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a b s t r a c t

A finite element method for solving multidimensional population balance systems is proposed where

the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional

system and the balance of particle size distribution as a three-dimensional one. The method is based on

a dimensional splitting into physical space and internal property variables. In addition, the operator

splitting allows to decouple the equations for temperature, solute partial density and particle size

distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional

population balance systems is presented. The method is applied to study a crystallization process

assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of

particles. Simulations for different wall temperatures are performed to show the effect of cooling on the

crystal growth. Although the method is described in detail only for the case of d¼2 space and s¼1

internal property variables it has the potential to be extendable to dþs variables, d¼2, 3 and sZ1.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Crystallization is one of the main processes in many chemical
and pharmaceutical industries (Hulburt and Katz, 1964; Woo
et al., 2009). The understanding of the crystallization process is
very important in order to improve the product quality and to
minimize the production cost. In general, the properties of the
product crystals mainly depend on the particulate characteristics
(Teipel, 2004). Thus, to understand the crystallization process
better and to predict the properties of the particles in advance,
modeling and simulation of crystallization processes is highly
demanded. The particle size (typically the characteristic length,
volume or mass) distribution (PSD) in particulates is best
described by population balance equations (PBEs) (Ramkrishna,
2000). Further, to incorporate the effects of non-ideal mixing in
the crystallizer on the population balance model, the PBE has to
be coupled with the flow (Chen et al., 2004; Hulburt and Katz,
1964; Lian et al., 2006). The coupled system of equations which
describe the crystallization process in a non-ideal mixing crystal-
lizer is often called as a population balance system (John et al.,
2009). A population balance system (PBS) typically consists of the

time-dependent Navier–Stokes equations to describe the flow
field, a couple of nonlinear convection–diffusion–reaction equa-
tions for describing chemical reactions, transport of temperature
or concentrations, and a multidimensional PBE to describe the
PSD. In general, the PBE contains derivatives with respect to four
or more coordinates (three spatial coordinates and one or more
internal property coordinates). Thus, the PBE is posed on a higher
dimensional domain compared to the other equations in the PBS.

Simulation of a non-ideal mixing crystallization process con-
sists of solving a set of strongly coupled multidimensional partial
differential equations. Apart from the other challenges associated
with the solution of the multidimensional PBE, coupling the PBE
with the Navier–Stokes and scalar equations makes the solution
process more challenging (Woo et al., 2006). Even though many
accurate methods are available for the solution of partial differ-
ential equations, their use for population balance systems is
lacking. The numerical solution of the PBE is itself very challen-
ging, and is an active field of research (Ramkrishna and Mahoney,
2002). A number of specialised numerical schemes for the solu-
tion of PBE has been proposed in the literature, for an overview
see, Braatz (2002), Costa et al. (2007), Gunawan et al. (2004),
Ramkrishna (2000) and the references therein. Each method has
its own advantages and disadvantages, and here we focus only on
the most relevant discretization methods.

Finite difference method was one of the popular discretization
methods for the PBE. It has been used by several authors for different
particulate systems, for an overview, see Gunawan et al. (2004),
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Pinto et al. (2008), Ramkrishna (2000) and the references therein.
Finite difference method is simple to apply and easy to extend for
multidimensional equations, see the recent works of Hackbusch et al.
(in press) and John and Roland (2010) for its application to 4D PBEs.
However, the finite difference cannot be applied when the computa-
tional domain of the multidimensional PBE is complex, especially the
spatial coordinate domain.

An alternative approach to use the high-resolution finite
volume method has been proposed in Ma et al. (2002a). The
basic idea in this approach is to apply the dimensional splitting to
the multidimensional PBE to obtain a set of one-dimensional (1D)
equations and solve each 1D equation using the high-resolution
finite volume method. This approach avoids smearing and spur-
ious oscillations in the numerical solution of the PBE. Numerous
variants of the high-resolution finite volume algorithms and their
applications to different particulate systems have been proposed
and used by several authors, see for example Gunawan et al.
(2004), Ma et al. (2002b), Majumder et al. (2010), Qamar et al.
(2007, 2011), and Woo et al. (2009). A parallel implementation of
this method has been proposed in Gunawan et al. (2008) with a
special technique to avoid improper load balance, which occurs
because of varying computational load across the internal grid
cells in the evaluation of source–sink integral terms (e.g., aggre-
gation and breakage) in the PBE.

Recently, a finite element approach based on the dimensional
splitting has been proposed in Ganesan (2010) and Ganesan and
Tobiska (2011) for high-dimensional equations of population
balance type. In contrast to the splitting applied (split into a set
of 1D equations) to the PBE in Gunawan et al. (2004), only
two operator-split equations (spatial and internal) are obtained
in the finite element approach. Here, the spatial (typically 3D) and
internal (1D or more) contain all derivatives with respect to the
spatial and internal coordinates, respectively. An advantage of
this splitting approach is that the shape of the spatial domain
(crystallizer) can be arbitrary and the spatial equation can be
easily incorporated into the CFD model. Another advantage is that
it is enough to decompose the spatial domain in the parallel
implementation. This domain decomposition does not need a
special technique for load balancing in parallel implementations
as in Gunawan et al. (2008), since the internal grid is not
decomposed. Further, in this paper we apply the splitting also
to the coupled scalar (energy and component mass balance)
equations and obtain a system of uncoupled partial differential
equations (PDEs) and coupled ordinary differential equations
(ODEs). This facilitates to apply the decoupling iteration only
between a set of ODEs and operator-split internal PBE equation.

2. Population balance systems

2.1. Model assumptions

We consider modeling of crystallization process, which occurs
due to cooling. Since our main focus is to develop an accurate and
robust numerical scheme for population balance systems, we
neglect gravitational effects, agglomeration and breakage of parti-
cles. In addition, we assume that the liquid solvent is incompres-
sible, the fluid flow is stationary, the fluid properties such as density,
kinematic viscosity, heat conductivity and specific heat are spatially
uniform (John et al., 2009; Hackbusch et al., in press). Using the
density and effective viscosity of the suspension would be appro-
priate for PBS (Chang and Powell, 2002; Woo et al., 2006). However,
it requires additional efforts mainly in the Navier–Stokes solver,
and here the focus is on a finite element scheme for solving the
multidimensional PBE coupled with the mass and momentum
equations. Thus, for simplicity we made these assumptions.

A two-dimensional (2D) spatial space and an 1D internal
space, i.e., one internal property coordinate, say the crystal
particle size distribution are considered. We mimic the experi-
mental setup used in Borchert and Sundmacher (2011), and Fig. 1
gives a schematic view of the considered 2D crystallizer (spatial
domain OX �R2), which is 2 m in length and 1�10�2 m in
width. The inlet and outlet boundaries of the crystallizer are
denoted by G in and Gout , respectively, whereas the remaining
boundary parts are denoted as Gwall, i.e., Gwall :¼ @OX \ðG in [ GoutÞ.
We assume that the minimum size of the particles injected into
the crystallizer is 2.5�10�6 m and the maximum possible
particle size is 1.69�10�3 m. Thus, our internal domain will be
OL :¼ ðLmin,LmaxÞ ¼ ð2:5� 10�6 m,1:69� 10�3 mÞ.

2.2. Governing equations

In the considered population balance system, the stationary
flow field of the solute in the bounded spatial domain OX is
described by the stationary incompressible Navier–Stokes equa-
tions

r � u ¼ 0, rðu � rÞuþrp ¼ mDu in OX , ð1Þ

where u ¼ ðu1,u2Þ is the fluid velocity, p is the pressure, r and m
are the density and dynamic viscosity of the fluid, respectively.
Further, r, r� and D denote the gradient, divergence and Laplace
operators with respect to the spatial variables x ¼ ðx1,x2ÞAOX ,
respectively. The Navier–Stokes equations (1) are closed with the
following boundary conditions:

u ¼ uD on G in,

u ¼ 0 on Gwall,

m @u

@n
�pn¼ 0 on Gout :

Here, uD is a given velocity and n is the outward normal to the
boundary Gout . Together with the Navier–Stokes equations (1),
the population balance system consists of the time-dependent 2D
energy and mass balance equations of the solute, and a three-
dimensional (3D) population balance equation for the size dis-
tribution of the crystal particles. In the given time interval ð0,T �,
the equation for the energy balance reads

rcp
@W
@t
þu � rW

 !
¼ lDWþhcrHgr in ð0,T � �OX , ð2Þ

with the boundary and initial conditions

W ¼ WD on ð0,T � �G in,

W ¼ Wwall on ð0,T � �Gwall,

@W
@n
¼ 0 on ð0,T � � Gout ,

Wð0,�Þ ¼ W0 in OX :

Γ̄in
Γ̄out

Γ̄wall

Γ̄wall

Fig. 1. The computational spatial domain O
X

for the crystallization process. Here,

the G in is the fluid inlet, Gout is the fluid outlet and Gwall :¼ @OX
\ðG in [ Gout Þ is the

container wall.
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Here, tA ð0,T � is the time, W denotes the temperature, cp the heat
capacity, l the thermal conductivity, hcr the heat of solution, W0

the initial value of W, WD and Wwall are given boundary values of the
temperature with WwallrWD. Next, a component mass balance
equation for the solute partial density in (0,T] is given by

@rc

@t
þu � rrc ¼DcDrcþHgr in ð0,T � �OX , ð3Þ

with the boundary and initial conditions

rc ¼ rcD
on ð0,T � �G in,

@rc

@n
¼ 0 on ð0,T � � ðGwall [ GoutÞ,

rcð0,�Þ ¼ rc0
in OX :

Here, the source term Hgr, which accounts for the mass transfer is
given by

HgrðW,rc ,f Þ ¼ �3rdkV G

Z
O

L

‘
2
f d‘ ,

where the growth rate G is given by

Gðrc ,WÞ ¼
kg

rc�rc,satðWÞ

rc,satðWÞ

 !g

if rc 4rc,satðWÞ,

0 else:

8>><
>>:

In the above equations, rc denotes the solute partial density
which is a source for the crystal growth, Dc the diffusion
coefficient of the solute partial density, rd the density of the
crystal. Further, rc0

is the initial values of rc , kV the shape factor, g

the growth exponent, kg the growth factor and cD ¼ rc,satðWDÞ are
given values. An empirical expression for the saturation concen-
tration rc,sat is given by

rc,satðWÞ ¼ 1:3045ðW�273:15Þþ35:3642

based on the experimental studies presented in Krasnyk et al. (in
press-a). Finally, the governing equation for the particle size
distribution of the dispersed particle phase which accounts for
the crystal growth and the convective transport in the spatial
space is given by

@f

@t
þu � rf þG

@f

@‘
¼DxDf in ð0,T � �OX �OL , ð4Þ

with the boundary and initial conditions

@f

@n
¼ 0 on ð0,T � � ðGwall [ GoutÞ � ðOL

\LminÞ,

f ¼ f D on ð0,T � � G in �O
L
,

f ¼
Bnuc

G
on ð0,T � � ðOX \G inÞ � Lmin,

f ð0, � ,�Þ ¼ f 0 in OX �OL :

Here, f denotes the particle size distribution, Dx the artificial
diffusion coefficient of the particles, fD denotes the particle size
distribution of the feed crystals. Further, the nucleation rate Bnuc

is defined as

Bnuc ¼ anuc exp
�bnuc

ln2
ðrc=rc,satðWÞÞ

 !
,

where anuc is the nucleation constant and bnuc is a model constant.

2.3. Dimensionless problem

In this section we derive the dimensionless form of the
population balance system, Eqs. (1)–(4). Let us introduce the
scaling factors X and L as characteristic lengths of the spatial
space and internal space, respectively, and U as the characteristic
velocity. Further, we define the non-dimensional variables as

x¼
x

X
, ‘¼

‘

L
, t¼

tU

X
, u¼

u

U
,

p¼
p

rU2
, Lmin ¼

Lmin

L
, Lmax ¼

Lmax

L
,

W¼
W
WD

, rc ¼
rc

rcD

, f ¼
f

f max

:

Here, fmax is the possible maximum value of f over the time. In
addition, the Reynolds and Péclet numbers are defined as

Re¼
rXU

m
, PeW ¼

XU

s
,

Pec ¼
XU

Dc
, Pex ¼

XU

Dx
,

where s¼ l=rcp is the thermal diffusivity. Using these dimen-
sionless variables and numbers in Eqs. (1)–(4), in (0,T] with
T ¼ T U=X, we get the following dimensionless form of the
population balance system:

ðu � rÞuþrp¼
1

Re
Du r � u¼ 0 in OX , ð5Þ

@W
@t
þu � rW¼

1

PeW
DWþHW

gr in ð0,T� �OX , ð6Þ

@rc

@t
þu � rrc ¼

1

Pec
DrcþHr

gr in ð0,T� �OX , ð7Þ

@f

@t
þu � rf þ

X

UL
G
@f

@‘
¼

1

Pex
Df in ð0,T� �OX �OL: ð8Þ

Here, OX and OL denote the scaled domains of OX and OL ,
respectively. The dimensionless source terms HW

grðW,rc ,f Þ and
Hr

grðW,rc ,f Þ in the energy and the mass balance are given by

HW
gr ¼�3rdkV hcr

XL3f max

UrcpWD
Gðrc ,WÞ

Z
OL

‘2f d‘,

Hr
gr ¼�3rdkV

XL3f max

UcD
Gðrc ,WÞ

Z
OL

‘2f d‘:

In the above population balance system, the Navier–Stokes,
the energy and the mass balance equations (5)–(7) contain
derivatives with respect to xAOX , whereas the population bal-
ance equation (8) contains derivatives with respect to xAOX as
well as ‘AOL. Further, the energy equation (6), the mass balance
equation (7) and the population balance equation (8) are coupled
through the source term.

3. Numerical scheme

3.1. Operator-splitting finite element method

The stationary Navier–Stokes equations are solved once, and
the stationary velocity is used in the convective terms of all
time-dependent scalar equations (6)–(8). The two main challenges
associated with the solution of the scalar equations are (i) the
coupling between the equations in 2D and 3D domains, and (ii) the
higher-dimension of the population balance equation. We overcome

S. Ganesan, L. Tobiska / Chemical Engineering Science 69 (2012) 59–68 61
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these difficulties by applying an operator-splitting. In our approach,
advancing the solution in time consists of two steps. In the first step,
the gradient and Laplace operators depend on spatial coordinates
xAOX will be considered, whereas in the second step the coupling
and growth terms will be considered.

Let 0¼ t0ot1o � � �otN ¼ T be a decomposition of the con-
sidered time interval [0, T]. Let us denote t¼tn

�tn�1, 1rnrN,
be a sequence of uniform time steps. For brevity we use the
superscript n to denote a variable at time tn, for example
Wn
ðxÞ :¼ Wðtn,xÞ. Now, using the operator-splitting finite element

method in the time interval ðtn�1,tnÞ, we split the coupled multi-
dimensional system of equations (6)–(8) into two subproblems,
one in X-direction and another in L-direction:

X-direction (Step1): For given Ŵ
n�1
¼ Wðtn�1,xÞ, r̂n�1

c ¼ rcðt
n�1,xÞ

and f̂
n�1
¼ f ðtn�1,x,‘Þ, find Ŵ, r̂c and f̂ in ðtn�1,tnÞ such that for all

‘A ðLmin,Lmax�

@Ŵ
@t
þu � rŴ ¼

1

PeW
DŴ in OX ,

@r̂c

@t
þu � rr̂c ¼

1

PeC
Dr̂c in OX ,

@f̂

@t
þu � rf̂ ¼

1

Pex
Df̂ in OX , ð9Þ

and

Ŵ ¼ 1, r̂c ¼ 1, f̂ ¼
f D

f max

on Gin,

Ŵ ¼
Wwall

WD
,

@r̂c

@n
¼ 0,

@f̂

@n
¼ 0 on Gwall,

@Ŵ
@n
¼ 0,

@r̂c

@n
¼ 0,

@f̂

@n
¼ 0 on Gout :

Here, Gin, Gout and Gwall are scaled boundary parts of G in, Gout and

Gwall, respectively.

L-direction (Step2): For given ~W
n�1
¼ Ŵ

n
, ~rn�1

c ¼ r̂n
c , and

~f
n�1
¼ f̂

n
, find ~W, ~rc and ~f in ðtn�1,tnÞ such that for all xAOX\Gin

d ~W
dt
�HW

grð
~W, ~rc , ~f Þ ¼ 0,

d ~rc

dt
�Hr

grð
~W, ~rc , ~f Þ ¼ 0,

@~f

@t
þ

X

UL
G
@~f

@‘
¼ 0 in OL,

~f ðt,x,LminÞ ¼
1

f max

Bnuc

G
: ð10Þ

Note that in the first step (9), the energy, the mass and the
population balance equations are decoupled. Moreover, all equa-
tions live on the same 2D spatial domain OX . In the first step, the
energy and mass balance equations have to be solved once,
whereas the population balance equation has to be solved for
all ‘AOL by considering ‘ as a parameter. In the second step (10),

for all xAOX\Gin, two ODEs and an 1D PDE have to be solved.
Further, an iterative procedure is needed when the coupled
equations (10) are solved implicitly. However, the iterative
procedure will not be expensive as it is applied to an 1D (internal
space) PDE and ODEs.

3.2. Discrete form of the operator-split system

Let V :¼ H1
ðOXÞ, Q :¼ H1

ðOLÞ be the usual Sobolev spaces.
Further, let

W0 :¼ ffAV : f¼ 0 on Gin [ Gwallg,

V0 :¼ ffAV : f¼ 0 on Ging,

Q0 :¼ fcAQ : cðLminÞ ¼ 0g:

Suppose Vh � V , Qh �Q , V0,h � V0, W0,h �W0 and Q0,h �Q0 are
conforming finite element spaces. Define finite element functions
Ŵ

n

hðxÞAVh, r̂n
c,hðxÞAVh f̂

n

hð�,‘lÞAVh and ~f
n

hðxj,�ÞAQh as

Ŵ
n

hðxÞ :¼
XM
j ¼ 1

Ŵ
n

j fjðxÞ, r̂n
c,hðxÞ :¼

XM
j ¼ 1

r̂n
j fjðxÞ,

f̂
n

hðx,‘lÞ :¼
XM
j ¼ 1

f̂
n

j,lfjðxÞ,

~f
n

hðxj,‘Þ :¼
XN
l ¼ 1

~f
n

j,lclð‘Þ:

Here,M, fj and N , cl are the number of degrees of freedom, the
basis functions of Vh and Qh, respectively. Further, to retrieve the
global discrete solution of f, we define Vh � Qh �H1;1

ðOÞ as

Vh � Qh ¼ xh : xh ¼
XM
i ¼ 1

XN
k ¼ 1

xi,kfick; xi,kAR

( )
,

where

H1;1
ðOÞ :¼ H1

ðOX ;H
1
ðOLÞÞ \ H1

ðOL;H
1
ðOXÞÞ:

Here, the Sobolev space H1;1
ðOÞ is slightly more regular than the

standard space H1
ðOÞ, where the mixed partial derivatives are

bounded (Ganesan, 2010; Ganesan and Tobiska, 2011).
In order to apply the nodal point based operator-splitting

algorithm (Ganesan and Tobiska, 2011), let xjAOX , j¼ 1, . . . ,N_XP,
and ‘lAOL, l¼ 1, . . . ,N_LP be the Cartesian coordinates which are
necessary to evaluate nodal functionals of the finite element
spaces Vh and Qh, respectively. Now, we apply the spatial and
the backward Euler discretizations in space and time, respec-
tively, to the operator-split equations in (9) and (10). In ðtn�1,tnÞ,
the discrete forms of the energy, mass and population balance in
the first step of the operator-splitting scheme read

X-direction (Step1): For given Ŵ
n�1

h ¼ Wn�1
h , r̂n�1

c,h ¼ rn�1
c,h and

f̂
n�1

h ¼ f n�1
h , find Ŵ

n

hAVh, r̂n
c,hAVh and f̂

n

hAVh such that for

l¼ 1, . . . ,N_LP,

ð@tŴ
n

h,fhÞXþ
1

PeW
ðrŴ

n

h ,rfhÞXþðuh � rŴ
n

h,fhÞX ¼ 0, 8fhAW0,h,

ð@tr̂n
c,h,fhÞXþ

1

PeC
ðrr̂n

c,h,rfhÞXþðuh � rr̂
n
c,h,fhÞX ¼ 0, 8fhAV0,h,

ð@t f̂
n

h ,fhÞXþ
1

Pex
ðrf̂

n

h,rfhÞXþðuh � rf̂
n

h,fhÞX ¼ 0, 8fhAV0,h,

ð11Þ

where @tgn ¼ ðgn�gn�1Þ=t for a function g. Further, the inner

product in L2
ðOX,hÞ is denoted by ð�, � ÞX .

Similarly, the discrete form of the equations in the second step
of the operator-splitting scheme read:

L-direction (Step2): For given ~W
n�1

h ¼ Ŵ
n

h , ~rn�1
c,h ¼ r̂

n
c,h and ~f

n�1

h ¼

f̂
n

h, find ~W
n

hAVh, ~rn
c AVh and ~f

n

hAQh such that for j¼ 1, . . . ,N_XP,

@t ~W
n

h�HW
grð
~W

n

h, ~rn
c,h, ~f

n

hÞ ¼ 0,

S. Ganesan, L. Tobiska / Chemical Engineering Science 69 (2012) 59–6862
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@t ~rn
c,h�Hr

grð
~W

n

h, ~rn
c,h, ~f

n

hÞ ¼ 0,

ð@t ~f
n

h,chÞLþ
X

UL
Gn

h

@~f
n

h

@‘
,ch

 !
L

¼ 0, ð12Þ

for all chAQ0,h. Here, the discrete form of the growth rate is

defined as Gn
h :¼ Gð ~rn

c,h, ~W
n

hÞ, and it is treated implicitly. Further, the

inner product in L2
ðOL,hÞ is denoted by ð�, � ÞL. In order to decouple

the equations in (12), we use an iteration of fixed point type. The
fixed point iteration for the coupled ordinary and partial differ-
ential equations in (12) reads:

Let ~W
n0

h ¼ Ŵ
n

h , ~rn0

c,h ¼ r̂
n
c,h, ~f

n0

h ¼ f̂
n

h and Gnk

h :¼ Gð ~rnk

c,h, ~W
nk

h Þ, then
solve

ð@t ~f
nk

h ,chÞLþ
X

UL
Gnk�1

h

@~f
nk

h

@‘
,ch

 !
L

¼ 0,

@t ~W
nk

h �HW
grð
~W

nk�1

h , ~rnk�1

c,h , ~f
nk

h Þ ¼ 0,

@t ~rnk

c,h�Hr
grð
~W

nk

h , ~rnk�1

c,h , ~f
nk

h Þ ¼ 0, ð13Þ

for k¼ 1;2, . . ., until the residual of each equation in (13) become
less than 10�8. Then, we set ~f

n

h ¼
~f

nk

h , Wn
h ¼

~W
nk

h and rn
c,h ¼

~rnk

c,h. This
iterative procedure is inexpensive and usually satisfies the resi-
dual condition within two or three iterations. Finally, we con-
struct the global discrete solution

f n
hðx,‘Þ ¼

XM
j ¼ 1

XN
l ¼ 1

f n
j,lfjðxÞclð‘Þ

8<
:

9=
;AVh � Qh,

by setting f n
j,l ¼

~f
n

j,l, and use it as the initial solution for (11) in the
next time step.

Remark 1. The inclusion of the source–sink term, which accounts
for the aggregation, agglomeration and breakage phenomena, in
the L-direction PBE (12) is straightforward.

Remark 2. Although only a size independent growth rate is
considered in the model, the proposed numerical scheme is not
restricted to this case. In particular, the growth rate in (12) can be
a function of particle size.

Remark 3. Note that the error induced in (11) and (12) by the
operator-splitting method is of order t2 for the backward Euler
scheme, see Ganesan and Tobiska (2011).

3.3. Parallel implementation of the operator-splitting finite element

method

In each time step, we first solve the system of partial
differential equations in the splitting step 1. Then, the set of
solutions are communicated from X-direction (step 1) to the
L-direction (step 2). Finally, we solve the system of coupled
ordinary and partial differential equations in step 2. In this
solution process, an efficient numerical procedure is needed to
communicate the solution from the X-direction to the L-direction
and vice verse. Two variants of fully practical algorithms for an
operator-splitting finite element method have been presented in
Ganesan and Tobiska (2011). It has been shown that the nodal
point based algorithm is more efficient. Here, we first briefly
recall the nodal point based operator-splitting algorithm and then
present a parallel implementation of this algorithm.

Let f̂
n

j,l, j¼ 1, . . . ,M, and ~f
n

j,l, l¼ 1, . . . ,N , be the set of nodal
functionals of the finite element functions f̂

n

hAVh, and ~f
n

hAQh,

respectively, at the time step tn, i.e.,

f̂
n

hðx,‘lÞ ¼
XM
j ¼ 1

f̂
n

j,lfjðxÞ,
~f

n

hðxj,‘Þ ¼
XN
l ¼ 1

~f
n

j,lclð‘Þ:

Here, ‘l, l¼ 1, . . . ,N are the L-coordinate Cartesian points (nodal
points) which are necessary to evaluate the nodal functionals ~f

n

j,l.
Similarly, xj, j¼ 1, . . . ,M are the X-coordinate Cartesian points
which are necessary to evaluate the nodal functionals f̂

n

j,l. In the
above finite element function definition, the nodal functionals are
defined as point values of the function, and in this case ~f

n

j,l ¼ f̂
n

l,j.
Alternatively, the nodal functionals can also be defined by
weighted integral values on each cell, and in this case the number
of nodal points is equal to the sum of the number of quadrature
points used to evaluate the weighted integral in all cells. To fix the
notation, we assume that the nodal functionals are defined by
point values. Further, let us consider a simple case, i.e., 1D in X-
direction and 1D in L-direction, and assume that there are four
and five nodal points in X- and L-directions, respectively. The top
and bottom pictures in Fig. 2 represent the solution direction in
the operator-splitting steps. In the solution process, we first solve
a set of five 1D X-direction equations, i.e., we solve 1D X-direction
equations for each nodal point ‘l of ~f

n

hAQh. Then, we transpose
the solution f̂

n

j,l to get ~f
n

j,l, which is needed to assemble the right-
hand side of the L-direction equations. Finally, in step 2 we solve a
set of four 1D L-direction equations, i.e., we solve 1D L-direction
equations for each nodal point xj of f̂

n

hAVh. Since the nodal
functionals of f̂

n

h are defined by point values, assembling the right
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Fig. 2. Representation of X- and L-directions (top and bottom, respectively)

solution processes in the operator-splitting method. The solid and dotted lines

represent the direction of the active and inactive operators, respectively.
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hand side of the population balance equation in (12), is just a
matrix–vector multiplication.

Next, we present the parallel implementation for the nodal
point based operator-splitting algorithm. Assume that we have N

number of processors. We first partition the collection of cells T h

of OX into N number of sub-collections, T h,k, k¼ 0;1, . . . ,N�1,
using the Metis package (Karypis and Kumar, 1998). After that, in
each processor we construct the local finite element space and
assemble the local system matrix for all X-direction equations.
Then, we call the external parallel direct solver MUMPS (Amestoy
et al., 2001, 2006) from each processor, by providing their
corresponding local system matrix, and obtain the X-direction
solution for all L-direction levels ‘l.

In step 2 of the operator-splitting algorithm, in each processor
k we first collect their own X-direction nodal points xj, which
belongs to T h,k. Then, we solve a set of L-direction equations (12)
in each processor for all X-direction nodal points xj belonging to
their processor. Note that the solution of L-direction equations
(12) in each processor is independent of the solution in other
processors. Thus, no communications between processors are
needed in L-direction (step 2) solution process, and it facilitates
an ideal speedup in parallel computing. In our algorithm, if an
X-direction nodal point xj belongs to two processors, that is, if xj

is on the boundary between two processors, then we prefer to
solve Eqs. (12) for xj on both processors. Alternatively, we could
solve Eqs. (12) for xj in one processor, and then communicate the
solution to the other processor. Since the population balance
equation in (12) is an 1D problem with very less number of
degrees of freedom in our application problem, solving the
population balance equation in (12) for xj in each processor is
more efficient than communication between processors.

Note that the values of the mass and stiffness matrices in the
X-direction equation (11) does not vary over time. Therefore, we
assemble and factorize the X-direction system matrix once at the
beginning, and reuse the same LU factorization over time. Further,
the system matrix of the X-direction equation (11) is same for all
L-direction levels. Therefore, we solve the system with multiple
right hand side to get the X-direction solution for all L-direction
levels which is very efficient with the direct solver.

Also, note that the mass matrix of population balance equation
in (12) is same for all X-direction nodal points. Therefore, we
assemble it at the beginning and reuse it at every time step. Since
the structure of the growth term matrix of population balance
equation in (12) is same for all X-direction nodal points, we
allocate the memory for it only once and reuse the same memory
to assemble the growth term matrix for every X-direction nodal
point. The obtained linear system for every X-direction nodal
point is then solved by the direct solver UMFPACK (Davis,
2004a,b; Davis and Duff, 1999). Note that the growth term G

depends on xAOX , otherwise we would have also reused the
growth term matrix for all X-direction nodal points.

4. Numerical experiments

The operator-splitting finite element method applied to the
PBS in the previous sections has been validated in Ganesan (2010)
and Ganesan and Tobiska (2011) for a scalar problem with known
analytical solution. Further, the computational results obtained
for the PBS using the proposed numerical scheme have been used
as the reference solution (snapshots) in Krasnyk et al. (in press-b)
for constructing a reduced model.

Here, we study the effects of cooling on the crystal growth. In
the considered model, liquid feed (supersaturated urea–ethanol
solution) with seed crystals enter into the crystallizer. Then, the
seed and nucleated crystals grow inside the crystallizer due to

cooling. Finally, the mixture of liquid and crystals are continu-
ously removed at the outlet of the crystallizer. The parameters
used in our simulations are given in Table 1.

4.1. Initial and boundary conditions

In our simulations, a parabolic inlet velocity profile with
uD ¼ ð1� 10�2 m=s, 0) is used. It results in Re¼73.46 for the
considered parameters. The considered initial values for the
temperature and solute partial density are W0 ¼ 301:15 K and
rc0
¼ 71:9 kg=m3. Further, we assume that the crystallizer does

not contain any crystal particles initially, that is, f 0 ¼ 0. At the
inlet, we imposed WD ¼ 301:15 K and rcD

¼ 71:9 kg=m3 as the
boundary values for the temperature and solute partial density,
respectively. An experimentally measured size distribution of the
seed crystals is used as the inlet condition for fD. Fig. 3 shows the
partial size distribution of the seed crystals. These values result in
PeW ¼ 1153, Pec ¼ 74 074 and Pex ¼ 1000.

To study the effects of cooling on the crystal growth the
following three cases are considered:

Case1: Wwall ¼ 291:15 K.
case2: Wwall ¼ 295:15 K.
case3: Wwall ¼ 299:15 K.
Further, simulations are performed until the dimensionless time
T¼5000 with the time step t¼ 0:1 for all these cases.

Table 1
Ethanol properties at 25 1C.

m¼ 1:074� 10�3
ðPa s

r¼ 7:89� 102 kg=m3

l¼ 0:167 W/(m K)

cp¼2.441�103 J/(kg K)

hcr¼2.1645�105 J/kg

Dc¼1.35�10�9 m2/s

rd ¼ 1:323� 103 kg/m3

kV¼p=6, –

kg¼1�10�7 m/s

g¼0.5, –

Dx¼1�10�7 m2/s

anuc ¼ 1� 108 1/(m2 s)

bnuc ¼ 1:66667� 10�6, –

U¼1�10�2 m/s

X¼1�10�2 m

L¼1.69�10�3 m

fmax¼1�1010 1/m3

rc,sat ¼ 1:3045ðW�273:15Þþ35:3642 kg/m3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

f

Fig. 3. Particle size distribution of the seed crystals.
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4.2. Flow field

As mentioned earlier, we initially solve the stationary Navier–
Stokes equations (1) once and reuse the fluid velocity in the scalar
equations (2)–(4) over the period of time. The computational
domain contains 23 040 quadrilateral cells, and the same mesh is
used for all time-dependent scalar equations. For the spatial
discretization of the Navier–Stokes equations, we use the LBB-
stable finite element pair Q2=Pdisc

1 , i.e., piecewise continuous
biquadratic and piecewise discontinuous linear finite elements
for the velocity and the pressure, respectively (Matthies and
Tobiska, 2002). The tangential and normal fluid velocity flow
profiles obtained in our simulation are depicted in Fig. 4. Note
that only the initial part of the channel (0.18 m from the inlet) is
shown in the figure for better visibility.

4.3. Energy and mass balances

The energy and solute mass balance equations are spatial
discretized using the piecewise continuous bilinear finite ele-
ments Q1. It results in 23 569 degrees of freedom for each scalar
equation. Further, the implicit backward Euler scheme is applied
for the temporal discretization of these equations.

The development of the temperature profile over the time in
case 1 is depicted in Fig. 5. Since the variation of the wall

temperature among different cases is less, the development of
the temperature profile is similar in all three cases. Thus, the
temperature profiles of other cases are not presented here.
Further, the steady state profile is reached after the dimensionless
time t¼50 in all three cases.

Next, the development of the solute partial density profile over
the time in case 1 is presented in Fig. 6. Note that the liquid feed
(supersaturated urea–ethanol solution) enters the crystallizer
continuously and also we assumed that the crystallizer is filled
with the liquid feed initially. Thus, the variation of the solute
partial density in the crystallizer over time is very less, see the
minimum and maximum values of rc in Fig. 6. Again, note that
only the initial part of the channel (0.18 m from the inlet) is
shown in Figs. 5 and 6 for better visibility.

4.4. Particle size distribution

The same computational domain used for the energy and solute
mass balance equations is again used for the PBE in X-direction. The
L-direction 1D computational domain contains 40 line intervals.
Further, the population balance equation in X- and L-directions are
spatially discretized using the piecewise continuous bilinear Q1 and
the piecewise continuous linear P1 finite elements, respectively.
These result in 23 569 and 41 degrees of freedom for X- and
L-direction population balance equations. Thus, in each time step

Fig. 4. The tangential (top) and normal (bottom) fluid velocity flow profiles near the inlet (0.18 m). The minimum (blue) and maximum (red) values in tangential

component is 0.055 and 1.0, and in normal component is �0.0836 and 0.0836, respectively, (variables are scaled and dimensionless). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

t = 05

t = 20

t = 40

t = 5000

Fig. 5. Temperature profiles near the inlet (0.18 m) at t¼05, 20, 40 for the case 1. The minimum (blue) and maximum (red) temperature values are 0.966 and

1.0, respectively, (variables are scaled and dimensionless). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

t = 10

t = 20

t = 40

t = 5000

Fig. 6. Solute partial density profiles near the inlet (0.18 m) at t¼10, 20, 40. The minimum (blue) and maximum (red) values are 0.99 and 1.0, respectively (variables are

scaled and dimensionless). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the total number of degrees of freedom used to approximate the
population balance equation is 966 329.

Now, we present the steady state particle size distribution
profile at the dimensionless time t¼5000 for the considered
cases. First, the steady state particle nucleation profile at Lmin

which is imposed as the Dirichlet boundary value on Lmin in the
L-direction step (10) is presented in Fig. 7. It is clear that there
will be a low nucleation rate near the inlet, since the solution will
be in supersaturated state. Further, there is no significant differ-
ence in the steady state nucleation rate among all three cases,
since the variation in the wall temperature is less and the same
flow velocity and inlet conditions are used.

Next, the computationally obtained steady state particle dis-
tribution profile in case 1 for different particle sizes are presented
in Fig. 8. It can be clearly seen that the smaller particles of size
‘¼ 0:0132 are more concentrated near the inlet. Due to the
crystal growth, the particle size becomes larger when the resi-
dence time increases. Thus, the largest particles are found near
the outlet, see the distribution of particles of size ‘¼ 0:1052 in
Fig. 8.

The steady state particle distribution profile obtained in the
case 3 for different particle sizes are presented in Fig. 9. As we
observed in the case 1, the smaller and the larger particles are
found near the inlet and the outlet, respectively. Observe that the
distributions of larger particle of size ‘¼ 0:1052 in case 1 (bottom
right in Fig. 8) and in case 3 (bottom right in Fig. 9). The

distribution of larger particles near the outlet in case 1 are more
than the distribution in case 3 due to higher cooling in case 1.
Further, we would expect a higher value for the PSD (f) towards
the wall, since the nucleation rate near the wall is high, see, Fig. 7.
This behavior is not clearly visible in both Figs. 8 and 9, and the
PSD along the x2-coordinate looks nearly flat. This could be
because of the following reasons: (i) the flow become well-mixed
just after the inlet, since only the inlet region is shown in Fig. 7,
and (ii) the maximum value of the nucleation rate is 0.01, see
Fig. 7. However, near the outlet region, f is slightly large at the
walls compared to the middle, see Fig. 10, which is plotted with
different scaling. Also, due to higher cooling in case 1, f along the
x2-coordinate is more bend (near the outlet region) towards
higher values at the wall than in case 3.

Finally, in our numerical study we evaluate the volume
fraction q3 of f using

q3ðt,x,‘Þ ¼
‘3f ðt,x,‘ÞR Lmax

Lmin
‘3f ðt,x,‘Þ d‘

:

The evaluated volume fractions with respect to the particle size for
different positions and cases are presented in Fig. 11. The volume
fraction of the time independent inlet particle size distribution
evaluated at x¼ ð0,0:5Þ is denoted as var 0 in the figure, whereas
the var 1, 2 and 3 in the figure represent the volume fractions
evaluated near the outlet at x¼ ð190,0:5Þ and t¼5000 for the cases
1, 2 and 3, respectively. Small fluctuations in the volume fraction of
the experimental data can be seen in var 0 (left), but it is not clearly
visible in the PSD plot (Fig. 3) due to scaling. A higher cooling will
increase the nucleation and growth rates, and therefore the volume
fraction of large size particles will be more in higher cooling cases.
This behavior can be seen in the magnified Fig. 11 (right), in which
the plotted curves correspond piecewise linear interpolations of
seven computed volume fractions.
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Fig. 8. Computationally obtained steady state (at t¼5000) particle size distribution f of particle size ‘¼ 0:0132 (top left), ‘¼ 0:0277 (top right), ‘¼ 0:048 (bottom left) and

‘¼ 0:1052 (bottom right) with Twall¼291.5 K (case 1).

Fig. 7. Steady state nucleation profile (f ¼ Bnuc=ðGf maxÞ at Lmin) near the inlet

(0.18 m) at t¼5000. The minimum (blue) and maximum (red) values are 0 and

0.01, respectively (variables are scaled and dimensionless). (For interpretation of

the references to color in this figure legend, the reader is referred to the web

version of this article.)
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4.5. Computational cost

The considered test example does not require an extensive
parallel computing, since the number of degrees of freedom
(spatial) used to solve each scalar equation is 23 569. The number

of degrees is significantly less to study the speed-up on a
distributed memory parallel implementation (MPI implementa-
tion) due to communication overhead. However, to illustrate the
parallel implementation, simulations are performed using seven
Intel(R) Xeon(R) processors with 2.932 GHz each. In each time
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Fig. 9. Computationally obtained steady state (at t¼5000) particle size distribution f of particle size ‘¼ 0:0132 (top left), ‘¼ 0:0277 (top right), ‘¼ 0:048 (bottom left) and

‘¼ 0:1052 (bottom right) with Twall¼299.15 K (case 3).
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Fig. 10. Computationally obtained steady state (at t¼5000) particle size distribution f of particle size ‘¼ 0:1052 in case 1 (left) and case 3 (right).
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step, the total number of degrees of freedom used to approximate
the coupled system of 2D scalar equations (2), (3) and the 3D PBE
(4) is 1 013 467. Despite the considerably large number of total
degrees of freedom, the required computing time with seven
processors is only 1.4 s per time step. We expect the proposed
finite element algorithm will provide a good speed-up for PBS in
R3þ s, sZ1 and it will be studied intensively in our future work.

5. Summary

An operator-splitting finite element method is presented for
multidimensional population balance equations coupled with
equations of conservation of mass, momentum and energy. Using
a dimensional splitting, the multidimensional PBE is split into
spatial and internal PBEs, which contain only derivatives with
respect to spatial and internal coordinates, respectively. Further-
more, the splitting is also applied to the coupling terms in the
scalar energy and mass balance equations. It facilitates to apply
decoupling iterations between a set of ordinary and internal
population balance equations. The proposed finite element
scheme allows ‘arbitrary’ spatial domains and is not restricted
to rectangular or brick type domains in Rd, d¼2 or d¼3. This
results from the fact that the dimensional splitting is only applied
to separate spatial and internal coordinates. The operator-split
spatial PBE together with the energy and mass balance equations
are solved by finite elements using the same spatial mesh,
whereas a separate 1D mesh is used for the finite element
solution of the internal PBE. A nodal point based operator-
splitting finite element algorithm is presented for the commu-
nication of the solution between the spatial and internal popula-
tion balance equations. Moreover, parallel algorithms are
implemented by decomposing the spatial domain, that is, without
decomposing the internal domain. This, avoids any special algo-
rithm to handle improper load balance in the evaluation of
aggregation and breakage integral terms, which have varying
computational cost across the internal mesh cells.

Simulations of a crystallization process, which occur due to
cooling, in a 2D channel are performed using the proposed finite
element scheme. A set of computational results are presented for
different wall temperatures and showed the effects of the cooling
on the crystal growth. The computing time in each time step for
the solution of 3D PBE coupled with the 2D energy and mass
balance equations using seven processors and 1 013 467 total
number of degrees is less than 1.4 s. In our simulations only a size
independent crystal growth is considered. However, the inclusion
of a size dependent crystal growth, of agglomeration and break-
age phenomena in the finite element scheme is possible. Further,
the proposed finite element scheme for PBS’s in R2þ1 can be
extended to PBS’s in R3þ s, sZ1 which will be the topic of
future work.
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