =

0, . . . , N − 1, be the uniform time step. Also, we use short notations �n := �(tn) and un = u(x, tn) to denote the com-
putational domain and the function value, respectively at time tn . We use the fractional-step-θ scheme, which is strongly
A-stable and of second-order convergent on fixed domains [66], for temporal discretization of the coupled system. The 
fractional-step-θ scheme consists three sub-steps in a given time interval (tn, tn+1). Let

ϑ = 1 −
√

2

2
, ϑ̃ = 1 − 2ϑ, η = ϑ̃

1 − ϑ
, η̃ = 1 − η.

The three fractional-steps of (tn, tn+1) are (tn, tk1 ), (tk1 , tk2 ) and (tk2 , tn+1), where tk1 = tn + ϑ δt , and tk2 = tn+1 − ϑ δt . 
Applying the fractional-step-θ scheme to the coupled system (33)–(35), the first sub-step of the three fractional-steps of the 
coupled system reads:
Step 1: For given �̂ := �n , un , wn , Cn , Cn

� and θd = σ0 cos(θ0
e )/σ (Cn

�1
), find (uk1 , pk1) ∈ V (�k1 ) × Q (�k1 ), wk1 ∈ H1(�k1 ), 

Ck1 ∈ G1(�k1 ) and Ck1
� ∈ M(�k1 ) such that for all (v, q) ∈ V (�k1 ) × Q (�k1 ) and φ ∈ G1(�k1 ) and ψ ∈ M(�k1 )(

uk1 − un

ϑ δt
,v

)
�̂

+ ηa(uk1 − wk1;uk1 ,v) − b(pk1 ,v)

+ b(q,uk1) = η f k1(v) + η̃ f n(v) − η̃a(un − wn;un,v), (36)

(
Ck1 − Cn

ϑ δt
, φ

)
�̂

+ ηac(uk1 − wk1; Ck1 , φ) + η bc(Ck1 , Ck1
� ,φ)

= η sc(Ck1
� ,φ) + η̃ sc(Cn

�,φ) − η̃ac(un − wn; Cn, φ) − η̃bc(Cn, Cn
�,φ), (37)

(
Ck1

� − Cn
�

ϑ δt
,ψ

)
�̂

+ ηa�(wk1 , Ck1
� ,ψ) + η b�(Ck1

� , Ck1 ,ψ)

= η s�(Ck1 ,ψ) + η̃ s�(Cn,ψ) − η̃a�(wn, Cn
�,ψ) − η̃b�(Cn

�, Cn,ψ). (38)

The second and third sub-steps of the fractional-step-θ scheme are obtained in a similar way [66].

4.4.2. Solution of the nonlinear system
We discuss the solution procedure for the coupled system in the first sub-step of the fractional-step-θ scheme, and the 

same procedure is followed in other two sub-steps. In addition to the nonlinear convection term in the Navier–Stokes equa-
tions (36), the unknown computational domain, the domain velocity and the surfactant-dependent surface tension make 
the computation more challenging. Since the computational domain, �k1 , is part of the Navier–Stokes solution, the Navier–
Stokes equations (36) are solved in the previous time-step domain, �n . Further the surfactant-dependent surface tension 
also treated explicitly, that is, Cn

� is used in the source term f k1 (v), and it decouples the Navier–Stokes equations (36) from 
the surfactant concentration equation (38). Moreover, the curvature term in f k1 (v) of (36) is treated semi-implicitly, that is,

− 1

We

∫
�n

1

σ̂ (Cn
�1

)P
ν

k1
1

: ∇�v dγ = − 1

We

∫
�n

1

σ̂ (Cn
�1

)
[
Pνn

1
+ ϑ δtuk1

]
: ∇�1 v dγ

= − 1

We

∫
�n

1

σ̂ (Cn
�1

)Pνn
1
: ∇�1 v dγ − 1

We

∫
�n

1

σ̂ (Cn
�1

)ϑ δtuk1 : ∇�1 v dγ . (39)

The second integral in (39) is symmetric, and it is added to the left hand side of (36) that gives additional stability to the 
system. The nonlinear convection term in (36) is handled by a fixed point iteration as in [21]. Let uk1 := un , wk1 := wn , and 
0 0
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replace the form a(uk1 −wk1 ; uk1 , v) by a(uk1
i−1 −wk1

i−1; uk1
i , v), i = 1, 2, . . . , and iterate until the residual of the Navier–Stokes 

equations (36) becomes less than 10−8. The unknown domain velocity wk1
i , i = 1, 2, . . . , is calculated in each iteration by 

solving the linear elasticity problem for a given displacement virtually obtained using uk1
i .

At the end of the fixed point iteration, we move the domain with the domain velocity wk1 to obtain �k1 . We then 
solve the coupled surfactant equations (37) and (38) in �k1 and �k1 , respectively, by a Gauss–Seidel type fixed point it-

eration as follows. Let Ck1
�,0 = Cn

� , Ck1
0 = Cn , be the initial iterative values. Further, replace bc(Ck1 , Ck1

� , φ), sc(Ck1
� , φ) by 

bc(Ck1
i , Ck1

�,i−1, φ), sc(Ck1
�,i−1, φ) and b�(Ck1

� , Ck1 , ψ), s�(Ck1 , ψ) by b�(Ck1
�,i, C

k1
i−1, ψ), s�(Ck1

i−1, ψ) in (37) and (38), respec-

tively, and iterate until the residual of (37) becomes less than 10−12.
In computations, the fixed point iteration of the Navier–Stokes satisfies the stopping criteria within two or three itera-

tions for δt = 5 × 10−4, and the number of iterations increase when δt is increased. In addition to the dependency on the 
time step, the number of Gauss–Seidel type iteration of (37) and (38) depends on α and Bi.

4.4.3. Finite element discretization
We assume that the droplet impingement is 3D-axisymmetric, and we rewrite the volume and surface integrals in 

(33)–(35) into area and line integrals using the cylindrical coordinates as described in [21]. It allows to use two-dimensional 
finite elements for approximating the velocity, pressure and bulk surfactant concentration on the cross-section and a 
one-dimensional finite elements for approximating surfactant concentration on free surface and liquid–solid interface. We 
triangulate the cross-section with triangles, and use the inf–sup stable isoparametric Taylor–Hood finite elements, that is, 
continuous piecewise quadratic polynomials and continuous piecewise linear polynomials for the appropriation of the ve-
locity components and pressure, respectively. Moreover, we use the continuous piecewise quadratic polynomials for the 
approximation of the surfactant concentrations in the bulk and on the interfaces.

4.5. Mesh handling

The mesh velocity needs to be computed in each fixed point iteration step of the Navier–Stokes equations, see Sec-
tion 4.4.2. To compute the mesh velocity, we first obtain the displacement of the boundary using w = u on the free surface 
that satisfies the kinematic condition u · ν1 = w · ν1 given in (3). We then solve the linear elasticity equation for the dis-
placement of the inner mesh points with the obtained boundary displacement as boundary value. For instance, to calculate 
the mesh velocity wn+1, let the boundary displacement obtained from the Navier–Stokes equations be ϒn+1, then the 
displacement �n+1 is calculate by solving

∇ ·T(�n+1) = 0 in �(tn)

�n+1 = ϒn+1 on �1 ∪ �2 (40)

where T(φ) = λ1(∇ · φ)I + 2λ2D(φ), In computations, the Lame constants λ1 and λ2 are chosen as one. Further, continuous 
piecewise linear polynomials are used to approximate each component of the displacement vector.

During the mesh movement, vertices on the free surface may accumulate at some part of the boundary due to the 
tangential movement induced by the Marangoni convection. To avoid remeshing, we verify the ratio of the minimum and 
maximum edge size on the free surface, and redistribute the vertices using interpolated cubic spline. To incorporate the 
redistribution, we add the tangential displacement vector that requires to redistribute the vertices in the mesh velocity 
calculation during the nonlinear iteration of the Navier–Stokes equations. This approach will automatically redistribute the 
vertices on the free surface during the mesh update. However, the free surface vertices may become a part of the liquid–solid 
interface due to rolling motion. In this case, the free surface boundary condition has to be replaced with the slip with 
friction boundary condition, and the free surface vertex become the wetting point. Consequently, the finite element spaces 
have to be reconstructed. Also, the surface meshes of �1 and �2 change during this process, and need new finite element 
spaces. The entire process is handled automatically by mapping the old solution to the new finite element spaces without 
remeshing, as the number of finite element degrees of freedom (unknown solution coefficients) do not change during the 
change in boundary description. Moreover, the minimum angle of the triangular mesh is calculated at every time step, and 
a remeshing will be done when the minimum angle of the mesh is less than 10◦ . During the remeshing, the old solutions 
are interpolated to the new mesh. To minimize the interpolation error, the Navier–Stokes equations are solved with the 
interpolated velocity as an initial guess and w = 0 before advancing to the next time step. Note that the remeshing is not 
necessary at every time step, as the inner mesh points are moved using the elastic mesh update.

5. Validation

Simulations of impinging droplets without surfactants (clean droplets) using the proposed ALE finite element method 
have been compared with the experimental results in our previous studies [16,17,19]. Further, the numerical scheme for 
transport of surfactants in bulk and on the interface/free surface has been validated with analytical solutions in [22,24]. 
Numerical studies of surfactant droplet impingement using the proposed numerical scheme with the surfactant-dependent 
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contact angle model are carried out here. We first perform a mesh convergence study using the impinging droplet configu-
ration, in particular, with surfactant-dependent contact angle. Computational results of the clean droplets are also compared 
with the experimental results. Moreover the effects of adsorption and desorption coefficients on the flow dynamics of wet-
ting and non-wetting droplets are studied. In these numerical studies, the relative mass fluctuation of the droplet over time 
is given by

δV (t) = |�(t)| − |�(0)|
|�(0)| , |�(t)| =

∫
�(t)

r dr dz,

where r, z are radial and axial coordinates in axisymmetric domain, and �(t) is the axisymmetric meridian domain of 
�(t). The above integrals are evaluated in the axisymmetric configurations [21]. Further, the relative fluctuation of the total 
surfactant mass is computed by

δ�
c (t) = M(t) − M(0)

M(0)
, M(t) =

∫
�(t)

C r dr dz + Da
∫

�1(t)∪�2(t)

C� r ds.

In addition, the sphericity of the droplet is calculated using

sphericity = surface area of the volume-equivalent sphere

surface area of the droplet
.

It implies that the sphericity will be one when the droplet is in spherical shape, and the sphericity will be less than one 
when the droplet deforms. The sphericity gives a quantitative measure of the droplet deformation. Further, the kinetic 
energy in the droplet is calculated using

kinetic energy =
∫
�(t) r u · u dr dz∫

�(t) r dr dz
.

Note that the dimensionless velocity is used in the above definition, and it has to be multiplied with U 2 in order to get the 
kinematic energy in the dimensional form.

5.1. Mesh convergence

A mesh convergence study is performed for the numerical scheme presented in the previous section. We consider a 
hemispherical droplet of diameter d0 = 1.29 × 10−3 m on a horizontal surface. The initial surfactant concentration on the 
free surface is assumed to be uniform, that is, C�1 (·, 0) = 0.5, and the no flux is imposed at the moving contact line. Further, 
the liquid–solid interface is assumed to be clean, that is, C�2 = 0, and remains clean during computations due to the no 
flux condition at the contact line. Moreover, we assume that C = 0 and there is no transport of surfactants between the 
free surface and the bulk phase, that is, no adsorption or desorption of surfactants, α1 = 0 and Bi1 = 0. Using L = d0 and 
U = 1.18 m/s as characteristic values, we get Re = 1522, We = 25 and Fr = 110. Further, we used Pe1 = 1, δt = 0.00025 and 
β = 0.55/hE , where hE is the edge size of the liquid–solid interface. The imposed contact angle of the clean free surface, 
θ0

e = 110◦ . Since θ0
e is more than 90◦ , the presence of surfactant on the free surface will increase the equilibrium contact 

angle further, see (17). The initial mesh level (L0) contains 25 vertices on the free surface with hE = 0.06282152, and the 
successive mesh levels are obtained by uniformly refining the initial mesh, that is, L1, L2 and L3 meshes contain 50, 100 
and 200 vertices on the free surface, respectively.

Initially, the dynamic contact angle and the wetting diameter are not in the equilibrium state for the chosen parameters, 
and thus the droplet starts to deform and attains its equilibrium state after a sequence of recoiling and spreading. Fig. 2
shows the wetting diameter (also the position of the contact line, since d/d0 = r/r0) and the sphericity of the droplet till the 
droplet attains its equilibrium state. The values obtained with different meshes are almost identical, and it shows that the 
free surface with the L0 mesh is enough to obtain a mesh independent wetting diameter and sphericity. However, a close 
view in the sub-figures shows the convergence behavior clearly, and the solution obtained with L2 and L3 are very similar. 
The dynamics of the kinetic energy and the contact angle of the droplet during the sequence of recoiling and spreading 
are presented in Fig. 3 for all mesh levels. The dynamic phenomenon observed in computations of dynamic contact angle 
supports the earlier discussion, see Sections 3.2 and 3.3. The initial dynamic contact angle is 90◦ , which is different from 
the equilibrium value for the given droplet configuration. The computationally obtained dynamic contact angle increases 
initially to a maximum value (�118◦), and oscillates around its equilibrium value before attaining it. Further, the kinetic 
energy attains a maximum value when the dynamic contact angle differs from its equilibrium value, see Fig. 3. The dynamic 
contact angle value obtained with L0 mesh is different from the values obtained with other meshes. It clearly shows that 
a mesh with at least hE = 0.03141076 (L1 mesh) on free surface is needed for a mesh independent solution, see the 
sub-figures in Fig. 3. Finally, the observed relative mass fluctuation of the liquid droplet and of the surfactants during the 
computations are presented in Fig. 4 for all mesh levels. Except the L0 mesh, the mass fluctuations in all other mesh levels 
are similar and very less. Further, we can observe the convergence behavior clearly. Based on this mesh convergence study, 
we use the L2 mesh with hE = 0.01570538 on the free surface in all computations of droplet impingement.
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Fig. 2. Wetting diameter (left) and the sphericity (right) of the droplet in different mesh levels of the mesh convergence study. Re = 1522, We = 25, 
Fr = 110, α1 = 0, Bi1 = 0, Pe1 = 1 and θ0

e = 110◦ .

Fig. 3. Kinetic energy (left) and the dynamic contact angle (right) of the droplet in different mesh levels of the mesh convergence study. Re = 1522, We = 25, 
Fr = 110, Bi = 0, Pe1 = 1 and θ0

e = 110◦ .

Fig. 4. Relative mass loss of droplet (left) and the relative mass loss of surfactants (right) in different mesh levels of the mesh convergence study. Re = 1522, 
We = 25, Fr = 110, Bi = 0, Pe1 = 1 and θ0

e = 110◦ .

6. Computational examples of soluble surfactant droplet impingement

Effects of soluble surfactants on the flow dynamics of impinging droplets are studied in this section. In particular, nu-
merical studies on the influence of adsorption and desorption coefficients on the flow dynamics of wetting, partially wetting 
and non-wetting droplets are performed.
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Fig. 5. Pressure contours and shapes of the impinging droplet at dimensionless time t = 0.1, 0.215, 0.625, 1.25, 3.75 and 25. Re = 1522, We = 25, Fr = 110, 
Pec = 2, Pe� = 2, Bi = 0, Da = 775, α = 100 and θ0

e = 46◦ . (For interpretation of the colors in this figure, the reader is referred to the web version of this 
article.)

6.1. Influence of adsorption in wetting droplets (θ0
e = 46◦)

We first study the influence of the adsorption coefficient on the flow dynamics of a soluble surfactant droplet im-
pingement. We consider a spherical water droplet of diameter d0 = 1.29 × 10−3 m impinging with the pre-impact speed 
uimp = 1.18 m/s, and initial surfactant concentrations, c0 = 2000 and C�(x, 0) = 0. An equilibrium contact angle θ0

e = 46◦
has been observed in the experimental study [58] for a clean water droplet on a polished silicon surface, and it is used 
here. Using L = d0 and U = 1.18 m/s as characteristic values, we get Re = 1522, We = 25 and Fr = 110. In this example, we 
consider the following three variants: (1) α = 1, (2) α = 10 and (3) α = 100. The computations of all variants are performed 
with Pec = 2, Pe� = 2, Bi = 0, Da = 775, δt = 0.00025 and β = 1.476776/2hE . Even though the initial surfactant concen-
tration on the liquid–solid interface is zero, it increases due to the adsorption of surfactants from the bulk phase and the 
transport of surfactant from the free surface. The transport of surfactants from the free surface into the liquid–solid interface 
may occur due to the imposed continuity condition at the contact line (11) and the rolling motion of the droplet during 
spreading. Nevertheless, the effects of C�2 will only be on the dynamic contact angle (15). Since the condition, C�1 = C�2 , 
is imposed at the contact line, the dynamic contact angle (15) will further simplified to the form (17).

The pressure contours and shapes of the impinging droplet at different instances (dimensionless time) t = 0.1, 0.215, 
0.625, 1.25, 3.75 and 25 are depicted in Fig. 5 for the variant α = 100. Initially, the pressure variation is large in the vicinity 
of the contact line, and becomes almost uniform when the droplet attains its equilibrium state, see the last snapshot. During 
the deformation, the pressure variation induces a capillary wave over the free surface, and it can clearly be seen in second 
and third snapshots. Further, the arrows in the snapshots show the flow directions in the droplet. The computationally 
obtained wetting diameter, sphericity, kinetic energy and dynamic contact angle for all considered surfactant variants and 
for the clean droplet case (c0 = 0 and C�(x, 0) = 0) are presented in Fig. 6. The wetting diameters of different variants 
are compared with the experimentally observed wetting diameter in Fig. 6(a), and the clean droplet case matches very 
well, both qualitatively and quantitatively, with the experiment results presented in [58]. Since θ0

e is less than 90◦ in 
this example, the surfactant-dependent dynamic contact angle model (17) reduces the equilibrium contact angle further 
when the concentration of surfactant increases. Consequently, the maximum wetting diameter and the equilibrium wetting 
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Fig. 6. Effects of surfactant adsorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c), and the dynamic contact angle (d)

of an impinging droplet with Re = 1522, We = 25, Fr = 110, Bi = 0 and θ0
e = 46◦ . Var. 1: α = 1, Var. 2: α = 10 and Var. 3: α = 100.

Table 1
Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered in Section 6.1 with I = 25.

Variants max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δ�
c (t)| max

t∈(0,I]
d(t)

d0
Sphericity at t = I Kinetic energy at t = I θd(C�1 ) at t = I

Clean 0.0141 – 2.1109 0.4418 2.19 ×10−6 45.83
Var. 1 0.0151 0.0127 2.1361 0.4170 6.09 ×10−7 41.85
Var. 2 0.0151 0.0101 2.1385 0.4169 6.06 ×10−7 41.82
Var. 3 0.0144 0.0089 2.1430 0.4169 5.90 ×10−7 41.87

diameter of the droplet also increase, see Fig. 6(a). The increase in the wetting diameter reduces the sphericity of the 
droplet, see Fig. 6(b). These observations show that the surfactant-dependent dynamic contact angle is incorporated into 
the numerical scheme precisely. Initially, the kinetic energy is very high due to the pre-impact velocity and non-equilibrium 
surface force, and it approaches to zero when the droplet attains the equilibrium state. The effects of surfactants on the 
kinetic energy of the droplet is negligible, Fig. 6(c). Initially, say until t̃ = 2, the computationally obtained dynamic contact 
angle in both surfactant and clean cases are similar, since C�(x, 0) = 0. However, the dynamic contact angle of the surfactant 
droplets becomes small when the surfactants are transported to the free surface from the bulk phase, say after t̃ = 2. Though 
the effects of surfactants on the flow dynamics of the droplet are clearly observed, the influence of the adsorption coefficient 
is negligible for the considered surfactant droplet configuration.

To compare different flow and geometric parameters of the droplet impingement simulations quantitatively, the spheric-
ity, the kinetic energy, and the dynamic contact angle of the droplet are given in Table 1. Further, the maximum mass 
fluctuations and the maximum wetting diameter obtained in all variants are also presented in the table. The dynamic 
contact angle, as expected, is less in surfactant droplets in comparison with the clean droplet case, and it will attain its 
equilibrium value when the kinetic energy becomes zero. The maximum fluctuations in the droplet’s volume and in the 
surfactant mass are less than 1.52% and 1.3%, respectively, see Table 1.

6.2. Influence of desorption in wetting droplets (θ0
e = 46◦)

To study the influence of desorption of surfactants on the flow dynamics of the droplet impingement, we consider the 
same droplet configurations and flow parameters as in the previous section. However, we take α = 0, the initial surfactant 
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Fig. 7. Effects of surfactant desorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c), and the dynamic contact angle (d)

of an impinging droplet with Re = 1522, We = 25, Fr = 110, α = 0 and θ0
e = 46◦ . Var. 1: Bi = 1, Var. 2: Bi = 5 and Var. 3: Bi = 10.

Table 2
Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered in Section 6.2 with I = 25.

Variants max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δ�
c (t)| max

t∈(0,I]
d(t)

d0
Sphericity at t = I Kinetic energy at t = I θd(C�1 ) at t = I

Clean 0.0141 – 2.1109 0.4418 2.19 × 10−6 45.83
Var. 1 0.0147 0.0061 2.1176 0.4418 2.52 × 10−6 45.82
Var. 2 0.0153 0.0096 2.1056 0.4418 2.15 × 10−6 45.82
Var. 3 0.0146 0.0092 2.1082 0.4418 1.99 × 10−6 45.83

concentrations, c0 = 0 and C�(x, 0) = 0.5 in this numerical test. Further, the following three variants, (1) Bi = 1, (2) Bi = 5
and (3) Bi = 10, are considered. The computations are performed until the dimensionless time I = 25.

The wetting diameter, sphericity, kinetic energy and dynamic contact angle obtained in computations of all variants are 
presented in Fig. 7. Since the Biot number is nonzero in all variants, the surfactants on the interfaces are transported into 
the bulk phase, and eventually the free surface and the liquid–solid interface become clean after some time. Further, we 
observed that the influence of surfactants on the flow dynamics is negligible, as effects of the Marangoni convection and 
the surfactant-dependent dynamic contact angle become negligible when the interface becomes clean. These observations 
can be seen in each picture of Fig. 7, where the curves of different variants are almost identical. It shows that the impurities 
do not affect the flow dynamics of the droplet much, when the impurities are transported into the bulk phase. To support 
this observation quantitatively, the parameters obtained in all variants are given in Table 2. The tabulated values are almost 
identical in all variants. Moreover, the maximum fluctuations in the droplet’s volume and in the surfactant mass are less 
than 1.53% and 1%, respectively.

Since the influence of surfactants in the desorption case is negligible on the flow dynamics of the droplet impingement, 
only the adsorption cases are studied in the subsequent sections.

6.3. Influence of adsorption in non-wetting droplets (θ0
e = 100◦)

We now consider an impinging water droplet of diameter d0 = 2.7 × 10−3 m impinging with the pre-impact speed 
uimp = 1.56 m/s and the equilibrium contact angle θ0

e = 100◦ . The experimental results of the considered clean droplet 
case are presented in [68]. The resulting dimensionless numbers are Re = 4212, We = 90 and Fr = 92. Further, Pec = 2, 
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Fig. 8. Pressure contours and shapes of the impinging droplet at dimensionless time t = 0.1, 0.215, 0.625, 1.25, 3.75 and 5. Re = 4212, We = 90, Fr = 92, 
Pec = 2, Pe� = 2, Bi = 0, Da = 370, α = 10 and θ0

e = 100◦ . (For interpretation of the colors in this figure, the reader is referred to the web version of this 
article.)

Pe� = 2, Bi = 0, Da = 370, δt = 0.00025 and β = 0.75/2hE are used in computations. In general, the non-wetting droplets 
with surfactants are more interesting to study, as the presence of surfactants on the interface increases the Weber number 
by reducing the surface tension that eventually increase the wetting diameter. Contrarily, the capillary effect reduces the 
wetting diameter when the dynamic contact angle increases due to an increase in the surfactant concentration. Since the 
We has no influence at the equilibrium state, the wetting diameter will be less and the contact angle will be more in 
the surfactant droplet when compared to the clean droplet. To study this behavior in detail, the following three variants, 
(1) α = 1, (2) α = 10 and (3) α = 100, are considered.

The pressure contours and shapes of the impinging droplet at different instances (dimensionless time) t = 0.1, 0.215, 
0.625, 1.25, 3.75 and 5 are depicted in Fig. 8 for the variant α = 10. As in the previous cases, the pressure variation is large 
in the vicinity of the contact line initially. However, the wetting diameter is large in this example due to a high Reynolds 
number. The arrows in the snapshots of the droplets indicate the flow directions. The obtained wetting diameter, sphericity, 
kinetic energy and dynamic contact angle in computations of all variants are presented in Fig. 9. The obtained wetting di-
ameter in computations of all variants are compared in Fig. 9(a) with the experimentally observed wetting diameter of the 
clean droplet presented in [68]. The computational results of the clean droplet case are in good agreement with the experi-
ment result. Since the considered equilibrium contact angle is close to 90◦ , the influence of surfactant-dependent dynamic 
contact angle on the flow dynamics is less. Unlike the previous test case considered in Section 6.1, a topological change 
(breaking/splashing) is observed in this example due to high Re = 4212. Since the topological changes are not modeled in 
the numerical scheme, the computations break down when the distance between the interfaces and/or boundaries are less 
than the mesh size. The time at which each variant of droplet breaks down (End time) is presented in Table 3. All other pa-
rameters such as the mass fluctuations, maximum wetting diameter, sphericity, kinematic energy and the dynamic contact 
angle obtained in all variants are comparable, see Table 3. Despite the strong deformation due to high Reynolds number, 
the maximum fluctuations of the droplet’s volume and the surfactant mass are less than 3.6% and 2.4%, respectively, in all 
computations.
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Fig. 9. Effects of surfactant adsorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c), and the dynamic contact angle (d)

of an impinging droplet with Re = 4212, We = 90, Fr = 92, Bi = 0, and θ0
e = 100◦ . Var. 1: α = 1, Var. 2: α = 10 and Var. 3: α = 100.

Table 3
Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered in Section 6.3.

Variants End time (I) max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δ�
c (t)| max

t∈(0,I]
d(t)

d0
Sphericity at t = I Kinetic energy at t = I θd(C�1 ) at t = I

Clean 8.49 0.0344 – 3.039 0.5526 0.0592 93.53
Var. 1 8.03 0.0306 0.008 3.0641 0.5717 0.0670 92.41
Var. 2 8.65 0.0354 0.0239 3.0984 0.5501 0.0583 93.65
Var. 3 8.46 0.0353 0.0221 3.0632 0.5564 0.0606 93.50

6.4. Influence of adsorption in an impinging droplet with θ0
e = 90◦

We next consider a surfactant droplet impingement with θ0
e = 90◦ in which the surfactants have no effect on the dynamic 

contact angle when the model (17) is considered. However, the surfactants will increase the Weber number by reducing the 
surface tension, and consequently the maximum wetting diameter will be increased. We consider the same flow properties 
and the droplet configurations as in Section 6.3 but with θ0

e = 90◦ . The computed variants are (1) α = 1, (2) α = 10 and 
(3) α = 100. Computationally obtained wetting diameters of these variants of surfactant droplets are compared with the 
clean droplet case. Note that the given initial distribution of the surfactant on the interface is uniform and the surface 
Peclet number is small, and therefore the effect of Marangoni convection will be negligible.

The numerical results, the wetting diameter, sphericity, kinetic energy and dynamic contact angle, of these surfactant 
droplet variants and the clean droplet case are presented in Fig. 10. Even though the wetting diameter cure of all variants 
are similar in (10)(a), a close-up view of the wetting diameter in (10)(a) reveals the difference in the maximum wetting 
diameter. Further, to quantify the influence of surfactants, different parameters are tabulated in Table 4. Also, the time at 
which each variant of droplet breaks down (End time) is presented in Table 3. In comparison to the droplet with θ0

e = 100◦
(Section 6.3), the topological changes occur later, say around the dimensionless time t = 13.

6.5. Influence of adsorption in an impinging droplet with θ0
e = 125◦

We next consider a non-wetting water droplet with θ0
e = 125◦ . The flow properties and the droplet configurations are 

same as in Section 6.3, except θ0
e = 125◦ . Once again the computed variants are (1) α = 1, (2) α = 10 and (3) α = 100. The 
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Fig. 10. Effects of surfactant adsorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c), and the dynamic contact angle 
(d) of an impinging droplet with Re = 4212, We = 90, Fr = 92, and θ0

e = 90◦ . Var. 1: α = 1, Var. 2: α = 10 and Var. 3: α = 100.

Table 4
Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered in Section 6.4.

Variants End time (I) max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δ�
c (t)| max

t∈(0,I]
d(t)

d0
Sphericity at t = I Kinetic energy at t = I θd(C�1 ) at t = I

Clean 12.64 0.0502 – 3.0721 0.5592 0.0069 88.24
Var. 1 6.16 0.0461 0.0104 3.1041 0.4032 0.0627 62.69
Var. 2 13.18 0.0567 0.0350 3.1122 0.5573 0.0059 87.93
Var. 3 13.45 0.0469 0.0338 3.0849 0.5613 0.0053 88.59

Table 5
Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered in Section 6.5.

Variants End time (I) max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δ�
c (t)| max

t∈(0,I]
d(t)

d0
Sphericity at t = I Kinetic energy at t = I θd(C�1 ) at t = I

Clean 6.40 0.0148 – 2.9563 0.5593 0.1651 114.79
Var. 1 4.91 0.0130 0.0246 2.9588 0.5735 0.1854 116.44
Var. 2 4.97 0.0140 0.0234 2.9528 0.5887 0.1881 116.10
Var. 3 4.90 0.0144 0.0164 2.9399 0.5746 0.1846 116.19

numerical results (wetting diameter, sphericity, kinetic energy and dynamic contact angle) of these variants and the clean 
droplet case are presented in Fig. 11. Since the equilibrium contact angle is large in the high Reynolds number example, 
the droplet spreads, recoils and bounce very quickly. In particular, the topological changes occur early in comparison with 
θ0

e = 100◦ and θ0
e = 90◦ cases (Sections 6.3 and 6.4). Further, an interesting observation is that the topological changes in 

the surfactant droplet occurs early than the clean droplet, see Table 5. In the presence of surfactants, the surface tension 
will be less and eventually the topological changes are expected early. Other than this effect, the surfactant has almost no 
effects on the flow dynamics of the droplet, see Table 5, where the tabulated values are almost identical.
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Fig. 11. Effects of surfactant adsorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c), and the dynamic contact angle 
(d) of an impinging droplet with Re = 4212, We = 90, Fr = 92, and θ0

e = 125◦ . Var. 1: α = 1, Var. 2: α = 10 and Var. 3: α = 100.

7. Summary and observations

A finite element scheme using the arbitrary Lagrangian–Eulerian approach is presented for computations of 3D-
axisymmetric impinging droplets with soluble surfactants. The key ingredients of the scheme are the inclusion of the 
Marangoni effects without calculating the surface gradient of surfactant concentration on the free surface, a surfactant-
dependent dynamic contact angle model, which is independent of numerical parameters and velocity at the contact line, 
and an accurate inclusion of surface forces with isoparametric finite elements in a moving mesh. The numerical procedure 
includes the solution of the time-dependent Navier–Stokes equations, the bulk surfactant concentration equation and the 
surface evaluation equations. Since the free surface resolved moving meshes are used, the discrete representation of the 
free surface is used as a computational mesh for the surface evaluation equations. Further, an iteration of Gauss–Seidel 
type is employed for an implicit treatment of the adsorption/desorption balance condition for the surfactant mass transfer. 
A mesh convergence study and comparisons of computationally obtained wetting diameter with experimental results are 
performed to validate the scheme. An excellent conservation of the fluid mass and of the total surfactant mass is obtained 
with the proposed scheme. A number of computations for impinging droplets with soluble surfactants are performed, and 
the observations are summarized below.

• An increase in the surfactant concentration, decreases the contact angle, when the equilibrium contact angle value of 
the corresponding clean droplet is less than 90◦ . Contrarily, the contact angle increases further when the equilibrium 
contact angle is greater than 90◦ .

• The nonuniform surfactant concentration on the free surface induces the Marangoni effect.
• Apart from the Marangoni effect, the surfactant concentration decreases the surface tension force and thus increases 

the Weber number. It eventually increases the maximum wetting diameter during the droplet deformation.
• The effects of surfactants are more on the wetting droplet in comparison with the non-wetting droplets.
• The presence of surfactants at the contact line reduces the contact angle and increase the surface force in wetting 

droplets. It eventually enforces the wetting droplet to spread faster. Contrarily, the presence of surfactants at the contact 
line in non-wetting droplets increases the contact angle, and therefore the spreading is not affected much even though 
the surface force increases.

• Due to the increase in the surface force, topological changes (breaking/splashing) occur early in surfactant droplets in 
comparison with the clean droplet.
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• Surfactants alter the equilibrium contact angle of a droplet, and consequently the equilibrium wetting diameter of the 
droplet varies in the presence of surfactants on the interface.
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