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Abstract

We show that a non-physical velocity may appear in the finite element calculation of incompressible two-phase flows subjected to an
external local force. There are different sources responsible for this phenomenon: approximation of the incompressibility constraint, the
interface, and the local external force. Furthermore, we demonstrate that this non-physical velocity does not vanish with the expected
order of convergence. We evaluate different concepts and give recommendations for a proper handling of this phenomenon.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Spurious velocities in incompressible flow problems
have been observed in a number of papers, see, e.g., [1–5].
A typical situation is the one-phase Stokes flow

�Duþrp ¼ f ; r � u ¼ 0; in X; u ¼ 0 on CD;

under the influence of an external force. In case that f is the
gradient of a scalar potential, f = $U, the (up to an addi-
tive constant for the pressure) unique solution becomes
u = 0, p = U. This property is in general not preserved by
a discretisation scheme, i.e., the discrete velocities do not
vanish. For a general external force it can be observed that
the ‘gradient part’ may also produce a velocity field which
pollutes the physical flow. This may result in serious prob-
lems in coupled flow problems, e.g., for thermically driven
flows described by the Boussinesq equation [1,3]. Since the
effect cannot be observed in a divergence-free setting, an
early proposal to overcome this difficulty was to enrich
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the pressure space in order to make the remaining velocity
space closer to the divergence-free subspace [1,2,6]. Never-
theless, in [3, Chapter 6] and [7] it has been shown that
spurious velocities can appear in conforming as well as
non-conforming finite element discretisations. An essential
idea developed for a general external force is to calculate an
approximate ‘gradient part’ and project it to the discrete
pressure space [3,4]. For an extension and application of
this idea which is related to the pressure separation in the
Navier–Stokes equations, see also [8].

Local external forces appear in two-phase flows due to
capillary forces at the interface of two immiscible fluids.
In this case there are much more sources for producing
spurious velocities: the approximation of the (unknown)
interface, the approximation of the curvature in capillary
forces, etc. In all these cases the dynamics depend strongly
on the size of spurious velocities near the interface. In par-
ticular, unphysical movements of the interface could be
generated by spurious velocities and could lead to a com-
plete misinterpretation. Therefore, the main focus of this
paper is to study the reasons for spurious velocities in
incompressible flows with interfaces. Although our investi-
gations are focused on finite element discretisations, the
same phenomena can be observed in finite volume meth-
ods, e.g., see [5].
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The paper is organised as follows. In Section 2 we for-
mulate a two-phase flow problem in equilibrium state
which will serve as a test case for spurious velocities. We
will describe finite element discretisations on interface
adapted and non-adapted meshes, respectively. Special
focus will be given to different approaches for discretising
the local external force. We also discuss the birth of spuri-
ous velocities. Section 3 is devoted to the approximation of
discontinuous functions on adapted and non-adapted
meshes in one space dimensions by discontinuous and con-
tinuous functions, respectively. In Section 4 we perform
several numerical tests. We investigate two different inf–
sup stable finite element discretisations of second order
on both adapted and non-adapted meshes. Next, we study
the discretisation error of the approximated normal flux on
the interface. For the best pair of finite elements on inter-
face adapted meshes we finally evaluate the different dis-
cretisation approaches for the local external force. Based
on the observed analytical and numerical results we give
final conclusions.

2. Model problem and its discretisation

2.1. Problem description

We consider a two-dimensional stationary two-phase
problem, that is, two immiscible liquids, occupying X1

and X2, are placed in a closed container X. We assume that
X1 is completely inside the liquid X2, such that X1 has no
contact with the container boundaries. Furthermore, we
neglect gravitational effects and assume that the system is
in equilibrium. The simplest example of this type is given
as follows: Let X ¼ ð�2; 2Þ2 � R2, the container boundary
CD = oX, X1 be the circle with radius 1 around (0,0), the
interface CF = oX1, and X2: = Xn(X1 [ CF), as shown in
Fig. 1. We consider the stationary incompressible two-
phase Stokes equations

�divTðu; pÞ ¼ 0 in X1 [ X2;

divu ¼ 0 in X1 [ X2;

u ¼ 0 on CD;

½juj� ¼ 0 on CF ;

t � ½jTðu; pÞj�n ¼ 0 on CF ;

n � ½jTðu; pÞj�n ¼ rK on CF ;

ð1Þ
Fig. 1. Computational domain.
where u is the velocity, p the pressure, K the curvature of
CF, and r the coefficient of the interfacial tension. The out-
er unit normal vector on CF w.r.t. X1 is denoted by n. Let t

be the tangential unit vector on CF obtained by a counter-
clockwise rotation of p/2 from n, as shown in Fig. 1. The
stress tensor Tðu; pÞ in Xk is given by

Tðu; pÞ ¼ �pIþ 2lkDðuÞ; k ¼ 1; 2

with the dynamic viscosity lk of the respective liquids, the
unit tensor I, and the velocity deformation tensor DðuÞ
whose entries are defined by

DðuÞij ¼
1

2

oui

oxj
þ ouj

oxi

� �
; i; j ¼ 1; 2:

In Eq. (1), [jÆj] denotes the jump across the interface CF. For
a piecewise smooth function w, we define its jump [jwj] by

½jwj� :¼ ðwjX2
ÞjCF
� ðwjX1

ÞjCF
:

Since our primary interest is to study the influence of differ-
ent discretisations on spurious velocity, we use r = l1 =
l2 = 1 in our calculations. Furthermore, the solution of
(1) is analytically known to be

u � 0 in X; p ¼
p=16� 1 in X1;

p=16 in X2:

�
ð2Þ

Here, we have used that K ¼ 1 on CF, the boundary of the
unit circle.

Let V :¼ ðH 1
0ðXÞÞ

2 and Q :¼ L2
0ðXÞ be the usual Sobolev

spaces. The inner product in L2(X), its vector-valued and
tensor-valued versions is denoted by (Æ, Æ), while the inner
product in L2(CF) and its vector-valued version is given
by hÆ, Æi.

A weak formulation of problem (1) is obtained in the
usual way. First, we multiply the partial differential equa-
tions by test functions v 2 V and q 2 Q, respectively, and
integrate over X. Then, after integrating by parts over the
subdomains X1 and X2 separately, we can incorporate the
boundary conditions which are not of Dirichlet type. In
particular, the stress tensor term becomes

�ðdivTðuÞ; vÞ ¼ 2ðDðuÞ;DðvÞÞ � ðp; divvÞ � hv � ½jTðuÞj�; ni
¼ 2ðDðuÞ;DðvÞÞ � ðp; divvÞ � hK; v � ni

Hence, a weak formulation of problem (1) is given by
Find (u,p) 2 V · Q such that

2ðDðuÞ;DðvÞÞ � ðp; divvÞ ¼ hK; v � ni 8v 2 V ;

ðq; divuÞ ¼ 0 8q 2 Q;
ð3Þ

which is a standard saddle-point problem.

2.2. Problem discretisation

We mainly focus to study the effects of different triangu-
lations, (i.e., whether the interface is resolved by the mesh
or not), different finite element discretisations (in particu-
lar, continuous and discontinuous approximation of the
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pressure), and approximation of the curvature on spurious
velocities.

To study the effects of the triangulation, we consider two
families fTðaÞ

h g and fTðnÞ
h g of shape regular triangulations

of X into (possibly curved) quadrilaterals. The family
fTðaÞ

h g contains interface adapted meshes, i.e., the interface
CF is resolved by the mesh. The second family fTðnÞ

h g con-
sists of meshes of rectangles which are aligned to the co-
ordinate axes. Hence, the interface CF cannot be resolved
by these triangulations. For both families, a typical repre-
sentative is shown in Fig. 2.

Furthermore, to study the effects of different finite ele-
ment discretisations, two different types of discretisations
which differ in their pressure approximations will be con-
sidered on triangulations of both families fTðaÞ

h g and
fTðnÞ

h g. The Taylor–Hood element Q2/Q1 uses a continu-
ous pressure approximation while the element Q2=P disc

1

approximates the pressure by discontinuous functions. In
both cases, the spaces which are used for approximating
the velocity and the pressure are denoted by Vh and Qh,
respectively. Note that both methods are conforming since
we have Vh � V and Qh � Q. Furthermore, both discretisa-
tions fulfil the inf–sup stability condition, i.e., there exists a
positive constant b independent of the discretisation
parameter h such that

inf
qh2Qh

sup
vh2V h

ðdivvh; qhÞ
jvhj1kqhk0

P b
holds true, see [9,10].
In the case of the interface adapted meshes from fTðaÞ

h g,
two ways of interface representations are considered. For
the first one, we assume that the interface is given only
by the straight sides of the quadrilaterals at the interface
CF, while the second approach uses a second order approx-
imation of the interface by isoparametric elements in order
to take care of the curved interface. Since both the linear
and second order approximations of the interface CF are
not smooth enough to calculate the curvature by an explicit
Fig. 2. Adapted (left) and non-adapted (rig
formula, additional tools are needed to handle the curva-
ture K.

To study the effects of different curvature handling tech-
niques, we shall consider three approaches for the curva-
ture term hK; v � ni on the right-hand side of the first
equation in (3). For the first one, we use the fact that the
curvature K on the interface CF of the unit circle is known
to be 1.

However, in many practical applications, the interface
position is not explicitly known, especially in instationary
problems. Hence, the calculation of the exact curvature is
not possible. Thus, we consider as a second approach the
often used interpolated cubic spline to get an approximated
curvature. The interpolated cubic spline is constructed
from the discretised interface CF. For the bilinear case,
we just use the vertices on CF, while for the isoparametric
case, for each curved edge its midpoint which lies directly
on CF is additionally taken into account.

A third way to get rid of calculating the curvature is to
use the Laplace–Beltrami operator for the curvature and
then apply the integration by parts to the Laplace–Beltrami
operator over the interface CF. This technique of reducing
the order of differentiation associated with the curvature
term had already be employed in a paper by Ruschak
[11] in the context of the finite element simulation of the
surface tension dominated flows. Its formulation by means
of the Laplace–Beltrami operator goes back to Dziuk
[12,13] and was also used by Bänsch [14,15]. We will
describe this approach which is based on differential geom-
etry in more detail. Let U be an open set such that CF � U.
For a function f : U ! R we define its tangential deriva-
tive $f as

rf :¼ rf � ðn � rf Þn:

By denoting dif :¼ ($ f)i = oif � (n Æ $f)ni, i = 1, . . . ,d, the
Laplace–Beltrami operator D applied to f is given by

Df :¼
Xd

i¼1

diðdif Þ:
ht) meshes together with interface CF.
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Note that both the tangential derivative and the Laplace–
Beltrami operator need formally values of f on U and not
only on CF, but the results depend only on the restriction
of f to CF. For vector-valued functions, the above defini-
tions are applied component-wise. Since CF is closed, the
integration by parts

hf ;Dgi ¼ �hrf ;rgi

holds true on CF for f 2 C2
0ðUÞ and g 2 C2ðUÞ, see [16].

Furthermore, we have

DidCF ¼Kn

where idCF : CF ! CF is the identity mapping on CF, see
[16]. Hence, the curvature term hK; v � ni can be replaced
by �hridCF ;rvi. Note that in this approach, only first or-
der derivatives are needed to handle the curvature term.

The line integrals which occur for all meshes and differ-
ent types of discretisations and different handling of the
boundary were evaluated by means of an 11-point Gauss-
ian quadrature formula which is exact for polynomials up
to order 21.
2.3. Birth of spurious velocities

Since the weak solution of (3) is (u,p) = (0, p), the fluid is
in rest. We would like to have a numerical method which
preserves this property, i.e., uh = 0 should hold.

Let us introduce the spaces W and Wh of divergence-free
and discretely divergence-free functions, respectively:

W ¼ fv 2 V : ðq; divvÞ ¼ 0 8q 2 Qg;
W h ¼ fvh 2 V h : ðqh; divvhÞ ¼ 0 8qh 2 Qhg:

The problem (3) is equivalent to the following weak formu-
lation in the space W of divergence-free functions:

Find u 2W such that

2ðDðuÞ;DðvÞÞ ¼ 0 8v 2 W ;

since the boundary integral on the right-hand side vanishes
due to the divergence theorem. Furthermore, the solution
of this problem is u = 0 due to Korn’s inequality and the
homogeneous boundary conditions. If Wh �W would hold
then the approximation of the curvature term is not needed
and the discrete problem results in

Find uh 2Wh such that

2ðDðuhÞ;DðvhÞÞ ¼ 0 8vh 2 W h

with the solution uh = 0. This is just what we wanted,
namely u = 0 results in uh = 0. However, in general it is
expensive to construct divergence-free finite elements. For
instance, one could choose the curl of C1-elements.

Now we turn to the realistic situation in which
Wh 6� W. After discretising (3) in Vh · Qh, our discrete
problem reads:
Find (uh,ph) 2 Vh · Qh such that

2ðDðuhÞ;DðvhÞÞ � ðph; divvhÞ ¼ hKh; vh � ni 8vh 2 V h;

ðqh; divuhÞ ¼ 0 8qh 2 Qh:

ð4Þ

Here, the notation Kh has been used to indicate that the
curvature term might be approximated in one of the ways
described in Section 2.2.

In the case where the pressure solution p from (3) is in
the discrete pressure space Qh and the curvature term is
exactly evaluated, we get by using u � 0 and (3) with v = uh

2kDðuhÞk2
0 ¼ hKh; uh � ni ¼ hK; uh � ni ¼ �ðp; divuhÞ ¼ 0;

ð5Þ

i.e., uh = 0 holds true due to Korn’s inequality which is
applicable since Vh � V. However, in general we have
p 62 Qh or approximations of the curvature term are used.
Then, the discrete solution uh does not vanish identically,
instead we have the error bound

juhj1 6 C inf
qh2Qh

kp� qhk0 þ sup
vh2V h

jhKh; vh � ni � hK; vh � nij
jvhj1

� �
;

ð6Þ

where the second term is a consistency error introduced by
the approximation of the curvature term. Thus, we see that
the size of these spurious velocities depend on the approxi-
mation properties of both the pressure and the curvature
term.

3. Approximation of discontinuous, piecewise smooth
functions

For flow problems with interfaces, the pressure can exhi-
bit jumps as it is the case in our test problem. In the follow-
ing, we shall consider discontinuous approximations of
functions which are only piecewise smooth on jump-
adapted or jump-non-adapted meshes in one space dimen-
sion. The simplest example of a discontinuous, piecewise
smooth function is f : ð�1;þ1Þ ! R given by f(x) =
sign(x).

3.1. Discontinuous approximations on non-adapted meshes

Let P0 denote the space of piecewise constant functions
on (�1,1). Let us assume that the jump of f at x = 0
appears in the cell I = (�a,b), a, b > 0. Then, the best
approximation uh 2 P0 of f is given by

uhðxÞ ¼
b� a
aþ b

; x 2 I ; uhðxÞ ¼ f ðxÞ otherwise:

Hence, the error estimate

inf
gh2P 0

kf � ghk0 ¼ kf � uhk0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
4ab

aþ b

r
ð7Þ

is obtained. Since h = a + b, a; b ¼ OðhÞ we have at least
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inf
gh2P 0

kf � ghk0 ¼ Oð
ffiffiffi
h
p
Þ:

Moreover, from (7) we see that in order to recover the opti-
mal first order approximation for smooth functions, we
have to resolve the jump by the mesh such that the shortest
distance from the jump to a node of the mesh is of order 2,
shortly

minða; bÞ ¼ Oðh2Þ:

Let us consider now the space P disc
1 of discontinuous, piece-

wise linear functions. The jump of f at x = 0 is assumed
again to appear in the cell I = (�a,b), a, b > 0. Now, the
best approximation uh 2 P disc

1 of f is given by

uhðxÞ ¼
12abxþ ðb� aÞða2 � 4abþ b2Þ

ðaþ bÞ3
x 2 I ;

f ðxÞ otherwise;

8><
>:

which results in

inf
gh2P disc

1

kf � ghk0 ¼ kf � uhk0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4abða2 � abþ b2Þ

ðaþ bÞ3

s
: ð8Þ

Again, we get at least

inf
gh2P 1

kf � ghk0 ¼ Oð
ffiffiffi
h
p
Þ:

Now, in order to recover the optimal second order approx-
imation for smooth functions, we see from (8) that we have
to resolve the jump by the mesh much more accurate,
namely

minða; bÞ ¼ Oðh4Þ:
3.2. Continuous approximations on adapted and non-adapted

meshes

In this section, we study the approximation of discontin-
uous functions by means of continuous functions. Let us
first consider the case of a mesh which is not adapted to
the jump of the function which should be approximated.
Since the space P con

1 of continuous, piecewise linear func-
tions is a subspace of the space P disc

1 of discontinuous,
piecewise linear functions we have

inf
gh2P con

1

kf � ghk0 P inf
gh2P disc

1

kf � ghk0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4abða2 � abþ b2Þ

ðaþ bÞ3

s
:

Hence, we conclude that for getting the optimal second or-
der approximation we have to resolve the jump by the mesh
such that the shortest distance from the jump to a node of
the mesh is of order 4, shortly

minða; bÞ ¼ Oðh4Þ:

Now assume that a mesh node coincides with the position
of the jump at x = 0. Let the two neighbouring elements be
(�a, 0) and (0, b). Furthermore, we set I = (�a,b). A short
calculation gives
inf
gh2P con

1

kf � ghk0 P inf
gh2P con

1

kf � ghk0;I ¼
ffiffiffiffiffiffiffiffiffiffiffi

ab
aþ b

r
¼ Oð

ffiffiffi
h
p
Þ

with the best local approximation

uhjIðxÞ ¼

3bx
aðaþ bÞ þ

b� a
aþ b

if x < 0;

3ax
bðaþ bÞ þ

b� a
aþ b

if x > 0:

8>><
>>:

This is even worse, showing that one should definitely
avoid continuous approximations for discontinuous, piece-
wise smooth functions also in the case that the discontinu-
ities are resolved by the mesh.

4. Numerical studies

4.1. Influence of the discretisation on spurious velocity

In this section, we will compare the numerically com-
puted solutions for velocity and pressure of the different
discretisations on the different meshes which are described
in Section 2.2. We consider four cases

Case 0: isoparametric Q2=P disc
1 on adapted meshes with

given curvature,
Case 1: isoparametric Q2/Q1 on adapted meshes with given

curvature,
Case 2: Q2/Q1 on non-adapted meshes with given

curvature,
Case 3: Q2=P disc

1 on non-adapted meshes with given
curvature,

in our computations. The computational meshes are
obtained by successively refining initial coarse meshes.
The meshes generated after two refinement steps are shown
in Fig. 2. Note that for the family fTðaÞ

h g of interface
adapted meshes, the interface CF is taken into account dur-
ing refinement by putting the newly generated midpoints of
interface edges directly on CF instead of putting them just
on the straight edge.

Computations were performed up to level 7. The discret-
isations were solved by using the multiple discretisation
multi-level solver, see [17]. For refinement level 4–7, the
number of degrees of freedom for all four cases are given
in Tables 1 and 2. The computations were carried out with
the code MooNMD, see [18].

The modulus of the spurious velocity and the pressure for
case 1 are shown in Fig. 3. The arrows in the left pictures
indicate the direction of the spurious velocity only while
the colour corresponds to its magnitude. Furthermore, we
see from Fig. 3 that the pressure is piecewise constant in
regions away from CF. Fig. 4 shows the spurious velocities
for case 2 and 3. The pressure pictures are not shown since
the behaviour of the pressure in the cases 2 and 3 is very sim-
ilar to the case 1. In the cases 1–3, the spurious velocities
occur only near the interface region, see Figs. 3 and 4. Even
in case 1 where the interface is resolved by the mesh, spurious



Table 1
Degrees of freedom for velocity and pressure in case 0 and 1

Level Case 0 Case 1

Velocity Pressure Total Velocity Pressure Total

4 18,562 6912 25,474 18,562 2337 20,899
5 73,986 27,648 101,634 73,986 9281 83,267
6 295,426 110,592 406,018 295,426 36,993 332,419
7 1,180,674 442,368 1,623,042 1,180,674 147,713 1,328,387

Table 2
Degrees of freedom for velocity and pressure in case 2 and 3

Level Case 2 Case 3

Velocity Pressure Total Velocity Pressure Total

4 18,818 2401 21,219 18,818 6912 25,730
5 74,498 9409 83,907 74,498 27,648 102,146
6 296,450 37,249 333,699 296,450 110,592 407,042
7 1,182,722 148,225 1,330,947 1,182,722 442,368 1,625,090

Fig. 3. Spurious velocity (left) and pressure (right) in case 1.

Fig. 4. Spurious velocities in case 2 (left) and case 3 (right).
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velocities occur due to the continuous pressure approxima-
tion which is not capable to catch the pressure jump on the
interface CF, see Fig. 3. The results for the case 0 are not pre-
sented here since the velocity is numerically zero for this case,
i.e., no spurious velocities are generated.

The velocity error in the L2-norm and the obtained order
of convergence for the cases 1–3 are presented in Fig. 5. The
velocity error in the H1-semi norm together with the corre-
sponding convergence order is shown in Fig. 6. Further-
more, Fig. 7 gives the pressure error in the L2-norm and
the associated order of convergence. The velocity errors in
the cases 1 and 2 (continuous pressure approximation) are
slightly larger in comparison to case 3 (discontinuous pres-
sure approximation on non-adapted meshes). An interesting
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Fig. 5. Velocity error in L2-norm (left
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10
4

10
5

10
6

10
–2

10
–1

10
0

number of unknowns

er
ro

r 
in

 L
2

– 
no

rm
 

case 1
case 2
case 3

Fig. 7. Pressure error in L2-norm (lef
observation is that the velocity error in case 1 (interface is
resolved) is not better than in the cases 2 and 3. Among these
three considered cases, the velocity error in case 3 (discontin-
uous pressure approximation on non-adapted meshes) is
considerably smaller. But among all considered cases, the
case 0 gives the best result which is almost exact. Since the
curvature term is handled exactly here, the only source for
a velocity error is the approximation property of the pressure
space, compare (6). In the previous section we have shown
that the error for the best approximation of discontinuous
functions is of order Oð

ffiffiffi
h
p
Þ in the cases 1–3. Using (6), this

gives also a convergence order of 1/2 in the H1-semi norm
for the velocity. This is confirmed by our numerical results,
see the right picture in Fig. 6.
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Fig. 8. Modulus of the normal flux through the interface CF (left) and order of reduction (right).
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4.2. Normal flux at the interface

Applying the divergence theorem to the domain X1, we
get from the incompressibility constraint in Eq. (1) a zero
normal flux on the interface CF. In order to check this con-
dition also for the obtained discrete velocities, we calculate
the discrete normal fluxes for all four considered cases.
Since there are no spurious velocities in case 0, the normal
flux is numerically zero. The discrete normal fluxes for the
cases 1–3 are presented in Fig. 8. The normal flux for the
case 1 is larger than for the cases 2 and 3. Case 2 behaves
slightly better than case 1 but the case 3 (discontinuous
pressure approximation on non-adapted meshes) is roughly
one order of magnitude better than the case 1.

4.3. Influence of curvature handling techniques on spurious

velocity for non-isoparametric and isoparametric elements

For the considered problem, the discontinuous pressure
approximation on interface adapted meshes gives the best
results. Now, we want to study the influence of the bound-
ary representation. To this end, we consider bilinear (non-
isoparametric) and the isoparametric reference mappings.
The corresponding discretisations are denoted by Q2=P disc

1

and iso� Q2=P disc
1 .

To study the influence of the curvature approximation
on both the bilinear and isoparametric discretisations, we
consider the following three variants
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Fig. 9. Velocity error in L2-norm (left) and convergence order (right) on
var 0: given curvature j = 1,
var 1: calculating the curvature from the interpolated

cubic splines,
var 2: integration by parts of the Laplace–Beltrami

operator,

which are described in Section 2.2. As discussed earlier, the
velocity error for both the bilinear and isoparametric cases
of variant 0 is numerically zero and hence not presented
here. The velocity error in the L2-norm and the associated
order of convergence for the variants 1 and 2 for both the
bilinear and isoparametric cases are presented in Fig. 9.
The velocity error in the H1-semi norm and the obtained
order of convergence are presented in Fig. 10. For the bilin-
ear case, variant 2 (integration by parts in Laplace–Bel-
trami operator) gives in comparison with variant 1
(interpolated cubic spline) much larger velocity errors in
both the L2-norm and the H1-semi norm, see left pictures
in Figs. 9 and 10. Furthermore, the convergence orders
for variant 2 are always 2 smaller than the orders for var-
iant 1, see right pictures in Figs. 9 and 10. In the H1-semi
norm, the convergence order reduces to 1/2, see Fig. 10.
The only reason for this bad behaviour is the poor approx-
imation of the curvature term since the pressure approxi-
mation is sufficiently good, see (6). However, for the
isoparametric case the velocity errors in the variants 1
and 2 are similar and the convergence orders are same
for both the variants. These numerical results indicate that
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any of the considered variants can be used for the isopara-
metric case but for the non-isoparametric case the variant 1
which is based on the interpolated cubic spline should be
preferred.
5. Conclusions

The solutions of two-phase flow problems exhibit in
general reduced regularity properties across the interface.
This may lead to a reduction of convergence order when
the mesh does not resolve the interface. That this really
happens has been demonstrated in the one-dimensional
case analytically by studying the best approximation of a
discontinuous function in L2. In the two-dimensional case
we see this reduction effect numerically for a two-phase
model problem. Moreover, we have shown that for contin-
uous, piecewise linear pressure approximations the inter-
face resolution by the mesh is not sufficient to get the
expected convergence orders. Discontinuous, piecewise lin-
ear pressure approximations on interface adapted meshes
behave much better, they show the expected convergence
order: in our model problem the error is practically zero.
If the interface is not sufficiently resolved by the mesh then
the convergence order of discontinuous, piecewise linear
approximations reduces from two to one-half.

Since our discrete solutions are only discretely diver-
gence-free but not divergence-free, spurious velocities are
observed which are mainly concentrated in the neighbour-
hood of the interface. This leads to a non-zero flux at the
interface although our test example has zero flux along
the interface. Note that the precise calculation of the veloc-
ity field close to the interface is extremely important in
moving free boundary problems. Indeed, in the ALE (Arbi-
trary Lagrangian–Eulerian) approach the position of the
free boundary at the next time step is determined from
the kinematic condition that the normal velocity of the
boundary is equal to the normal component of the fluid
velocity. When using a level set method, the movement of
the level set function depends strongly on the approxi-
mated velocity field. Thus, spurious velocities should be
as small as possible.

For suppressing spurious velocities caused by the dis-
cretisation of local external forces two aspects are impor-
tant: the accurate approximation of the curvature and the
free boundary. For a given external force (curvature
K ¼ 1) we practically do not observe any error indepen-
dent of taking non-isoparametric or isoparametric finite
elements. However, in practise one has to find the external
forces as parts of the problem. Then, the calculation of the
curvature from a cubic spline approximation of the free
boundary works well in both the non-isoparametric and
isoparametric case. However, the Laplace–Beltrami
approach requires the use of isoparametric finite elements
to avoid a drastic reduction of the convergence order.

Summarising, in two-phase flows we recommend to use
discontinuous pressure approximations and isoparametric
finite elements of higher (at least second) order to approx-
imate the interface. In the two-dimensional case, the han-
dling of the curvature seems to be a matter of taste
because the cubic spline approximation of the free bound-
ary requires only the solution of a tridiagonal system of lin-
ear equations. However, in the three-dimensional case, the
introduction of the Laplace–Beltrami operator could be
advantageous.
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