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Abstract Effects of dynamic contact angle models on the

flow dynamics of an impinging droplet in sharp interface

simulations are presented in this article. In the considered

finite element scheme, the free surface is tracked using the

arbitrary Lagrangian–Eulerian approach. The contact angle

is incorporated into the model by replacing the curvature

with the Laplace–Beltrami operator and integration by parts.

Further, the Navier-slip with friction boundary condition is

used to avoid stress singularities at the contact line. Our

study demonstrates that the contact angle models have

almost no influence on the flow dynamics of the non-wetting

droplets. In computations of the wetting and partially wetting

droplets, different contact angle models induce different

flow dynamics, especially during recoiling. It is shown that a

large value for the slip number has to be used in computations

of the wetting and partially wetting droplets in order to

reduce the effects of the contact angle models. Among all

models, the equilibrium model is simple and easy to imple-

ment. Further, the equilibrium model also incorporates the

contact angle hysteresis. Thus, the equilibrium contact angle

model is preferred in sharp interface numerical schemes.

Keywords Dynamic contact angle �Moving contact line �
Impinging droplet � Finite elements � ALE approach

1 Introduction

A moving contact line is encountered in free surface flows

when the free surface moves in contact with a solid surface.

Liquid droplet spreading and recoiling on a solid substrate

is one of the typical examples of moving contact line

problems. Two main challenges in computational fluid

dynamics (CFD) simulation of free surface flows are the

prescription of the boundary condition on the solid surface,

especially at the moving contact line, and to incorporate the

wetting effects, i.e., the inclusion of the contact angle into

the model equations. This subject has been investigated by

several researchers, see for example, Cox (1986), Dussan

(1976), Gennes (1985), Haley and Miksis (1991), Hocking

(1976), Hocking and Davis (2002), and Huh and Scriven

(1971). For a recent review of numerical modeling and

methods of multiphase flows, we refer to Wörner (2012).

In the earlier studies, the contact angle is imposed as a

boundary condition at the moving contact line in the

lubrication theory approximations, see for example, Haley

and Miksis (1991), Hocking (1992) and the references

therein. However, in CFD simulations of moving contact

line flows, the inclusion of the contact angle is not straight

forward, see for example, Schönfeld and Hardt (2009). In

the volume-of-fluid method (Renardy et al. 2001), the

normal vector of the interface at the contact line is defined

in such a way that the gradient of the volume fraction

coincide with the prescribed contact angle. Alternative to

this approach, an additional force term, which contains the

contact angle, is added in the vicinity of the contact line in

Šikalo et al. (2005). In the level set simulation (Spelt

2005), the contact angle condition is imposed in the

re-distance step of the level set function. In the Lagrangian

finite element simulation of impinging droplets (Fukai

et al. 1995), the contact angle is taken into consideration

while determining the curvature at the contact line. In the

arbitrary Lagrangian–Eulerian simulation of impinging

droplets (Ganesan 2006; Ganesan and Tobiska 2009), the

Laplace–Beltrami operator technique is used to handle the
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curvature term, in which the contact angle has been

incorporated at the contact line integral term.

Even though the contact angle can be incorporated in the

computational models, prescribing its value in computa-

tions is not clear. In general, the angle formed between the

free surface and the liquid–solid interface at the contact

line is conventionally defined as the contact angle in

moving contact line problems. In thermodynamic equilib-

rium state, the contact angle is related to the interfacial

tensions of the free surface r, solid–liquid rsl and solid–

gas rsg through the Young’s equation

r cosðhÞ ¼ rsg � rsl:

The contact angle h in the Young’s equation is referred to as

the static or equilibrium contact angle (he), i.e., h = he. At

the equilibrium state, the equilibrium contact angle he is

unique for the considered gas, liquid and solid material

phases. However, when the contact line moves, the contact

angle deviates from the equilibrium value, and the differ-

ence between the advancing ha and receding hr is referred to

as a contact angle hysteresis. The advancing contact angle

ha is the largest angle just before the spreading starts and the

receding contact angle hr is the smallest angle just before

the recoiling starts. In general, the contact angle that

incorporates the hysteresis is called the dynamic contact

angle hd. The evidence for the dynamic behavior of the

contact angle can be found in experiments, see for example,

Dussan (1979), and Hoffman (1975). Since the dynamic

contact is measured away from the contact line in experi-

ments, it is also referred to as the apparent or macroscopic

contact angle.

In the volume-of-fluid method (Renardy et al. 2001), a

fixed contact angle has been used for moving contact line

problems. In the level set computations of flow with mul-

tiple moving contact lines (Spelt 2005), ha and hr have been

used to impose the contact line velocity. In general, the

dynamic contact angle is prescribed to vary linearly

between ha and hr, when the advancing and receding angles

are used in computations, see for example, Chen et al.

(2009). In the Lagrangian finite element computations of

impinging droplets (Fukai et al. 1995), constant values

have been used for the dynamic contact angle during the

spreading and recoiling stages. In the sharp interface ALE

approach, the equilibrium value has been used for the

dynamic contact angle in computations of 2D (Ganesan

and Tobiska 2005) and 3D-axisymmetric (Ganesan 2006)

impinging droplets.

Recently, the effects of different dynamic contact angle

models on the flow dynamics in the volume-of-fluid sim-

ulation of capillary filling on 2D microchannel have been

evaluated by Saha and Mitra (2009). It has been observed

by the authors that different models have minimal effect

on the meniscus profile. In this paper, we evaluate the

robustness and the influence of different contact angle

models on the flow dynamics in the ALE simulation of an

impinging droplet. The remaining part of the paper is

organized as follows. In Sect. 2, the governing equations of

a 3D impinging droplet are given. In Sect. 3, the variational

form of the equations and the details of the numerical

scheme are recalled briefly. Different dynamic contact angle

models are described in Sect. 4 The numerical results of a

3D axisymmetric droplet deformation on a horizontal solid

surface in Sect. 5 show the influence of different contact

angle models on the wetting diameter and the dynamic

contact angle. Finally, a short summary is given in Sect. 6

2 Mathematical model

We consider a liquid droplet XðtÞ � R
3 of diameter d0

impinging on a horizontal solid surface. In our model, we

neglected the effect of the surrounding gas-phase, and thus

one-fluid case is considered. The sequence of spreading

and recoiling of the droplet on the surface is described by

the time-dependent incompressible Navier–Stokes

equations

ou

ot
þ ðu � rÞu�r � Sðu; pÞ ¼ 1

Fr
e; r � u ¼ 0 ð1Þ

in XðtÞ � ð0; IÞ with the initial condition uð�; 0Þ ¼ 0; the

kinematic and force balancing conditions

u � mF ¼ w � mF; mF � Sðu; pÞ ¼
K

We
� mF

on the free surface CF; and the Navier-slip boundary

condition

u � mS ¼ 0; bðsi;S � Sðu; pÞ � mSÞ ¼ �u � si;S;

for i = 1, 2, on the solid surface CS. In the above

equations, the dimensionless stress tensor Sðu; pÞ for the

Newtonian liquid is given by

Sðu; pÞ ¼ 2

Re
DðuÞ � pI; DðuÞ ¼ 1

2
ðruþruTÞ;

where DðuÞ is the velocity deformation tensor. In the above

equations, u is the fluid velocity, p is the pressure in the

fluid, w is the moving domain velocity, w on CF is the free

surface velocity, t the time, e an unit vector in the opposite

direction of the gravitational force, mF; mS and si;S; si;F are

the unit normal and tangential vectors, respectively, on

their respective surfaces, and I is the identity tensor. The

symbol r denotes the gradient operator, r� denotes the

divergence operator, K denotes the sum of the principal

curvatures and the superscript T denotes the transpose. The

dimensionless numbers (Reynolds, Weber, Froude and

Slip) are given by
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Re ¼ qUL

l
; We ¼ qU2L

r
; Fr ¼ U2

Lg
; b ¼ �lqU

where L is the characteristic length, U the characteristic

velocity, q the density, l the dynamic viscosity and g

the gravitational constant. The unknown numerical slip

parameter el in the slip number is equal to the slip length e
divided by a parameter with the unit kg m-1 s-1, see for

example, Ganesan and Tobiska (2009).

3 Numerical scheme

We use the finite element scheme together with the arbi-

trary Lagrangian–Eulerian approach (ALE-FEM) to solve

the model equations. The detailed features of this finite

element scheme have been presented in Ganesan (2006)

and will not be presented here for brevity. Instead, we

briefly summarize the main ingredients of the numerical

scheme.

3.1 Variational form

Let V :¼ ðH1ðXðtÞÞÞ3 and Q :¼ L2ðXðtÞÞ be the usual

Sobolev spaces. We multiply (1) by test functions v 2 V

and q 2 Q; respectively, and integrate over XðtÞ. After

integrating by parts and incorporating the boundary con-

ditions, the weak form of (1) reads:

For given Xð0Þ;uð0Þ and hd, find ðuðtÞ; pðtÞÞ 2 V � Q

such that

ou

ot
; v

� �
þ aðu; u; vÞ � bðp; vÞ

þ bðq; uÞ ¼ f ðidCF
; vÞ þ cðhd; vÞ; ð2Þ

for all v 2 Vand q 2 Q. Here,

aðû; u; vÞ ¼ 2

Re

Z
XðtÞ

DðuÞ : DðvÞdxþ
Z

XðtÞ

ðû � rÞu � vdx

þ 1

b

Z
CSðtÞ

ðu � si;SÞðv � si;SÞdcS;

bðq; vÞ ¼
Z

XðtÞ

qr � vdx;

f ðidCF
; vÞ ¼ 1

Fr

Z
XðtÞ

e � vdx� 1

We

Z
CFðtÞ

CF
� rvdcF;

cðhd; vÞ ¼
1

We

Z
ft

cosðhdÞv � sSdf;

where ft is the contact line, r is the tangential (surface)

gradient operator and idCF
is an identity mapping. The

dynamic contact angle hd in the above equation has

been incorporated by replacing the curvature K in the

free surface integral with the Laplace–Beltrami operator,

Dð:¼ r � rÞ and then integration by parts, see Dziuk

(1991), Ganesan and Tobiska (2009) for more details.

To track the moving boundary, the variational form of

the Navier–Stokes equation (2) is rewritten into the ALE

form, which reads:

For given Xð0Þ; uð0Þ;wð0Þ and hd, find ðuðtÞ; pðtÞÞ 2
V � Q such that

ou

ot
; v

� �
þ aðu� w; u; vÞ � bðp; vÞ þ bðq; uÞ

¼ f ðidCF
; vÞ þ cðhd; vÞ; ð3Þ

for all v 2 V and q 2 Q:

3.2 Axisymmetric formulation

The considered liquid droplet deformation is axisymmetric,

and thus we derive the 3D-axisymmetric form from the

variational form of the 3D equations. The main advantage

in this approach is that the same equations (2) can be used

for 2D, 3D-axisymmetric and 3D models. Further, we do

not need boundary conditions in cylindrical coordinate

systems, since all boundary conditions are already incor-

porated in the variational form (2).

3.3 Discretization and solution

For the time discretization we use the second order, strongly

A-stable fractional-step-0 scheme (Bristeau et al. 1987;

Rannacher 2004; Turek 1999). The non-linear convection

term is linearized by an iteration of fixed point type. The

meridian domain is triangulated by a boundary resolved

triangular mesh. For the spatial discretization we use the

‘‘inf-sup’’ stable second-order finite element pair P2
bubble/

P1
disc, where the velocity space is enriched with a cubic

bubble function (Crouzeix and Raviart 1973). This finite

element pair guarantees an excellent mass conservation,

since it satisfies the divergence constrain cell-wise. Finally,

the obtained system of linear algebraic equations is solved by

a direct solver. We could use more sophisticated multigrid

solvers. However, constructing a hierarchical mesh during

the remeshing needs special attention. Since the system is

small and sparse in 3D-axisymmetric configuration, we

preferred the direct solver. Nevertheless, a sophisticated

iterative solver is preferred in 3D computations.

3.4 Free surface tracking

In order to find the new shape of the droplet for the next

time step t = tn, we solve first the Eq. (3) and move the

free surface vertices using fluid velocity un. Let Wn
F be the
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resulting displacements of the free surface vertices. Now,

we compute the displacement of the inner vertices by

solving the linear elasticity problem (elastic mesh update

Ganesan and Tobiska 2008, Johnson and Tezduyar 1994)

r � TðWnÞ ¼0 in Xðtn�1Þ;
Wn ¼Wn

F on CFðtn�1Þ;
Wn ¼0 on oXðtn�1Þ n CFðtn�1Þ:

Here, the stress tensor T is given by

Tð/Þ ¼ k1ðr � /ÞIþ 2k2Dð/Þ;

where k1 and k2 are the Lame constants (chosen to be

k1 = k2 = 1 in our numerical tests). Then, the new shape of

the droplet is obtained by moving the inner vertices using the

displacement vector Wn. Also, the mesh velocity is computed

form the displacement vector by wn � W=ðtn � tn�1Þ at time

t = tn in XðtnÞ; which is needed in (3).

Next, we have observed a rolling motion of the droplet

while spreading. It is handled by changing the boundary

description of the edge that arrives from the free surface to

the solid surface. In computations, a few vertices on the

free surface accumulates at a position or the resolution at

some parts of the free surface becomes inadequate after

several time steps. We overcome this challenge by redis-

tributing the free surface vertices using the interpolated

cubic spline when needed. Occasionally, the distortion of

the mesh may become very large when the deformation of

the domain is large. In such situations, we remesh the

domain and interpolate the solution from the old mesh to

the newly generated mesh. Since we use the ALE approach

with the elastic mesh update technique, remeshing and

interpolation are not needed often.

4 Dynamic contact angle

In order to approximate the solution of the Eq. (2), the

dynamics contact angle hd in the contact line integral

c(hd, v) has to be prescribed. Both in theoretical models

and in empirical correlations, it is common to relate the

dynamic contact angle hd to the dynamic capillary number

Cacl and the static contact angle (h0), i.e.,

hd ¼ FðCacl; h0Þ: ð4Þ

Here,

Cacl ¼
ljuclj

r
¼ lU

r
jûclj ¼ Cajûclj;

where Ca(=We/Re) is a fixed capillary number and ûcl is

the nondimensional relative velocity between the solid

surface and the contact line. Apart form the parameters in

the Eq. (4), obviously there are other parameters such as

the surface roughness, the surface inhomogeneities, sur-

factant, polymers, etc., that will influence the dynamic

contact angle, see for example, Gennes (1985) and Kistler

(1993). Thus, the choice of an universal relation for the

dynamic contact angle is almost impossible.

For a perfectly wetting liquid it is obvious to take

h0 = 0, since he& 0. However, the choice of an appro-

priate contact angle value for partially wetting liquids is

not simple. Either the equilibrium contact angle (he) or the

advancing/receding contact angle (ha/hr) or any other rel-

evant value can be used. In this paper we consider the

following four contact angle models. The first model

M1 : hd ¼ he ð5Þ

is the simplest of all models from the implementation point

of view. In this model, it does not mean that the dynamic

contact angle is fixed to the equilibrium value during the

computations. Since the contact angle is included in a weak

sense without imposing any condition on the geometry or

on the contact-line velocity, the movement of the free

surface in computations induces the hysteresis behavior of

the contact angle. Next, we consider

M2 : h3
d ¼ h3

e þ 9 Cacl lnð1=bÞ ð6Þ

as the second model, where b is the dimensionless slip

number. It has been proposed by Hocking (1995) based on

the earlier theoretical model (Hocking 1983). Different

variants of expressions have been proposed for the constant

(9 Ca lnð1=bÞ) in (6), see Hocking (1983). However, the

exponent in (6) is widely believed to be the correct one,

since it is consistent with the Tanner’s power law from

hydrodynamic theory for the spreading of a droplet. Next,

we consider

M3 :
cosðheÞ � cosðhdÞ

cosðheÞ þ 1
¼ tanhð4:96Cacl

0:702Þ ð7Þ

as the third model, and it is one of the first empirical

correlations proposed by Jiang and Slattery (1979). It is

based on the Hoffman’s data (Hoffman 1975) for silicone

oil spread through a glass capillary tube. Finally, we

consider another empirical correlation

M4 :
cosðheÞ � cosðhdÞ

cosðheÞ þ 1
¼ 2

ffiffiffiffiffiffiffiffiffi
Cacl

p
ð8Þ

proposed by Bracke et al. (1989) as the fourth model.

In the empirical correlations (7) and (8), the contact line

velocity ucl, which is a prior unknown, is an input for the

trigonometric function, and it is treated explicitly in com-

putations. Further, these models cannot be used for arbi-

trarily large values of ûcl. To demonstrate their limitations,

the dynamic contact hd obtained from these empirical

models are presented in Fig. 1 as a function of ucl for
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different values of he and Ca. The behavior of the empirical

model (7) is similar in both he = 10� and 100� cases.

Further, hd reaching the maximum value (180�) rapidly

even for a small value of ucl when Ca [ 0.1. It is clear

from Fig. 1 that the empirical model (8) can only be used if

Ca \ 0.1. Further, it should be noted that both these

empirical models have been validated for spreading liquids.

Thus, the validity of these empirical models in the receding

stage of the droplet is not clear. Apart from these contact

angle models, a number of theoretical and empirical con-

tact angle models have been proposed in the literature, see

for example, Cox (1986), Kistler (1993), Hocking (1995),

Bayer and Megaridis (2006) and the references therein.

5 Numerical results

In this section, we study the influence of different contact

angle models on the flow dynamics of an impinging axi-

symmetric liquid droplet on a horizontal surface. We

consider the water and glycerin liquid droplets with dif-

ferent impinging velocities on the glass and wax surfaces.

We use q = 996 kg m-3, l = 10-3 N s m-2 and r =

0.073 N m-1 for the water, and q = 1,220 kg m-3, l = 0.116

N s m-2 and r = 0.063 N m-1 for the glycerin. Further, we take

U = uimp, L = d0 and g = 9.8 m s-2. The corresponding

dimensionless numbers obtained using these parameters are

given in Table 1. We compare the computationally obtained

dimensionless wetting diameter (d/d0) and the contact angle

(hc) with their corresponding experimental values provided

in Šikalo et al. (2005). The first four cases in Table 1 are the

first four experiments in Šikalo et al. (2005), where as case 5

is the seventh experiment. Further, we examine the effect of

different contact angle models on the height of the droplet at

the center, i.e., at r = 0. The contact angle models M2, M3

and M4 are treated explicitly, i.e, the previous time step fluid

velocity is used to calculate Cacl. Further, the slip number (b)

is considered as a numerical model parameter, and the values

of b for different cases are determined by comparing

the computationally obtained wetting diameter with their
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Fig. 1 Dynamic contact angle

as function of contact line

velocity obtained from models

M3 and M4 for different

capillary numbers

Table 1 Dimensionless numbers of different cases used in this work

Case Liquid Re Ca We Fr he b

1 Glycerin 106 7.5 798 700 94 10

2 Glycerin 106 7.5 798 700 15 1,000

3 Glycerin 36 2.6 94 83 94 10

4 Glycerin 36 2.6 94 83 15 1,000

5 Water 4,002 0.023 90 112 100 5

6 Water 4,002 0.023 90 112 10 5

7 Water 2,440 0.014 34 42 135 1

The initial diameter of the droplet in all cases is 2.45 mm
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corresponding experimental observation. We observed that

the b should be large in general for droplets with the small he

in order to match the experimental values.

5.1 Glycerin droplets

In Fig. 2, the computationally obtained dimensionless wet-

ting diameter, the contact angle and the height of the droplet

at r = 0 with different contact angle models are presented

for cases 1 and 2. Note that the flow configurations are same

in both cases but the only difference is the equilibrium

contact angle, i.e., he = 94� and he = 15� in case 1 and case

2, respectively. Since the capillary number is large in these

cases, the empirical contact angle model M4 is not applicable

to these cases. In case 1, the dimensionless wetting diameter

obtained from different contact angle models are in good

agreement with the experimentally observed values during

the spreading stage. However, all three contact angle models

induce different recoiling dynamics, and it can clearly be

seen in Fig. 2b. Since different contact angle models provide

different dynamic contact angle values during the recoiling

stage, the recoiling dynamics is not uniform. During the

spreading, the contact angle hc increases initially, and then

approach the dynamic value given by different contact angle

models. Initially, the increase in the contact angle obtained in

computations is large in comparison with the experimental

values. The rolling motion in the boundary fitted mesh could

be one of the reasons for it. In computations, the contact

angle is evaluated between the solid surface and the first

vertex on the free surface. Therefore, the evaluated contact

angle will be very oscillatory when the droplet rolls, i.e., the

first free surface vertex reaches the solid surface. Initially,

i.e., immediately after the impact, the droplet spreading is

dominated by the rolling motion, and it is the main reason for

the large scattering in the evaluated contact angle in Fig. 2b

and in later cases. Though we do not have experimental

values for the height of the droplet at r = 0, there is almost no

difference among the computed values obtained with these

three contact angle models. The recoiling is not observed in

case 2, since the equilibrium contact angle is small, i.e.,

he = 15�. Further, all computed values are in very good

agreement with the experimental observations in case 2.

Even though the obtained contact angle hc in all cases is far

from the equilibrium value, it approaches the equilibrium

value asymptotically. The height of the droplet at r = 0

obtained with the three contact angle models in case 2 is also

similar.

Next, the dimensionless wetting diameter, the contact

angle and the height of the droplet at r = 0 obtained for

cases 3 and 4 with different contact angle models are

presented in Fig. 3. In case 3, the dimensionless wetting

diameter obtained with different models are in good

agreement with the experimental observations only during

the initial spreading stage. Later, the wetting diameter

obtained with different models are different from each

other. Further, the maximum wetting diameter also differs

between different contact angle models. The numerical

results obtained with model M1 fits closely with the

experimental data. During the recoiling stage, significant

differences are observed in the obtained wetting diameter

among all models. It is more visible in Fig. 3b, where the

computationally obtained contact angle with all models are

presented. In model M3, the droplet recedes quickly in

comparison with other two models. Due to fast receding,

the height of the droplet at r = 0 also increases rapidly, see

Fig. 3c. Even though the equilibrium contact angle he =

94�, the apparent contact angle decreases below 65� in

experiments, whereas the computationally obtained contact

angles with models M1 and M2 are close to the equilibrium

value during the entire receding stage. In case 4, the droplet

receding is not observed, and it is due to the small equi-

librium contact angle he = 15�. In this case, the flow

dynamics of the droplet obtained from the M2 and M3

models are similar, whereas the droplet keeps spreading in

model M1. The obtained contact angle in both M2 and M3

models remain 60�, whereas the contact angle approaches

the equilibrium value in model M1.

Irrespective of the contact angle model, all these calcu-

lated flow parameters should reach a steady state value when

the droplet reaches the equilibrium stage. To examine this,

we consider case 1 and performed the computations for

different contact angle models for a longer period of

dimensionless time. The obtained results are presented in

Fig. 6. The wetting diameter obtained from both the M1 and

M2 models reached the steady state value before the

dimensionless time 125, whereas in M3 it is slowly

approaching the steady state value. In experiments, the

recoiling is very slow and the droplet is far from the equi-

librium stage even at the dimensionless time 125. The

obtained contact angles (hc) in both the M1 and M2 models

have reached the equilibrium contact angle (he) value,

whereas hc is far from the he value in the experiment.

However, the droplet recoiling speed in computations can be

reduced by choosing larger value for b than the used value

b = 1,000. But the purpose of this computations is to show

that the computed flow parameters in all contact angle

models will reach a steady state value when the droplet

reaches the equilibrium state, and it is shown in Fig. 6.

5.2 Water droplets

Figure 4 represents the dimensionless wetting diameter, the

contact angle and the height of the droplet at r = 0 obtained

from computations of cases 5 and 6 with different contact

angle models. The top and bottom rows in Fig. 4 represent the

numerical results for he = 100� and he = 10�, respectively.
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different contact angle models for cases 1 and 2, respectively, are compared with the experimentally observed values
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Fig. 3 Computationally obtained dimensionless wetting diameter (a, d), the contact angle (b, e), the height of the droplet at r = 0 (c, f) with

different contact angle models for cases 3 and 4, respectively, are compared with the experimentally observed values
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In these cases, the capillary number is small (Ca = 0.023).

Hence, we were able to obtain results using M4 model (8) also.

The wetting diameter obtained with all contact angle models

are in good agreement with the experimental values when the

equilibrium contact angle value is large. More interestingly,

computational results agree well with the experimental values

even during the recoiling stage, see the top row in the Fig. 4.

Though the maximum wetting diameter is slightly high in M1

and M2 models, the contact angle and the height of the droplet

at r = 0 obtained in all contact angle models are comparable.

By contrast, the wetting diameters obtained with different

contact angle models are different when small equilibrium

contact angle value is used, see the bottom row in the Fig. 4.

However, the contact angles and the height of the droplet at

r = 0 obtained with different contact angle models are not

varied as in case 3.

Next, the dimensionless wetting diameter, the contact

angle and the height of the droplet at r = 0 obtained from

computations of case 7 with different contact angle models

are presented in Fig. 5. Similar to the previous case, the

capillary number is small (Ca = 0.014) in case 7. Further,

note that the equilibrium contact angle in this case is 135�.

Though the experimental values are not available for this

case, the computationally obtained values with all models

are almost same, at least there is no visible difference

between the wetting diameter curves ( Fig. 5a). The contact

angle and the height of the droplet at r = 0 obtained with

different contact angle models are also in good agreement.

Note that the droplet height at r = 0 becomes zero, i.e.,

‘‘dry out’’ at the center of the droplet in this case.

Overall, the contact angle model M1 agrees well with the

experimental results, and the flow dynamics obtained with

models M1 and M2 are similar. The M4 model is applicable

only for droplets with small capillary numbers. The wetting

diameter, the contact angle (hc) and the height of the droplet at

r = 0 obtained with the M3 model are comparable with the

other models only during the spreading stage. Interestingly,

the flow dynamics obtained with all contact angle models are

similar when the equilibrium contact angle (he) is large, for

e.g., in case 7. In the numerical study, it is observed that the

different contact angle models induce different flow dynam-

ics, especially during the recoiling stage, when the equilibrium

contact angle is small. In the next section, we examine the

influence of equilibrium contact angle further.

5.3 Influence of equilibrium contact angle

In the previous section, we have observed that different

contact angle models induce different flow dynamics when

the equilibrium contact angle is small. To examine it further,

we consider case 3 with three equilibrium contact angle

variants: (1) he = 20, (2) he = 135 and (3) he = 160. The

computationally obtained dimensionless wetting diameter,

the contact angle and the height of the droplet at r = 0 in
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Fig. 4 Computationally obtained dimensionless wetting diameter (a, d), the contact angle (b, e), the height of the droplet at r = 0 (c, f) with

different contact angle models for cases 5 and 6, respectively, are compared with the experimentally observed values
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these three variants are presented in Fig. 7. It is clear from

Fig. 7 (bottom row) that all contact angle models induce

same flow dynamics for non-wetting liquid droplets. How-

ever, this is not the case in the wetting and partially wetting

liquid droplets. In the wetting droplet case (var 1), each

contact angle model induce different flow dynamics, see

Fig. 7 (first row). Since he = 20� in var 1, recoiling is very

unlikely to occur. However, the droplet recoils in the M2 and

M3 models. By contrast, the droplet keeps spreading in the

M1 model. Further, the obtained contact angle (hc) is above

100� and 60� in the M2 and M3 models, respectively,

whereas hc is around 25� in the M1 model. It should be noted

that b = 10 is used in all variants of Fig. 7. Our experiences

show that b has to be increased while decreasing he. Thus,

we perform another computation for the variant 1 with

b = 1,000. The obtained numerical results are plotted in

Fig. 8. It can be seen that all contact angle models induce

almost same flow dynamics for he = 20� variant when b is

chosen as 1,000. This observation clearly shows that b is very

influential on the flow dynamics of the wetting droplets.

Thus, the choice of b is more important apart from the choice

of contact angle model for the wetting and partially wetting

droplets. A small value of b induce different flow dynamics

for different contact angle models. Nevertheless, the flow

dynamics of the droplet obtained with the M1 model appears

to be more physical (no recoiling observed) even for a small

value of slip number.

6 Summary

In this paper, effects of dynamic contact angle models

on the flow dynamics in sharp interface simulation of

impinging liquid droplets on a horizontal surface are

investigated. The finite element simulations are performed

using the arbitrary Lagrangian–Eulerian approach. Four

different contact angle models are considered in this study.

To investigate the considered models, the water and glyc-

erin liquid droplets with different impinging velocities and

equilibrium contact angle are used. The computationally

obtained wetting diameter and the contact angle with dif-

ferent contact angle models are compared with their cor-

responding experimental results. Based on the numerical

studies in the previous sections, we have the following

conclusions. The empirical contact angle model proposed

by Bracke et al. (1989) is applicable only for droplets with
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Fig. 5 Computationally obtained dimensionless wetting diameter (a), the contact angle (b) and the height of the droplet at r = 0 (c) with

different contact angle models for case 7
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small capillary number, say Ca \ 0.1. Next, all four con-

sidered contact angle models induce almost same flow

dynamics in non-wetting droplet simulations, say he [

140�. For the wetting and partially wetting droplets, the

flow dynamics obtained with all contact angle models are

similar when the slip number is high. Even for a droplet
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Fig. 7 Computationally obtained dimensionless wetting diameter (first column), the contact angle (second column) and the height of the droplet

at r = 0 (third column) with different contact angle models for case 3 with he = 20 (top row), he = 135 (middle row) and he = 160 (bottom row)
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with he = 15�, the recoiling phenomenon is observed in the

theoretical (Hocking 1995) and empirical (Jiang and Slat-

tery 1979) models, when the slip number is small. On the

contrary, the recoiling is not observed when the equilib-

rium value is used for the dynamic contact angle. Further,

the results obtained with the equilibrium model are in good

agreement with experimental observations. Thus, we prefer

the equilibrium contact angle model for sharp interface

schemes. Also, we stress that irrespective of a contact angle

model, the influence of the slip number is high on the flow

dynamics of the wetting and partially wetting droplets.

Nevertheless, the effects of contact angle models on the

flow dynamics are negligible when the slip number is

chosen appropriately. In this work, the influence of the slip

number on the flow dynamics is not studied in detail, but

we observed that the slip number has to be large when the

equilibrium contact angle value is small. The appropriate

choice of the slip number for computations of impinging

droplets will be a subject for future research.
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