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Abstract
This paper presents the numerical analysis of a stabilized finite element scheme with
discontinuous Galerkin (dG) discretization in time for the solution of a transient
convection–diffusion–reaction equation in time-dependent domains. In particular, the
local projection stabilization and the higher order dG time stepping scheme are used
for convection dominated problems. Further, an arbitrary Lagrangian–Eulerian formu-
lation is used to handle the time-dependent domain. The stability and error estimates
are given for the proposed numerical scheme. The validation of the proposed local pro-
jection stabilization scheme with higher order dG time discretization is demonstrated
with appropriate numerical examples.
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Discontinuous Galerkin method in time · Arbitrary Lagrangian Eulerian formulations
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1 Introduction

The aim of this paper is to analyze the local projection stabilization scheme with dis-
continuousGalerkin in time for the approximation of singularly perturbed scalar partial
differential equations (SPDEs) in time-dependent domains. In this work, the governing
equation is designed within the framework of a conservative arbitrary Lagrangian–
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Eulerian (ALE) formulation. In ALE approach, the boundary moves with a given
velocity w, whereas the inner domain deforms arbitrarily. This is achieved by an
ALE map At that maps a reference (initial/previous time step) domain to a current
computational domain.

It is well-known that the standard Galerkin solution for convection dominated prob-
lems is numerically not appropriate as the discrete solution is polluted with spurious
oscillations. Stability and accuracy of the standard Galerkin solution can be enhanced
by various stabilization approaches. The idea of streamline upwind Petrov-Galerkin
(SUPG) stabilization is first proposed in [11].Other popular stabilizationmethods such
as Galerkin least-squares [24], edge stabilization [15], continuous interior penalty
(CIP) [13,14], subgrid scale stabilization (SGS) [23], orthogonal subscales method
(OSS) [2,16,17] have also been proposed in the literature for SPDEs in stationary
domains, see [28] for an overview. The main drawback of SUPG stabilization is that
various terms including higher order (second) derivative need to be added in the weak
form to keep the consistency of the method [12,25,31]. It becomes more complicated
in the case of time-dependent equations since the time derivative also need to be
included in the weak form to maintain the consistency. An inconsistent SUPG stabi-
lization method for scalar problems in time-dependent domains has been studied in
[20,29].

Local projection stabilization (LPS) preserves the stability of the solution and it
does not require other terms to be added in stabilization and can easily be implemented
[3,27]. This method has originally been proposed for Stokes problem [3], extended to
convection dominated scalar problem [4], and to various incompressible flowproblems
[10]. Application of LPS to convection-diffusion problems with overlapping spaces
has been given in [26]. Since LPS is a symmetric stabilization, it can also be used for
control problems [5,9].

LPS has originally been given as a two-level method in which projection space Dh

lies on a coarser grid, but this approach increases the discretization stencil. Here we
concentrate onone-level approach, inwhich the approximation spaceVh andprojection
space Dh are defined on the same mesh, with enrichment of the approximation space
Vh .Wefirst discretize the equation in spacewith local projectionfinite elementmethod.
The stabilization term in the local projection method is based on a projection πh :
Vh → Dh of finite element approximation space Vh into a discontinuous space Dh . In
LPS, a term which gives L2-control over fluctuation κh of the gradient of the solution
is added. Here, the local projection is incorporated by enriching the approximation
space, see [28]. This is known as the one-level LPS, since the approximation and
projection spaces lie on the same mesh.

In the previous work [20], it has been shown that SUPG stabilization scheme
with implicit Euler and Crank–Nicolson time discretizations behave differently. The
first order implicit Euler is unconditionally stable whereas the second order Crank–
Nicolson becomes conditionally stable with a restriction on time stepΔt . Moreover, it
has been observed in the previous studies [6,18,19,29] that both the conservative and
non-conservative formulations behave differently. This raises a point to consider higher
order discretizations in time. In thiswork, the higher order discontinuousGalerkin (dG)
method is used for the temporal discretization. DG in time on fixed domains can be
found in [30]. DG in time for scalar PDEs in time-dependent domains without space
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discretization is analyzed in [7,8]. In [1], the local projection scheme with dG in time
is given for fixed domain problems.

The paper is organized as follows. In Sect. 2, the transient convection–diffusion
equation in a time-dependent domain and its ALE formulations are given. The spa-
tial discretization with local projection finite element method is presented in Sect. 3.
Further, the error estimate of the semi-discrete problem (continuous in time) is also
derived in this section. Section 4 is devoted to the estimates of the fully discrete prob-
lem obtained with discontinuous Galerkin time discretizations. Finally, the numerical
studies and a summary are presented in Sects. 5 and 6, respectively.

2 Model problem in time-dependent domain

2.1 Convection–diffusion–reaction equation

LetΩt be a time-dependent bounded domain inRd , d = 2, 3with Lipschitz boundary
∂Ωt for each t ∈ [0,T], where T is a given end time. Consider a transient convection–
diffusion–reaction equation : find u(x, t) : Ω × (0,T] → R such that

∂u

∂t
− εΔu + b · ∇u + cu = f in Ωt × (0,T],

u = 0 on ∂Ωt × [0,T],
u(x, 0) = u0(x) in Ω0.

(1)

Here u(x, t) is an unknown scalar function, u0(x) is a given initial data, ε is a diffusivity
constant, b(x, t) is a convective flow velocity, c(x, t) is a reaction function, f (x) is a
given source term with f ∈ L2(Ωt ). Further, assume that there exists a constant μ

such that

(
c − 1

2
∇ · b

)
(x, t) ≥ μ > 0, ∀ x ∈ Ωt , t ∈ (0,T). (2)

2.2 ALE formulation

Let Ω̂ be a reference domain. The reference domain Ω̂ can simply be the initial domain
Ω0 or the previous time-step domain, when the deformation of the domain is large.
Let At be a family of bijective ALE mappings, which at each time t ∈ (0,T], maps a
point Y of a reference domain Ω̂ to a point on the current domain Ωt , given by

At : Ω̂ → Ωt , At (Y ) = x(Y , t), t ∈ (0,T).

Moreover, for any time t1, t2 ∈ [0,T], the ALE mapping between two time instances
will be given by,

At1,t2 : Ωt1 → Ωt2 At1,t2 = At2 ◦ A−1
t1 .
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The domain velocity w is defined as

w(x, t) = ∂x

∂t

∣∣∣∣
Y

(A−1
t (x), t).

Further,we assume thatΩt is boundedwithLipschitz continuous boundary for each t ∈
[0,T]. For a function u ∈ C0(Ωt ) on the Eulerian frame, we define the corresponding
function û ∈ C0(Ω̂) on the ALE frame as

û : Ω̂×(0,T) → R, û := u ◦ At , with û(Y , t) = u(At (Y ), t).

The temporal derivative on the ALE frame is defined as

∂u

∂t

∣∣∣∣
Y

: (x, t) → R,
∂u

∂t

∣∣∣∣
Y

(x, t) = ∂ û

∂t
(Y , t), Y = A−1

t (x).

Applying the chain rule to the time derivative of u ◦ At on the ALE frame to get

∂u

∂t

∣∣∣∣
Y

= ∂u

∂t
(x, t) + ∂x

∂t

∣∣∣∣
Y

· ∇xu = ∂u

∂t
+ ∂At (Y )

∂t
· ∇xu = ∂u

∂t
+ w · ∇xu.

By using the relation in the model problem (1), we get

∂u

∂t

∣∣∣∣
Y

− εΔu + (b − w) · ∇u + cu = f . (3)

This equation is the non-conservative ALE counterpart of the model equation (1).
Alternatively, we can use the Reynolds transport theorem to derive the conservative
ALE-form of the equation.

d

dt

∫
Ωt

u dx =
∫

Ω̂

∂(u JAt )

∂t
dY =

∫
Ω̂

[
JAt

∂u

∂t

∣∣∣∣
Y

+ u
∂ JAt

∂t

]
dY

=
∫

Ω̂

[
∂u

∂t

∣∣∣∣
Y

+ u∇ · w
]
JAt dY

=
∫

Ωt

(
∂u

∂t
+ w · ∇u + u∇ · w

)
dx, (4)

here we have used the Euler expansion formula given by

∂JAt

∂t

∣∣∣∣
Y

= JAt∇ · w. (5)

Here, JAt = det(JAt ) and the Jacobian matrix of the ALE mapping, JAt is given by

JAt = ∂xi
∂Y j

, 1 ≤ i, j ≤ d.
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Now using the Reynolds transport theorem, the conservative ALE form of Eq. (1) can
be written as

∂(u JAt )

∂t

∣∣∣∣
Y

+ JAt [−εΔu + (b − w) · ∇u + (c − ∇ · w)u] = JAt f . (6)

2.3 Variational form

In this section, the finite element variational form of the ALE Eqs. (3) and (6) are
derived. Let

V =
{
v ∈ H1

0 (Ωt ), v : Ωt × (0,T] → R, v = v̂ ◦ A−1
t , v̂ ∈ H1

0 (Ω̂)
}

,

be the solution space for Eqs. (3) and (6). The L2-inner product, the L2-norm and the
H1semi-norm, (·, ·)t , ‖ · ‖t and | · |1,t , respectively, over Ωt are defined as

(u, v)t :=
∫

Ωt

uv dx, ‖v‖2t := (v, v)t , |v|21,t := (∇v,∇v)t , ∀ u, v ∈ V .

Further, let X be a Banach space equipped with the norm ||.||X , then we define

C(0, T ; X) = {v : [0, T ] → X , v is continuous},

L2(0, T ; X) =
{
v : (0, T ) → X ,

∫ T

0
||v(t)||2Xdt < ∞

}
,

Hm(0, T ; X) =
{
v ∈ L2(0, T ; X) : ∂ iv

∂t i
∈ L2(0, T ; X), 1 ≤ i ≤ m

}
.

Using the short notation for space as Y (X) := Y (0, T ; X), we write the norms in the
above space

||v||C(X) = sup
t∈[0,T ]

||v(t)||X , ||v||2L2(X)
=

∫ T

0
||v(t)||2Xdt,

|v|2Hm (X) =
∫ T

0

∣∣∣∣
∣∣∣∣∂

mv

∂tm

∣∣∣∣
∣∣∣∣
2

X
dt, ||v||2Hm(X) =

∫ T

0

m∑
i=0

∣∣∣∣
∣∣∣∣∂

iv

∂t i

∣∣∣∣
∣∣∣∣
2

X
dt .

Now multiplying Eq. (3) with a test function v ∈ V and applying integration by parts
to the higher order derivative term, the variational form of Eq. (3) reads:

For given Ω̂ , b, w, c, u0 and f ∈ L2(Ωt ), find u ∈ L2(0, T ; V ) such that for all
v ∈ L2(0, T ; V ) and t1, t2 ∈ (0,T] with t1 < t2,
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∫ t2

t1

[(
∂u

∂t

∣∣∣∣
Y

, v

)
t
+ (ε∇u, ∇v)t + ((b − w) · ∇u, v)t + (cu, v)t

]
dt

=
∫ t2

t1
( f , v)t dt, (7)

(u, v) = (u0, v)0.

Similarly, the conservative ALE weak form of Eq. (7) can be written as: For given Ω̂ ,
b, w, c, u0 and f ∈ L2(Ωt ), find u ∈ L2(0, T ; V ) such that for all v ∈ L2(0, T ; V )

(u, v)t2 +
∫ t2

t1

[
(ε∇u, ∇v)t + ((b − w) · ∇u, v)t + ((c − ∇ · w)u, v)t

−
(
u,

∂v

∂t

∣∣∣∣
Y

)
t

]
dt

= (u, v)t1 +
∫ t2

t1
( f , v)t dt,

(u, v) = (u0, v)0. (8)

The main difference between (1) and (7), (8) is the additional domain velocityw in the
ALE form that accounts for the deformation of the domain. In this work, we consider
the conservative-ALE form of Eq. (8).

3 Stabilization by local projection finite element

Let Th,0 denote a shape regular triangulation of the initial domain Ω0 into simplices.
Further, Th,t , t ∈ (0,T] be the triangulation of Ωt into simplices obtained by ALE
mapping from Th,0. Further, we denote the diameter of the cell K ∈ Th,t by hK ,t and
the global mesh size by ht := max{hK ,t : K ∈ Th,t }. We now define the discrete
ALE mapping Ah,t (Y ) and the mesh velocity wh in space. We use the Lagrangian
finite element space

Lk(Ω̂) =
{
ψ ∈ Hk(Ω̂) : ψ |K ∈ Pk(K̂ ) for all K̂ ∈ Ω̂h

}
.

Using the linear space, we define the semi-discrete ALE mapping in space for each
t ∈ [0,T) by

Ah,t : Ω̂h → Ωh,t . (9)

Further, the semi-discrete (continuous in time) mesh velocity wh(t,Y ) ∈ L1(Ω̂)d in
the ALE frame for each t ∈ [0,T) is defined by

ŵh(t,Y ) =
M∑
i=1

wi (t)ψi (Y ); wi (t) ∈ R
d .
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Here,wi (t) denotes themesh velocity of the i th node of simplices at time t , andψi (Y ),
i = 1, 2, . . . ,M, are the basis functions ofL1(Ω̂h)

d .We then define the semi-discrete
mesh velocity in the Eulerian frame as

wh(x, t) = ŵh ◦ A−1
h,t (x).

Towrite the continuous equation in triangulated domain, wewill firstmake the hypoth-
esis that the domain Ωt can exactly be represented by the discrete ALE map, that is,
Ωh,t = Ωt , ∀t ∈ I . Thus, we can make use of discrete ALE mapping and write the
continuous equation (8) in the weak ALE form: find u ∈ L2(0, T ; V ) such that

(u, v)h,t2 +
∫ t2

t1

[
(ε∇u, ∇v)h,t + ((b − wh) · ∇u, v)h,t + ((c − ∇ · wh)u, v)h,t

−
(
u,

∂v

∂t

∣∣∣∣
Y

)
h,t

]
dt = (u, v)h,t1 +

∫ t2

t1
( f , v)h,t dt, ∀ v ∈ L2(0, T ; V ).

(10)

Suppose Vh ⊂ V is a conforming finite dimensional subspace of V and Dh be
the projection space of discontinuous piecewise polynomials. Let πK : L2(K ) →
Dh(K ) be a local projection into the space Dh(K ). Define the global projection
πh : L2(Ωt ) → Dh by (πhv)|K := πK (v|K ). Further, associate a fluctuation
operator κh : L2(Ωt ) → L2(Ωt ) which is defined by κh := Id − πh , where
Id : L2(Ωt ) → L2(Ωt ) is the identity map. Then, the local projection stabiliza-
tion is based on the following assumptions (see [28]):

Assumption 1 There exist an interpolation operator ih : H2(Ω) → Vh such that for
all K ∈ Th,t

||v − ihv||K + hK |v − ihv|1,K ≤ ChlK ||v||l,k, ∀ v ∈ Hl(K ), with 2 ≤ l ≤ r + 1.

Assumption 2 The orthogonality property is given as

(v − ihv, qh) = 0 ∀ qh ∈ Dh, ∀ v ∈ H2(Ω).

Assumption 3 The fluctuation operator κh satisfies the following approximation prop-
erty,

||κhv||K ≤ ChlK |v|l,K ∀ v ∈ Hl(K ), 0 ≤ l ≤ r .

We use mapped finite element spaces that satisfy the above assumptions, where the
enriched approximation spaces on the reference cell K̂ are given by

Pbubble
r

(
K̂
)

:= Pr
(
K̂
)

⊕
(
b̂
 · Pr−1

(
K̂
))

Qbubble
r

(
K̂
)

:= Qr

(
K̂
)

⊕ span
{
b̂� · x̂r−1

i , i = 1, 2
}

,
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Here, b̂
 and b̂� are the cubic bubble and the bi-quadratic bubble functions on the
reference triangle and quadrilateral, respectively see [21]. On triangular cells, we use
(Vh, Dh) = (

Pbubble
r , Pdisc

r−1

)
, whereas on quadrilateral cells, we use (Vh, Dh) =(

Qbubble
r , Pdisc

r−1

)
. The stabilization term corresponding to LPS is given by,

Sh (uh, vh) =
∑

K∈Th,t

τK (κh∇uh, κh∇vh)K . (11)

Here, τK is an user chosen stabilization parameter, whose value depends on the mesh
size and the convective velocity [27].

Now, using the local projection stabilization to the conservative ALE form (10), the
semi-discrete problem reads: find uh ∈ L2(0, T : Vh) such that for all vh ∈ L2(0, T :
Vh), t1, t2 ∈ (0,T] with t1 < t2,

(uh, vh)h,t2 +
∫ t2

t1

[
aLPS (uh, vh)h,t − (∇ · (whuh), vh)h,t −

(
uh,

∂vh

∂t

∣∣∣∣
Y

)
h,t

]
dt

= (uh, vh)h,t1 +
∫ t2

t1
( f (t), vh)h,t dt, (12)

where,

aLPS (uh, vh)h,t = ε (∇uh,∇vh)h,t + (b · ∇uh, vh)h,t + (cuh, vh)h,t

+
∑

K∈Th,t

τK (κh∇uh, κh∇vh)K .

The subscript h in the inner product (·, ·)h,t denotes that the integral is over the
triangulated domain. Nevertheless, we will not explicitly mention hereafter and skip
the subscript h.

Lemma 1 Coercivity of aLPS(·, ·): Let the discrete form of the assumptions (2) be
satisfied. Further, assume that the stabilization parameter satisfies τK ∼ O(hK ,t ).
Then, the bilinear form satisfies

aLPS(uh, uh)t ≥ |||uh(t)|||2t , (13)

where the mesh-dependent norm is defined as

|||uh |||2t =
⎛
⎝ε|uh |21,t +

∑
K∈Th,t

τK ||κh∇uh ||2K + μ||uh ||2t
⎞
⎠ .

Proof Substitute vh = uh in the definition of bilinear form aLPS(uh, vh)h,t given
above, and use the discrete form of assumption (2), the coercivity (13) can be derived.

��
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Remark 1 Here we have considered the full gradient in the stabilization. Nevertheless,
the stabilization can also be added in the streamline direction (b−wh). The fluctuation
operator of the convective derivative in stabilization needs further investigation in
analysis and as well as in implementation. Though the full gradient is considered, it is
shown with the numerical results that the LPS scheme works well for the convection
dominated boundary/interior layer problems.

We next define the Ritz projection Rh : V → Vh in order to analyze the semi-discrete
error for problems defined in time-dependent domains. Let Rhv ∈ Vh , then the Ritz
projection will be given by,

aLPS(Rhu, vh) − (∇ · (wh Rhu), vh) = a(u, vh) − (∇ · (whu), vh). (14)

Here the bilinear form a(u, v) is given as

a (u, v)t = ε (∇u,∇v)t + (b · ∇u, v)t + (cu, v)t . (15)

Lemma 2 Let the Assumptions 1 and 2 hold true, τK ∼ O(hK ,t ) and the data of the
problem be sufficiently smooth. Then, there exists a positive constant c, such that

|||Rhu||| ≤ c||u||1, (16)

and

|||u − Rhu||| ≤ c(ε1/2 + h1/2)hr ||u||r+1. (17)

Here, || · ||r+1 denote the norm in Hr+1(Ωt ).

Proof Using the definition of |||, |||-norm, we get

|||Rhu|||2 = aLPS(Rhu, Rhu) = a(u, Rhu) + (∇ · (wh Rhu), Rhu) − (∇ · (whu), Rhu)

= a(u, Rhu) + (∇ · (wh (Rhu − u)), Rhu)

≤ ||u||1 ||Rhu|| + (||∇ · wh ||∞||Rhu − u|| + ||wh ||∞||∇ · (Rhu − u)||) ||Rhu||
≤ ||u||1 |||Rhu||| + (||∇ · wh ||∞|||Rhu − u||| + ||wh ||∞|||Rhu − u|||) ||Rhu||
≤ ||u||1 |||Rhu||| + (||∇ · wh ||∞ + ||wh ||∞

)|||Rhu − u||| |||Rhu|||
≤ c||u||1 |||Rhu|||.

Here, we have used the fact that the mesh velocity is bounded. The Ritz projection
error, ||Rhu − u|| ≤ |||Rhu − u||| ≤ c(ε1/2 + h1/2)hr ||u||r+1, is bounded from the
second part of the lemma [28] and hence the proof of the first part of the lemma can
be followed. For the second part, (see [28, p. 343]). ��
Theorem 1 (Error estimate for the ALE-LPS form of semi-discrete scheme) Let the
Assumptions 1, 2 and the discrete form of Eq. (2) be satisfied. Let u(t) and uh(t) be the
solution of continuous problem (10) and semi-discrete problem (12). Further, assume
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that the stabilization parameter satisfies τK ∼ O(hK ,t ), then the semi-discrete error
satisfies

||uh(t) − u(t)|| ≤ ||uh,0 − u0|| + c(ε1/2 + h1/2)hr(
||u0||r+1 +

∫ t

0

(||u(t)||r+1 + ||u′(t)||r+1
)
dt

)
.

Proof Substitute v = vh and subtract the continuous equation (10) with semi-discrete
equation (12). Further, split the errors into two parts with Ritz projection term as,

uh(t) − u(t) = uh(t) − Rhu(t) + Rhu(t) − u(t) = η(t) + ξ(t).

We can write the error equation as,

(η(t), vh)t2 +
∫ t2

t1

[
aLPS (η(t), vh)t − (∇ · (wh η(t)), vh)t −

(
η(t),

∂vh

∂t

∣∣∣∣
Y

)
t

]
dt

− (η(t), vh)t1 = (ξ(t), vh)t2 − (ξ(t), vh)t1 −
∫ t2

t1

(
ξ(t),

∂vh

∂t

∣∣∣∣
Y

)
t
dt .

(18)

Set vh = η in (18). Applying integration by parts to the third term of left hand side,
we get

∫
Ωh,t

∇ · (wh η) η dx = −
∫

Ωh,t

wh · ∇η η dx = 1

2

∫
Ωh,t

η2∇ · whdx .

Using the Euler expansion (5), the fourth term on left hand side can be written as

∫
Ωh,t

η
∂η

∂t

∣∣∣∣
Y
dx =

∫
Ω̂

η
∂η

∂t
JAt dY = 1

2

d

dt

∫
Ω̂

(η2 JAt ) dY − 1

2

∫
Ω̂

η2
∂ JAt

∂t
dY

= 1

2

d

dt

∫
Ω̂

η2 JAt dY − 1

2

∫
Ω̂

η2∇ · wh JAt dY

= 1

2

(
d

dt
||η||2t −

∫
Ωh,t

η2∇ · whdx

)
.

For the last term of right hand side, using integration by parts in time and Euler
expansion formula (5), we obtain,
∫ t2

t1

(
ξ(t),

∂η

∂t

∣∣∣∣
Y

)
t
dt

= (ξ(t), η(t))t2 − (ξ(t), η(t))t1 −
∫
Ω̂

(∫ t2

t1

∂

∂t

(
ξ(t) JAt

)
η(t) dt

)
dY

= (ξ(t), η(t))t2 − (ξ(t), η(t))t1 −
∫
Ω̂

∫ t2

t1

(
∂ξ

∂t
JAt + ξ(t)∇ · wh JAt

)
η(t) dt dY
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= (ξ(t), η(t))t2 − (ξ(t), η(t))t1 −
∫ t2

t1

∫
Ωh,t

(
∂ξ

∂t
+ ξ(t)∇ · wh

)
η(t) dx dt

= (ξ(t), η(t))t2 − (ξ(t), η(t))t1 −
∫ t2

t1

((
∂ξ

∂t
+ ξ(t)∇ · wh

)
, η(t)

)
t
dt . (19)

Further, using the coercivity of bilinear form (13) and the above equalities, Eq. (18)
becomes

1

2
||η(t)||2t2 − 1

2
||η(t)||2t1+

∫ t2

t1
|||η(t)|||2 dt

≤ (ξ(t), η(t))t2 − (ξ(t), η(t))t1 −
∫ t2

t1

(
ξ(t),

∂η(t)

∂t

∣∣∣∣
Y

)
t
dt

=
∫ t2

t1

((
∂ξ

∂t
+ ξ(t)∇ · wh

)
, η(t)

)
t
dt

≤
∫ t2

t1

(∣∣∣∣
∣∣∣∣∂ξ

∂t

∣∣∣∣
∣∣∣∣
2

+ ||∇ · wh ||∞||ξ(t)||2 + ||η(t)||2
)

dt .

Here, we have used the Cauchy–Schwarz and Young’s inequality for the right hand
side terms. Now absorbing the last term of RHS in |||, |||-norm of LHS, we obtain

||η(t)||2t2 + 2
∫ t2

t1
|||η(t)|||2 dt ≤ 2||η(t)||2t1 + 2

∫ t2

t1

(∣∣∣∣
∣∣∣∣∂ξ

∂t

∣∣∣∣
∣∣∣∣
2

+ ||ξ(t)||2t
)

dt,

using the non-negativity of |||, |||-norm term in LHS, we get

||η(t)||2t2 ≤ 2||η(t)||2t1 + 2
∫ t2

t1

(
||ξ ′(t)||2t + ||ξ(t)||2t

)
dt,

and the semi-discrete error becomes,

||uh(t) − u(t)|| ≤ ||η(t)|| + ||ξ(t)|| ≤ 2||η(t)||0 + 2
∫ t

0

(||ξ(t)||t+
∣∣∣∣ξ ′(t)

∣∣∣∣
t

)
dt

≤ c

(
||uh,0 − Rhu0|| +

∫ t

0
(||ξ(t)||t+||ξ ′(t)||t ) dt

)

≤ c
(
||uh,0 − u0|| + ||u0 − Rhu0|| + hr (ε1/2 + h1/2)∫ t

0
(||u(t)||r+1 + ||u′(t)||r+1) dt

)

≤ c

(
||uh,0 − u0|| + hr (ε1/2 + h1/2)

{
||u0||r+1

+
∫ t

0
(||u(t)||r+1 + ||u′(t)||r+1) dt

})
.

��
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4 Fully discrete formwith dG time discretization

In this section,we present the stability and error estimates for the fully discrete scheme.
Let 0 = t0 < t1 < · · · < tN = T be a partition of the time interval [0,T] into N
uniform time intervals with In = (tn, tn+1]. Next, denote the time step by Δt =
tn+1 − tn , 0 ≤ n ≤ N − 1. Further,

QT =
{
(x, t) ∈ R

d × R : t ∈ [0, T ], x = At (y), y ∈ Ω0

}
, (20)

and

Qn = {(x, t) ∈ QT : t ∈ In} . (21)

For q ≥ 0, the discrete space Sr ,q denotes dG in time of order q, so for the problem
in time-dependent domains,

Sr ,q :=
⎧⎨
⎩v : QT →R : v|In =

q∑
j=0

φ j t
j with φ j ∈Vh and

∂φ j

∂t

∣∣∣∣
Y

=0, j =0, . . . , q

⎫⎬
⎭ ,

and

Sr ,q (In) :=
{
v : Qn →R : v=w|Qn , w∈ Sr ,q

}
, n=0, 1, . . . , N−1,

(22)

is the space of restrictions of functions in Sr ,q to Qn . Note that no continuity ofUh(t)
is required at the nodes t = tn . Further, Uh(t+n ) is the limit of Uh(t) at tn from above.
Now we discretize the ALE mapping in time using linear interpolation. We denote the
discrete ALE mapping by Ah,Δt , and define it for every τ ∈ [tn, tn+1] by

Ah,Δt (Y ) = τ − tn

Δt
Ah,tn+1(Y ) + tn+1 − τ

Δt
Ah,tn (Y ),

whereAh,t (Y ) is the time continuous ALE mapping defined in (9). Since the discrete
ALE mapping is defined linearly in time, we obtain the discrete mesh velocity

ŵn+1
h (Y ) = Ah,tn+1(Y ) − Ah,tn (Y )

Δt

as a piecewise constant function in time. Further, we define the mesh velocity on the
Eulerian frame as

wn+1
h = ŵn+1

h ◦ A−1
h,Δt (x).
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Now, the fully discrete conservative ALE equation with LPS in space and dG in time
is given as,

(Uh(tn+1), vh(tn+1))tn+1
− (

Uh(tn), vh(t
+
n )

)
tn

+
∫
In
aLPS (Uh(t), vh)t dt

−
∫
In

(∇ · (whUh), vh)t dt −
∫
In

(
Uh,

∂vh

∂t

∣∣∣∣
Y

)
t
dt

=
∫
In

( f , vh)t dt,∀ vh ∈ Sr ,q(In), (23)

where,

aLPS (Uh, vh)t = ε (∇Uh,∇vh)t + (b · ∇Uh, vh)t + (cUh, vh)t

+
∑

K∈Th,t

τK (κh∇Uh, κh∇vh)K .

Note that the integrals ofUn
h on a domain Ωts with ts �= tn is written through the ALE

mapping

∫
Ωts

Uh(tn) dx : =
∫

Ωts

Uh(tn) ◦ Atn ,ts dx .

Remark 2 It can be observed that the terms

∫
Ωt

∂Uh

∂t

∣∣∣∣
Y

vhdx,
∫

Ωt

wh · ∇Uhvh dx,
∫

Ωt

∇ · wh Uhvh dx

are polynomial of order (2q+dq ′ −1) in time, where q ′ is the order of the polynomial
for approximating the ALE map. In numerical test cases, we use the second order
discontinuous Galerkin dG(1) in time i.e. q = 1 with dimension d = 2. Further, we
use linear interpolation in time for the discrete ALE mapping, i.e. q ′ = 1. Hence, we
need a quadrature in time, which is exact for polynomials of order 2q ′ + 1 = 3.

4.1 Stability estimate of fully discrete conservative ALE-LPS formwith dG time
discretization

In this section, the stability of conservative ALE- LPS with dG discretization in time
is considered.

Further, the discrete ALE mapping satisfies,

Ah,t ∈ W 1∞(Ω0), and A−1
h,t ∈ W 1∞(Ωt ). (24)

Thus, the quantity ||Ah,t ||L∞(Ω0×I ) is finite and bounded [8,22].
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Theorem 2 (Stability estimate for the conservativeALE-LPS form and dG in time) Let
the discrete form of (2) be satisfied. Further, assume that the stabilization parameter
satisfies τK ∼ O(hK ,t ), then the solution of (23) satisfies

||Uh(tN )||2tN +
∫ tN

0
|||Uh(t)|||2t dt +

N−1∑
n=0

||(Uh(t
+
n )) −Uh(tn))||2tn

≤ ||Uh(0)||2t0 + 1

μ

∫ tN

0
|| f (t)||2t dt .

Proof Take vh = Uh in equation (23),

||Uh(tn+1)||2tn+1
− (

Uh(tn),Uh(t
+
n )

)
tn

+
∫
In
aLPS (Uh(t),Uh(t))t dt

−
∫
In

(∇ · (whUh),Uh)t dt −
∫
In

(
Uh,

∂Uh

∂t

∣∣∣∣
Y

)
t
dt =

∫
In

( f ,Uh)t dt, (25)

using the estimates for the left hand side terms,

(
Uh(tn),Uh(t

+
n )

)
tn

= 1

2

(
||Uh(tn)||2tn + ||Uh(t

+
n )||2tn − ∣∣∣∣Uh(t

+
n ) −Uh(tn)

∣∣∣∣2
tn

)
,

(26)∫
In

(
Uh,

∂Uh

∂t

∣∣∣∣
Y

)
t
dt = 1

2

(
||Uh(tn+1)||2tn+1

− ||Uh(t
+
n )||2tn −

∫
In

(
∇ · wh,U

2
h

)
t

)
,

(27)∣∣∣∣
∫
In

( f ,Uh)t dt

∣∣∣∣ ≤ 1

2μ

∫
In

|| f (t)||2t dt + μ

2

∫
In

||Uh(t)||2t dt . (28)

Substitute all these estimates, and using the coercivity of bilinear form aLPS(Uh(t),
Uh(t)), Eq. (25) becomes,

||Uh(tn+1)||2tn+1
+ ||Uh(t

+
n ) −Uh(tn)||2tn +

∫
In

|||Uh(t)|||2t dt

≤ ||Uh(tn)||2tn + 1

μ

∫
In

|| f (t)||2t dt .

summing over the index n = 0, 1, 2 . . . N − 1, the stability estimate for fully discrete
problem is derived. It can be seen that the higher order dG time discretization is
unconditionally stable that means there is no time step (Δt) restriction. ��
Remark 3 Here we considered the conservative ALE form. For q = 0, dG(0) corre-
sponds to the implicit Euler time discretization. Implicit Euler with stabilization by
SUPG scheme for conservative ALE form is unconditionally stable, while second-
order Crank–Nicolson time discretization gives conditionally stable estimates, see
[20]. In this work, we considered higher order time discretization with dG(q) and LPS
scheme, and it is shown to be unconditionally stable for any q ≥ 0.
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4.2 Error estimate for conservative ALE-LPS form and dG discretization in time

To derive the error estimate, we need the following ALE projection.

ALE projection

Let the ALE projection operator, P : C(H1
0 ; QT ) → Sr ,q be defined as,

Pu(0, x) = u0(x) in Ω0

Pu(tn+1, x) = u(tn+1, x) in Ωtn+1 for n = 0, 1, . . . , N − 1,∫
In

(Pu − u, v)Ωt dt = 0, ∀v ∈ Sr ,q−1(In).

(29)

Since ||u||t is allowed to be discontinuous at nodes tn and from the definition of Pu,
it can be seen that ||Pu||t is also discontinuous at the nodes t = tn .

Approximation properties

We refer proposition (3.2) in [8], for the detailed explanation of following approxi-
mation properties. Now, if At ∈ L∞(In;W 2∞(Ωtn+1)) then,

||(u − Pu)(t)||2t ≤ Cn(Δt)2 j+1
∫
In

∣∣∣∣∣∣∂ j+1
t u(t)

∣∣∣
Y

∣∣∣∣∣∣2
t
dt,

||∇(u − Pu)(t)||2t ≤ Dn(Δt)2 j+1
∫
In

(∣∣∣∣∣∣∂ j+1
t u(t)

∣∣∣
Y

∣∣∣∣∣∣2
t
+∇x

∣∣∣∣∣∣∂ j+1
t u(t)

∣∣∣
Y

∣∣∣∣∣∣2
t

)
dt,

(30)

for j = 0, 1, 2, . . . q, with Cn , Dn depending on the ALE constants An and Bn given
as,

Cn ∝ A3
n + An, and Dn ∝ (1 + M2

n )A6
n + M2

n A
3
n + A2

n,

where Mn = ||Atn→t ||L∞(In ,W 2∞(Ωtn )).

We consider the bilinear form as,

B(Uh, vh) =
∫ tN

0
( f , vh) dt

=
N−1∑
n=0

(
(Uh(tn+1), vh(tn+1))tn+1

− (
Uh(tn), vh(t

+
n )

)
tn

+
∫
In
aLPS (Uh(t), vh)t dt

−
∫
In

(∇ · (whUh), vh)t dt −
∫
In

(
Uh,

∂vh

∂t

∣∣∣∣
Y

)
t
dt
)
. (31)
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We define the mesh-dependent strong norm as,

|||Uh |||2s = ||Uh(tN )||2tN +
∫ tN

0
|||Uh(t)|||2t dt +

N−1∑
n=0

||(Uh(t
+
n )) −Uh(tn))||2tn .

Lemma 3 Let the Assumptions 1 and 2 holds true and τK ∼ O(hK ,t ), let Uh(t) and
u(t) be the solutions of the fully discrete problem (23) and the continuous problem
(8). Moreover, let u0 ∈ Hr+1 and u ∈ H1(Hr+1). Then, the following estimate holds
true

|||Uh − Rh Pu|||s ≤ C(ε1/2 + h1/2)hr
(||u(t)||H1(Hr+1)

)
+ (Δt)q+1||u||Hq+1(H1). (32)

Proof Let ξ = Uh − Rh Pu, the bilinear form can be written as,

B(Uh − Rh Pu, ξ) = B(Uh − Rhu, ξ) + B(Rhu − Rh Pu, ξ),

bounding each term one by one, the first term is

B(Uh − Rhu, ξ) = B(Uh, ξ) − B(Rhu, ξ)

=
∫ tN

0
( f , ξ) dt −

N−1∑
n=0

[
(Rhun+1, ξn+1)tn+1 − (Rhun, ξ

+
n )tn

+
∫
In
aLPS(Rhu, ξ)t dt −

∫
In

(∇ · (wh Rhu), ξ)t dt −
∫
In

(
Rhu,

∂ξ

∂t

∣∣∣∣
Y

)
t
dt

]

=
N−1∑
n=0

(
(u(tn+1) − Rhu(tn+1), ξ(tn+1)) − (u(tn) − Rhu(tn), ξ(t+n ))

−
∫
In

(
u − Rhu,

∂ξ

∂t

∣∣∣∣
Y

)
dt
)
.

Here first we used the definition of Ritz projection equation (14) and then Eq. (8).
Further using integration by parts in time to handle the right hand side time derivative
term, as we worked in (19), the above equation becomes

B(Uh − Rhu, ξ) =
∫ tN

0

((
∂

∂t
(u − Rhu) + (u − Rhu) ∇ · wh

)
, ξ

)
dt .

Now, using Cauchy–Schwarz and Young’s inequality and the fact that the Ritz pro-
jection error is bounded, we have

|B(Uh − Rhu, ξ)| ≤
∫ tN

0

(∣∣∣∣
∣∣∣∣ ∂

∂t
(u − Rhu)

∣∣∣∣
∣∣∣∣ + ||∇ · wh ||∞||u − Rhu||

)
||ξ(t)||

≤ C(ε1/2 + h1/2)hr
(||u(t)||H1(Hr+1)

) ||ξ(t)||. (33)
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The next term can be written as

B(Rhu − Rh Pu, ξ) =
∫ tN

0
aLPS(Rhu − Rh Pu, ξ) dt

−
∫ tN

0
(∇ · (wh(Rhu − Rh Pu)), ξ) dt

−
∫ tN

0

(
Rh(u − Pu),

∂ξ

∂t

∣∣∣∣
Y

)
dt .

Here, we assume that the Ritz projection commutes with theALE projection, hence the
last term vanishes due to the property of projection error. Now using the assumption
that ∇ · wh is bounded, we have

|B(Rhu − Rh Pu, ξ)| ≤
∣∣∣∣
∫ tN

0
aLPS(u − Pu, ξ) dt −

∫ tN

0
(∇ · (wh(u − Pu)), ξ) dt

∣∣∣∣
≤ C ||u − Pu||||ξ || ≤ CΔtq+1||u||Hq+1(H1)||ξ ||.

Thus we have

|||Rhu − Rh Pu|||s ≤ CΔtq+1||u||Hq+1(H1). (34)

Hence, by using the stability estimate and with the definition of |||, |||s-norm with
Eqs. (33), (34), we obtain

|||Uh − Rh Pu|||s ≤ C(ε1/2 + h1/2)hr
(
||u(t)||H1(Hr+1)

)
+ (Δt)q+1||u||Hq+1(H1).

��

Lemma 4 To bound the Ritz projection error, let the Assumptions 1 and 2 holds true
and τK ∼ O(hK ,t ), let u ∈ H1(Hr+1) be the exact solution, then the following
estimate holds

|||Rh Pu − Rhu|||s ≤ c(Δt)q+1/2|u|Hq+1(H1).

|||Rhu − u|||s ≤ c(ε1/2 + h1/2)hr
(||u||L2(Hr+1) + ||u||C(Hr+1)

)
. (35)

Proof Let η = Rh Pu − Rhu = Rh(Pu − u), we write the bilinear form

B(η, η) =
N−1∑
n=0

[
||η(tn+1)||2tn+1

− (η(tn), η(t+n ))tn

+
∫
In

((
−η,

∂η

∂t

∣∣∣∣
Y

)
t
+ aLPS(η, η) − (∇ · (whη), η)t

)
dt

]
.
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By using the stability estimate and with the definition of |||, |||s-norm, the above
equation becomes,

|||η|||2s ≤
N−1∑
n=0

(
1

2
||η(tn+1)||2tn+1

− 1

2
||η(tn)||2tn +

∫
In

|||η(t)|||2dt + ||η(t+n ) − η(tn)||2tn
)

≤
∫ tN

0
|||η(t)|||2dt ≤

∫ tN

0
|||Rh(Pu − u)(t)|||2dt ≤

∫ tN

0
||(Pu − u)(t)||2dt

≤ c(Δt)2q+1|u|2Hq+1(H1)
.

Here we have used the definition of |||, |||s-norm by absorbing the right hand side
terms and the property of Ritz projection (16). Thus we have,

|||Rh Pu − Rhu|||s ≤ c(Δt)q+1/2 |u|Hq+1(H1).

To prove the second relation, we proceed as

|||Rhu − u|||2s = ||(Rhu − u)(tN )||2tN +
∫ tN

0
|||(Rhu − u)(t)|||2 dt

+
N−1∑
n=0

||(Rhu − u)(t+n ) − (Rhu − u)(tn)||2tn .

Since the jump in projection error vanishes, we will have

|||Rhu − u|||s ≤
(∫ tN

0
|||(Rhu − u)|||2ds + ||(Rhu − u) (tN )||2

)1/2

≤ (ε1/2 + h1/2)hr
(||u||L2(Hr+1) + ||u||C(Hr+1)

)
.

��
Theorem 3 (Error estimates for the ALE-LPS form and dG discretization) Let the
discrete form of (2) and the Assumptions 1 and 2 holds true. Further, assume that the
stabilization parameter satisfies τK ∼ O(hK ,t ) . Then the error estimate is given by,

|||Uh − u|||s ≤ (Δt)q+1/2|u|Hq+1(H1)

+(ε1/2 + h1/2)hr
(||u||H1(Hr+1) + ||u||C(Hr+1)

)
. (36)

Proof The proof of the theorem can be followed by using the triangle inequality,

|||Uh − u|||s = |||(Uh − Rh Pu) + (Rh Pu − Rhu) + (Rhu − u)|||s .

Combining the equation from Lemmas (3) and (4) and using the triangle inequality,
proof of the Theorem (3) follows. ��
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5 Numerical results

This section presents the numerical results to support the analysis presented in the
previous sections. We consider four numerical examples to demonstrate the consid-
ered numerical scheme in time-dependent domains. In particular, we triangulate the
domain with the first order finite element Pb

1 projected onto P0 with dG(1) temporal
discretization for all numerical test cases.

We first consider an example with expanding and contracting domain without the
convection term. Even though the convective term b = 0, the ALE formulation will
induce a mesh velocity type convection term. Next, we consider an example to numer-
ically show the convergence order of the scheme. We use the time step as order h,
since dG(1) is of second order in time. In the third example, we consider spatially
varying convective velocity b = (y,−x), to see the overall effect of the convection
term in time-dependent domains. In the last example, we consider a scalar problem
with boundary and interior layers in a time-dependent domain. The numerical solution
obtained with the standard Galerkin and the LPS method are presented.

5.1 Example 1

We consider the scalar equation (1) with ε = 0.01,b = (0, 0), c = f = 0 with the
end time T = 2 and Ω0 := (0, 1)2 as the initial (reference) domain which results in,

∂u

∂t
− 0.01Δu = 0 in (0,T] × Ωt ,

u = 0 on [0,T] × ∂Ωt ,

u(0) = 1600 Y1(1 − Y1) Y2(1 − Y2) in Ω0.

Further, the deformation of the time-dependent domain Ωt is defined by

x(Y , t) = At (Y ) :
{
x1 = Y1(2 − cos(20π t))
x2 = Y2(2 − cos(20π t))

.

In this example, the initial domain is triangulated with 8, 192 cells which results in
16, 641 dofs for Pb

1 finite element space. The computed numerical results for different
time-steps in dG(1) and in Crank–Nicolson with τ0 = 0.05 in stabilization parameter
τK = τ0hK are shown in Fig. 1.

It can be observed that the solution becomes monotone with dG(1) time discretiza-
tion. However, the solution is oscillatory in the Crank–Nicolson time discretization
obtained with a large time-step since Crank–Nicolson is conditionally stable only (see
[20] for detailed explanation). Here, in the case of dG time discretization, we choose
the ALE map to be linear in time thus the Radau quadrature formula can integrate it
exactly in time and hence there are no oscillations in the solution, which supports the
stability estimate derived in Theorem 2.
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(b)(a)

Fig. 1 L2-norm of the solution obtained with conservative ALE-LPS for second order time discretizations
with varying time-steps: a discontinuous Galerkin dG(1), and b Crank–Nicolson

5.2 Example 2

In this examplewe consider the problem (1)with ε = 1, b = (0, 0), c = 0 to show the
convergence order of the LPS-DG numerical scheme. Here, we choose the time step
Δt as order hmin . We consider the unit square Ω0 := {(0, 1) × (0, 1)} as a reference
domain and the computations are performed by successive uniform refinement of the
initial coarse mesh. Further, we triangulate the domain with Pb

1 finite elements, and
the finest level mesh results into 16, 641 dofs. The deformation of the domain is given
by the ALE mapping as

x(Y , t) = At (Y ) :
{
x1 = Y1(1 + 0.5Pt )
x2 = Y2(1 + 0.5Pt )

where,

Pt = 1024 t11 − 2816 t9 + 2816 t7 − 1232 t5 + 220 t3 − 11 t,

is the Chebychev polynomial of first kind. The source term is chosen in such a way
that the exact solution is u(x) = exp(−0.01 t)) sin(πx) cos(π y).

We calculated the L2(0, T ; L2(Ωt )) norm of the error at time T = 1. Let q is the
polynomial order of the finite element basis function in time, then the optimal order
of convergence in L2-norm is q + 1/2. As it can be seen from Fig. 2 that the order of
convergence is approximately 1.5 for dG(1) case, which supports the error estimate
derived in Theorem 3.

Remark 4 In the first two numerical test cases, we considered the zero convection and
zero reaction term to explain the effect of mesh velocity type convection and reaction
terms introduced through conservative ALE scheme. The analysis condition (2) does
not hold in these two examples because the estimates explode with μ (Theorem (2)).
This can be fixed by updating the proof with

∣∣∣∣
∫
In

( f ,Uh)t dt

∣∣∣∣ ≤ 1

2ε

∫
In

|| f (t)||20,t dt + ε

2

∫
In

||Uh(t)||20,t dt .
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Fig. 2 The order of convergence
for the considered Example 2
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by using the Poincare inequality for the last term, it can be combined with left hand
side |||., .|||-norm.

5.3 Example 3

Let Ω0 = (0, 1)2, ε = 10−8, b(x, y) = (−y, x)T , c = 0, ΓN := {0} × (0, 1) and
f = 0 be in (1). On the outflow boundary, we impose the homogeneous Neumann
condition. Further, we prescribe the discontinuous Dirichlet data

u(x, t) =
{
1 if (x, y) ∈ (1/3, 2/3) × {0},
0 else

onΓD . This discontinuousDirichlet data is transported counter-clockwise to the homo-
geneous Neumann outflow boundary. Further, the deformation of the time-dependent
domain Ωt is given by

x(Y , t) = At (Y ) :
{
x1 = Y1(1.125 − 0.125 cos(5π t))
x2 = Y2(1.125 − 0.125 cos(5π t))

Note that the convective velocity is spatially varying and in addition, interior layers
are present in this example. The computed solutions with LPS and dG(1) at different
instance, t = 1.06, 2.05, 2.5 are given in Fig. 3. Since the domain expands and shrinks
with fixed inflow concentration, the concentration is transported in a staggeredmanner.
Nevertheless, spurious oscillations are suppressed in the stabilized solution, see Fig. 4.

5.4 Example 4

In this example, a typical fluid-structure interaction problem that is a flow passing
through a cylinder, which moves with time, is studied. The mesh movement in ALE
mapping is handled using the linear elastic technique [21]. Define a time-dependent
two-dimensional channel
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Fig. 3 Solution of Example 3 with Pb
1 projected onto P0. The stabilization parameter value τ0 = 0.0045

at different instances t = 1.06, 2.05, 2.5
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Fig. 4 Solution of the
Example 3 at the outflow
boundary with Pb

1 projected
onto P0. The stabilization
parameter value is τ0 = 0.0045

Ωt := {(−3, 9) × (−3, 3)}\Ω̄ S
t

that excludes a periodically oscillating (up and down) circular disc Ω S
t , where the

position of the disc, x(Y , t) ∈ Ω S
t , and the reference disc Ω S

0 are given by

x(Y , t) = At (Y ) :
{
x1 = Y1
x2 = Y2 + 0.5 sin(2π t/5),

Ω S
0 :=

{
(Y1,Y2) ∈ R

2; Y 2
1 + Y 2

2 ≤ 1
}

.

Define ΓD := {−3} × (−3, 3) as the inflow boundary and the remaining part ΓN :=
∂Ωt\ΓD as the Neumann boundary. We now solve the transient scalar equation (1)
with ε = 10−8, b = (1, 0)T and c = 0.

We impose zero initial value, the homogeneous Neumann condition on ΓN , and

uD(x1, x2) =
{
1 on ∂Ω S

t ,

0 on ΓD.

A predefined adaptive mesh with a high resolution near the oscillating cylinder is
considered. Nevertheless, the mesh is comparatively coarser away from the cylinder.
The considered domainwith refined grids inwhich simulations are performed is shown
in Fig. 5. For the considered data, there will be a boundary layer on the upstream of the
oscillating circular disc and two interior layers on the downstream of the disc. Since
the solid disc oscillates periodically, the position of the boundary and interior layers
also changes with time.

It can be seen from Fig. 6 that the standard Galerkin solution contains very high
undershoots/overshoots (approximately 14.9% and 12.4%) in the numerical solution.
Further the solution obtained with ALE-LPS at different time instances are given,
see Fig. 7. It can be seen from Fig. 7 that the undershoots/overshoots are suppressed
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Fig. 5 The refined mesh for the simulations of Example 4
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Fig. 6 Standard Galerkin solution for the Example 4 at t = 10 with dG(1) time discretization

almost (around 0.24%), which shows the stabilization effect of the local projection
method in time-dependent domains.

6 Summary

A stabilized finite element scheme based on Local Projection Stabilization (LPS)
with higher order discontinuous Galerkin (dG) discretization in time is analyzed for
the solution of convection–diffusion–reaction problems in time-dependent domains.
One-level LPS, which involves enriched approximation space and discontinuous pro-
jection space is used. The domain movement is handled with ALE formulations. The
stability and convergence estimates are shown. An optimal order error estimate with
conservative ALE formulation and dG in time-dependent domains is derived.

The proposed numerical scheme is validated using four test cases. In the first
example, a unit square which expands and contracts periodically is considered, to see
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Fig. 7 A sequence of ALE-LPS solution of Example 4 obtained with δ0 = 0.1 and dG time discretization
at different instances t = 0.1, 4, 6.3, 10

the effect of ALE mapping and unconditional stable estimates with LPS and dG(1)
discretization. In the next example, we observe the order of convergence with LPS
and dG(1) discretization which confirms the theoretical estimates. Further, a spatial-
dependent convective velocity with interior layers in an expanding and shrinking
domain is considered. The fourth test case shows that the local projection stabilization
scheme with dG in time works very well for convection dominated problems.
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