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a b s t r a c t 

A stabilized finite element scheme is developed for computations of buoyancy driven 3D-axisymmetric viscoelas- 

tic two-phase flows with insoluble surfactants. The numerical scheme solves the Navier–Stokes equations for 

the fluid flow, Giesekus constitutive equation for the effects of viscoelasticity and simultaneously an evolution 

equation for the surfactant concentration on the interface. The interface is tracked by the coupled arbitrary 

Lagrangian–Eulerian (ALE) and Lagrangian approach. The interface-resolved moving meshes allow accurate in- 

corporation of the interfacial tension force, Marangoni forces and the jumps in the material properties. Further, 

the tangential gradient operator technique is used to handle the curvature approximation in a semi-implicit man- 

ner. An one-level Local Projection Stabilization (LPS), which is based on an enriched approximation space and 

a discontinuous projection space, where both spaces are defined on a same mesh is used to stabilize the model 

equations. The stabilized numerical scheme allows us to use isoparametric second order conforming finite ele- 

ments enriched with cubic bubble functions for velocity and viscoelastic stress, second order finite elements for 

surfactant concentration and discontinuous first order finite element for pressure. A number of computations are 

performed for a Newtonian drop rising in a viscoelastic fluid column and a viscoelastic drop rising in a Newtonian 

fluid column with insoluble surfactants on the interface. The influence of the Marangoni number, initial surfactant 

concentration and Peclet number on the dynamics of the rising drop are analyzed. The numerical study shows 

that a viscoelastic drop rising in a Newtonian fluid column develops an indentation around the rear stagnation 

point with a dimpled shape without insoluble surfactants. The presence of insoluble surfactants forces the drop to 

rise slowly but the drop at the tail end is pulled up more. However, a Newtonian drop rising in a viscoelastic fluid 

column experiences an extended trailing edge with a cusp-like shape without insoluble surfactants. The presence 

of surfactants pulls the tail end of the drop up slightly and makes the tail flatter with/without small undulations 

depending on the magnitude of the surfactant concentrations. 
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. Introduction 

Surfactants, also known as surface active agents are widely used in
umerous scientific, engineering and biomedical applications such as
nhanced oil recovery, drug delivery, flow-focusing devices, lung me-
hanics, polymer blending and plastic production. Surfactants can play
n important role in several physical phenomena such as vortex pair in-
eraction, fingering, tip-streaming, drop break-up and coalescence. The
resence of insoluble surfactants on the interface between two immis-
ible liquids alters the flow dynamics significantly. Precisely, surfac-
ant molecules effectively act as a buffer zone between smaller fluid
olecules on either side of the interface, altering the strength of the

ntermolecular forces and thereby lowering the surface tension by an
mount that depends on the local surfactant concentration. The trans-
ort of surfactants along the interface depends on the local flow be-
aviour and thus, it results in non-homogeneous distribution of sur-
actant along the interface. The non-uniform surfactant concentration
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nduces gradients in interfacial tension, which again gives rise to tan-
ential forces along the interface through the Marangoni convection. In
ddition to the presence of insoluble surfactants, viscoelasticity plays
 prominent role in the aforementioned applications. The fundamen-
al understanding of the simultaneous effects of viscoelasticity and sur-
actants in multiphase flows is crucial as these effects directly impact
he design and optimization of engineering processes subjected to com-
lex interfacial flow dynamics, especially in the field of enhanced oil
ecovery [1–3] . Therefore, scientific studies on a single drop rising in
 fluid column due to buoyancy with viscoelastic and surfactant effects
re highly demanded. 

Mathematical model describing interfacial flows with viscoelastic ef-
ects consist of the Navier–Stokes equations and a viscoelastic consti-
utive equation. Oldroyd-B [4] , Giesekus [5] , finitely extensible non-
inear elastic (FENE-P [6] , FENE-CR [7] ), Phan-Thien-Tanner (PTT)
8] and eXtended Pom-Pom (XPP) [9] are the commonly used consti-
utive models in the literature for simulating viscoelastic flows. In this
 Padmanabhan), sashi@iisc.ac.in (S. Ganesan). 
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Nomenclature 

𝛼 Giesekus mobility factor 
𝛽 Newtonian solvent ratio 
ΓAxial Symmetry of axis 
ΓD Dirichlet boundary 
ΓF Interface between two liquids 
Γ̂𝐹 Reference domain for interface 
ΓN Neumann boundary 
𝛿t Time step length 
𝜀 Ratio between total viscosity of outer and inner phases 
k Sum of principal curvatures 
k h Fluctuation operator 
𝜆 Relaxation time of polymers 
𝜇0 Total dynamic viscosity 
𝜇s Newtonian solvent viscosity 
𝝂F Unit outward normal vector on interface 
𝝂N Unit outward normal vector on Neumann boundary 
𝜋h Global projection operator 
𝜋K Local projection operator 
𝜌 Density of fluid 
𝜎ref Interfacial tension corresponding to reference surfactant 

concentration 
𝝉N Unit tangential vector on Neumann boundary 
𝝉p Viscoelastic conformation stress 
𝜙 Surfactant concentration space test function 
Ψ Viscoelastic stress space test function 
Ω Computational domain 
Ω0 Initial computational domain 
Ω1 Inner fluid computational domain 
Ω2 Outer fluid computational domain 
Ω̂ Reference computational domain 
 ℎ Computational mesh 
𝔻 Deformation tensor 
𝕀 Identity tensor 
ℙ 𝝂𝐹 

Projection operator onto the tangential plane of ΓF 

𝕊 Γ𝐹 Interface stress tensor 
𝕋 Stress tensor of fluid 
∇ Γ𝝂𝐹 

Interface gradient operator on ΓF 

id Identity mapping 
tr Trace 
Fr Froude number 
Pe Peclet number 
Re Reynolds number 
We Weber number 
Wi Weissenberg number 
g Gravitational constant 
h c Height of bulk fluid column 
h K Diameter of a cell 
h 0 Initial mesh size 
p Pressure 
q Pressure space test function 
t Time 
C Surfactant concentration 
C 0 Initial surfactant concentration 
C ∞ Characteristic surfactant concentration 
C ref Reference surfactant concentration 
D Diameter of the drop at t = 0 
𝐷|𝑟 =0 Diameter of the drop at the symmetry axis 
D h Discontinous projection space 
D s Surfactant diffusivity 
E Marangoni number 
E elastic Elastic energy in the drop 
m  

62 
E kinetic Kinetic energy in the drop 
G Surfactant concentration space 
K Cell 
�̂� Reference cell 
I Given end time 
L Characteristic length 
Q Pressure space 
R Gas constant 
S Viscoelastic stress space 
T Absolute temperature 
U Velocity along interface 
U ∞ Characteristic velocity 
V Velocity space 
Y h Approximation space 
e Unit vector in the direction of gravitational force 
u Fluid velocity 
v Velocity space test function 
w Domain velocity 

tudy, we consider the Giesekus constitutive model as it models shear-
hinning and elasticity together. In addition, one needs to solve the sur-
ace convection-diffusion equation [10,11] for the surfactant concentra-
ion on the interface. 

Simulation of viscoelastic two-phase flows with insoluble surfactants
s a challenging problem in computational rheology. An accurate track-
ng/capturing of the moving interface is extremely important as the so-
ution of surface convection-diffusion equation for the surfactant con-
entration depends on the precise position of the interface. Further, the
umerical scheme should be able to handle jumps in the material proper-
ies (viscosity, density, relaxation time of polymers) across the interface.
oreover, precise inclusion of the interfacial tension force, Marangoni

ffects and the local curvature on the interface is challenging. In ad-
ition, the scheme should be free from spurious velocities and should
onserve both the fluid and surfactant mass well. The presence of vis-
oelasticity in the fluid increases the complexity. At high Weissenberg
umbers, the constitutive equation is highly advection dominated which
ay induce both global and local oscillations in the numerical solution.

t necessitates the use of an accurate and robust stabilized numerical
cheme to avoid oscillations in the numerical solution. 

A number of numerical schemes based on the popular interface
apturing/ tracking methods such as volume-of-fluid [12,13] , level
et [14] , front-tracking [15,16] , boundary integral [17–19] , immersed
oundary [20–22] , diffuse interface [23,24] , arbitrary Lagrangian–
ulerian [25] , embedded boundary [26,27] and hybrid [28,29] meth-
ds have been proposed in the literature for interfacial flows
ith surfactants. Also, a meshfree smoothed-particle hydrodynamics
ethod [30] has been used for computations of interfacial flows with

urfactants. In the context of interfacial flows with viscoelastic ef-
ects, numerous numerical schemes based on volume-of-fluid [31–33] ,
evel set [34,35] , phase-field [36–38] , front-tracking [39–44] , arbitrary
agrangian–Eulerian [45] and boundary integral [46,47] methods have
een proposed in the literature. However, to the best of the authors’
nowledge, numerical studies on interfacial flows with simultaneous ef-
ects of viscoelasticity and insoluble surfactants has never been reported
n the literature. 

In this paper, we present an accurate and efficient sharp inter-
ace numerical method based on the coupled arbitrary Lagrangian–
ulerian (ALE) and Lagrangian approach for computations of a buoy-
ncy driven 3D-axisymmetric drop rise in a fluid column with simulta-
eous effects of viscoelasticity and insoluble surfactants. The ALE ap-
roach is used for the Navier–Stokes and viscoelastic Giesekus consti-
utive equations, whereas for the surface convection-diffusion equation
e use the Lagrangian approach. Since the interface is resolved by a
oving mesh, the collection of edges and cells which approximate the
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Fig. 1. Computational model of buoyancy driven two-phase viscoelastic flow 

with insoluble surfactants on the interface. 
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nterface can be used at the same time as the computational domain for
he surface convection-diffusion equation. Further, the interfacial force
nd the different material properties in both the phases can be included
ery accurately in the ALE approach. Moreover, the spurious velocities
hich might arise due to the approximation errors of the pressure and

he interfacial force, can be suppressed by using this approach [48] . Fur-
her, we replace the curvature by the tangential gradient operator and
pply integration by parts to reduce one order of differentiation asso-
iated with the curvature. This technique allows to treat the curvature
erm semi-implicitly. Several stabilization schemes such as the Stream-
ine Upwind Petrov Galerkin (SUPG) [49] , Discrete Elastic Viscous Stress
plitting (DEVSS) [50,51] , Discontinuous Galerkin (DG) [52] , Galerkin
east Squares [53] , Log-Conformation reformulation [54] and Varia-
ional Multiscale [55,56] methods have been proposed in the literature
or simulation of viscoelastic fluid flows. Recently, a three-field Local
rojection Stabilized (LPS) finite element scheme for simulation of vis-
oelastic fluid flows in fixed domains has been presented by Venkatesan
nd Ganesan [57] . In this work, we extend the LPS scheme proposed
n [57] for simulation of 3D-axisymmetric viscoelastic two-phase flows
ith insoluble surfactants. In particular, Local Projection Stabilization

s used to handle the convective nature of the viscoelastic constitutive
quation and to use equal order interpolation spaces for the velocity and
he viscoelastic stress. 

The paper is organized as follows. In Section 2 , we present the non-
imensional form of the governing equations for buoyancy driven vis-
oelastic two-phase flows with insoluble surfactants. The coupled ALE–
agrangian approach, variational form, stabilized finite element formu-
ation, temporal discretization and linearization strategy are described
n Section 3 . Section 4 presents the numerical results. First, a grid inde-
endence test is performed. Then, the numerical scheme is validated by
omparison with the numerical results in the literature. Further, a nu-
erical investigation on the viscoelastic drop rising in a Newtonian fluid

olumn and then a Newtonian drop rising in a viscoelastic fluid column
ith insoluble surfactants on the interface is presented. We examine the

nfluence of the Marangoni number, initial surfactant concentration and
eclet number on the rising drop dynamics. Finally, a brief summary of
he proposed numerical scheme and the key observations are presented
n Section 5 . 

. Mathematical model 

.1. Model problem 

A buoyancy driven two-phase viscoelastic flow (either phase can be
iscoelastic) in a bounded domain Ω ⊂ ℝ 

3 with insoluble surfactants on
he interface between two liquids is considered. A schematic represen-
ation of the computational model is presented in Fig. 1 . We assume
hat a liquid droplet filling Ω1 ( t ) is completely surrounded by another
iquid filling the domain Ω2 ( t ) and the interface between the two liq-
ids is denoted by ΓF ( t ). Thus, the computational domain is given by
( t ) ≔ Ω1 ( t ) ∪ΓF ( t ) ∪Ω2 ( t ). Here, t is the time in a given time interval

0, I] with an end time I. Further, ΓAxial , ΓD , ΓN and h c denote the sym-
etry of axis, Dirichlet, Neumann boundaries and height of the bulk
uid column respectively. 

.2. Governing equations 

We assume that the viscoelastic fluid is incompressible, immiscible
nd the material properties such as density, viscosity and relaxation
ime of polymers are constant. The fluid flow in Ω( t ) is described by
he time-dependent incompressible Navier–Stokes equations, whereas
he temporal evolution of viscoelastic stresses in the fluid is described
y the Giesekus constitutive equation. Detailed description of the math-
matical model without insoluble surfactants on the interface have been
resented in our previous study [45] , whereas a brief description of the
63 
odel and the numerical scheme are presented here. Let 
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𝐶 ∞
, 𝜀 = 

𝜇0 , 2 

𝜇0 , 1 
, 

e the dimensionless length x , fluid velocity u , domain velocity w , time
 , pressure p , given end time I, viscoelastic conformation stress 𝝉p , sur-
actant concentration C and viscosity ratio 𝜀 , respectively. Moreover, the
ilde over the variables indicate its dimensional form. Here, L, U ∞ and
 ∞ are the characteristic length, velocity and surfactant concentrations,
espectively. Further, we define the non-dimensional density 𝜌, Newto-
ian solvent ratio 𝛽, Giesekus mobility factor 𝛼, Weissenberg number
i, Reynolds number Re and Froude number Fr in different parts of the

omputational domain as 

= 

{ 

𝜌1 ∕ 𝜌2 ∀ 𝐱 ∈ Ω1 ( 𝑡 ) , 
1 ∀ 𝐱 ∈ Ω2 ( 𝑡 ) , 

𝛽 = 

{ 

𝛽1 = 𝜇𝑠, 1 ∕ 𝜇0 , 1 ∀ 𝐱 ∈ Ω1 ( 𝑡 ) , 
𝛽2 = 𝜇𝑠, 2 ∕ 𝜇0 , 2 ∀ 𝐱 ∈ Ω2 ( 𝑡 ) , 

= 

{ 

𝛼1 ∀ 𝐱 ∈ Ω1 ( 𝑡 ) , 
𝛼2 ∀ 𝐱 ∈ Ω2 ( 𝑡 ) , 

Wi = 

{ 

Wi 1 = 𝜆1 U ∞∕ L ∀ 𝐱 ∈ Ω1 ( 𝑡 ) , 
Wi 2 = 𝜆2 U ∞∕ L ∀ 𝐱 ∈ Ω2 ( 𝑡 ) , 

e = 

{ 

𝜀 Re 2 ∀ 𝐱 ∈ Ω1 ( 𝑡 ) , 
Re 2 ∀ 𝐱 ∈ Ω2 ( 𝑡 ) , 

Re 2 = 

𝜌2 U ∞L 

𝜇0 , 2 
, Fr = 

U 

2 
∞

L 𝑔 
. 

ere, g is the gravitational constant, 𝜌k is the density of fluid, 𝜇s,k is the
ewtonian solvent viscosity, 𝜇0, k is the total viscosity, 𝛼k is the Giesekus
obility factor and 𝜆k is the relaxation time of the polymers in Ωk ( t ),
 = 1 , 2 , respectively. 

The viscoelastic fluid flow in the scaled domain is then described by
he dimensionless time-dependent incompressible Navier–Stokes equa-
ions (
𝜕𝐮 
𝜕𝑡 

+ 𝐮 ⋅ ∇ 𝐮 
)
− ∇ ⋅ 𝕋 ( 𝐮 , 𝑝, 𝝉𝑝 ) = 

𝜌 𝐞 
Fr 

in Ω( 𝑡 ) × (0 , I ] (1)

∇ ⋅ 𝐮 = 0 in Ω( 𝑡 ) × (0 , I ] (2)

here (1) is the momentum balance equation and (2) is the mass
alance equation. Here, e is an unit vector in the direction of the
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ravitational force. The dimensionless stress tensor 𝕋 ( 𝐮 , 𝑝, 𝝉𝑝 ) for an in-
ompressible viscoelastic fluid is given by 

 ( 𝐮 , 𝑝, 𝝉𝑝 ) = 

2 𝛽
Re 

𝔻 ( 𝐮 ) − 𝑝 𝕀 + 

( 1 − 𝛽) 
Re Wi 

(
𝝉𝑝 − 𝕀 

)
, 

hereas the velocity deformation tensor 𝔻 ( 𝐮 ) is given by 

 ( 𝐮 ) = 

1 
2 
(
∇ 𝐮 + ( ∇ 𝐮 ) T 

)
. 

ere 𝕀 is the identity tensor. The temporal evolution of viscoelastic
tresses in the fluid is governed by the Giesekus constitutive equa-
ion [5] 

 

𝑝 + 

1 
Wi 

[(
𝝉𝑝 − 𝕀 

)
+ 𝛼

(
𝝉𝑝 − 𝕀 

)2 ] = 0 in Ω( 𝑡 ) × (0 , I ] , (3)

here the upper-convected time derivative of the viscoelastic stress ten-
or is defined as 

 

𝑝 = 

𝜕 𝝉𝑝 

𝜕𝑡 
+ ( 𝐮 ⋅ ∇ ) 𝝉𝑝 − ∇ 𝐮 T ⋅ 𝝉𝑝 − 𝝉𝑝 ⋅ ∇ 𝐮 . (4)

he coupled Navier–Stokes (1) , (2) and Giesekus constitutive (3) equa-
ions are closed with initial and boundary conditions. At time t = 0,
e specify the conformation stress tensor 𝝉p ,0 and the divergence-free
elocity field u 0 over the entire computational domain Ω0 , i.e., 

(0) = Ω0 , 𝐮 ( ⋅, 0) = 𝐮 0 ∕ U ∞ in Ω0 , 𝝉𝑝 ( ⋅, 0) = 𝝉𝑝, 0 in Ω0 . 

urther, we assume that the boundary 𝜕Ω : = ΓD ∪ΓN of the computa-
ional domain Ω( t ) is fixed in time and we impose the no-slip condition 

 = 0 on Γ𝐷 × (0 , I ] , 

nd the free-slip condition 

𝑁 

⋅ 𝕋 2 ( 𝐮 , 𝑝, 𝝉𝑝 ) ⋅ 𝝂𝑁 

= 0 , 𝐮 ⋅ 𝝂𝑁 

= 0 on Γ𝑁 

× (0 , I ] , 

here 𝝉N and 𝝂N are unit tangential and normal vectors respectively on

N . On the interface ΓF ( t ), we impose the kinematic condition 

 ⋅ 𝝂𝐹 = 𝐰 ⋅ 𝝂𝐹 on Γ𝐹 ( 𝑡 ) × (0 , I ] , (5)

nd continuity in velocity field 

 |𝐮 |] = 0 on Γ𝐹 ( 𝑡 ) × (0 , I ] . 

ere, w is the domain velocity, 𝝂F is an unit normal vector on ΓF ( t ) and
| · |] denotes the jump of a function at the interface. Further, we impose
he force balancing condition 

 |𝕋 ( 𝐮 , 𝑝, 𝝉𝑝 ) |] ⋅ 𝝂𝐹 = 

1 
We 

∇ Γ𝜈𝐹 
⋅ 𝕊 Γ𝐹 on Γ𝐹 ( 𝑡 ) × (0 , I ] . (6)

ere, the Weber number is defined as 

e = 

𝜌2 U 

2 
∞L 

𝜎𝑟𝑒𝑓 
. 

urther, the surface gradient of a scalar function 𝜓 and the surface di-
ergence of a vector function v on the interface ΓF ( t ) are defined by 

 Γ𝝂𝐹 
𝜓 = ℙ 𝝂𝐹 

∇ 𝜓, ∇ Γ𝝂𝐹 
⋅ 𝐯 = tr 

(
ℙ 𝝂𝐹 

∇ 𝐯 
)
, 

here ℙ 𝝂𝐹 
= 𝕀 − 𝝂𝐹 ⊗ 𝝂𝐹 is the projection onto the tangential plane of

F ( t ). The interface stress tensor 𝕊 Γ𝐹 is modeled by 

 Γ𝐹 = 𝜎( 𝐶) ℙ 𝝂𝐹 
(7)

here C denotes the surfactant concentration on the interface ΓF ( t ) and
( C ) is the interfacial tension coefficient dependent on C . Substituting
7) in the force balancing condition (6) , we get 

 Γ𝜈𝐹 
⋅ 𝕊 Γ𝐹 = ∇ Γ𝜈𝐹 

⋅
(
𝜎( 𝐶) ℙ 

𝝂𝐹 

)
= tr 

(
∇ Γ𝜈𝐹 

(
𝜎( 𝐶) ℙ 

𝝂𝐹 

))
(8)

= ℙ 𝝂𝐹 
∇ Γ𝜈𝐹 

𝜎( 𝐶) + 𝜎( 𝐶) tr 
(
∇ Γ𝜈𝐹 

ℙ 𝝂𝐹 

)
. 

ince the surface gradient is in the tangential plane, we have

 𝝂𝐹 
∇ Γ𝜈𝐹 

𝜎( 𝐶) = ∇ Γ𝜈𝐹 
𝜎( 𝐶) . Further, one can prove tr 

(
∇ Γ𝜈𝐹 

ℙ 𝝂𝐹 

)
= − 𝜅𝜈𝐹 ,

here 𝜅 is the sum of principal curvatures, refer [58] . Thus, we have 

 Γ𝜈 ⋅ 𝕊 Γ𝐹 = ∇ Γ𝜈 𝜎( 𝐶) − 𝜎( 𝐶) 𝜅 𝜈𝐹 . (9)

𝐹 𝐹 

64 
q. (9) is the standard form in the literature to include the Marangoni
ffects. However, we prefer the surface divergence form (8) due to the
andling of curvature in the variational form. 

The surfactant dependent interfacial tension is given by the Henry
inear equation of state, see for example [12,59] , 

̂ ( 𝐶) = 𝜎𝑟𝑒𝑓 

( 

1 + E 

( 

𝐶 𝑟𝑒𝑓 

𝐶 ∞
− 𝐶 

) ) 

= 𝜎𝑟𝑒𝑓 𝜎( 𝐶) . (10) 

ere, 𝜎ref is the reference interfacial tension corresponding to the refer-
nce surfactant concentration C ref , E is the Marangoni number given by
 = R T 𝐶 ∞∕ 𝜎𝑟𝑒𝑓 , R is the gas constant and T is the absolute temperature.

The surfactant concentration C along the deforming interface ΓF ( t )
s described by a scalar convection-diffusion equation with a source like
erm to account for the local changes in the interface area, see for ex-
mple [10–12] . It reads : 

𝜕𝐶 

𝜕𝑡 
+ 𝑈 ⋅ ∇ Γ𝝂𝐹 

𝐶 − 

1 
Pe 

ΔΓ𝝂𝐹 
𝐶 + 𝐶 ∇ Γ𝝂𝐹 

⋅ 𝐮 = 0 in Γ𝐹 ( 𝑡 ) × (0 , I ] (11) 

here 

Γ𝝂𝐹 
𝐶 = ∇ Γ𝝂𝐹 

⋅ ∇ Γ𝝂𝐹 
𝐶, 𝑈 = 

(
𝐮 − 

(
𝐮 ⋅ 𝝂𝐹 

)
𝝂𝐹 

)
, Pe = 

U ∞L 

𝐷 𝑠 

. 

ere, U is the velocity along the interface, D s is the interface diffusivity
f the surfactant and Pe is the Peclet number. Note that the surfactant
oncentration C is defined not only on the interface ΓF ( t ) but also in
 neighbourhood of ΓF ( t ). However, the restriction of ∇ Γ𝝂𝐹 

𝐶 on ΓF ( t )

epends only on values of C on ΓF ( t ). Surfactant concentration Eq. (11) is
losed with an initial condition 

( ⋅, 0) = 𝐶 0 ∕ 𝐶 ∞ in Γ𝐹 (0) . (12) 

ote that no boundary condition has to be specified due to the fact that
he interface ΓF ( t ) is a closed surface. 

. Numerical scheme 

.1. Coupled ALE-Lagrangian formulation 

The arbitrary Lagrangian–Eulerian (ALE) approach is used to track
he interface, see for example [25,45,60,61] . Since, the interface is re-
olved by the computational mesh in the ALE approach, the spurious
elocities if any can be suppressed when the interfacial tension force
s incorporated into the numerical scheme accurately [48] . Further, we
ssume that the topology of the computational domain does not change
uring the computations. Due to the ALE approach, the time derivative
as to be replaced with the time derivative on the reference frame Ω̂
nd it results in an addition of convective mesh velocity term in the
quations, for more details we refer to [58,60,62] . The ALE form of the
avier–Stokes equations (1) , (2) read: ( 

𝜕𝐮 
𝜕𝑡 

||||Ω̂ + ( ( 𝐮 − 𝐰 ) ⋅ ∇ ) 𝐮 
) 

− ∇ ⋅ 𝕋 ( 𝐮 , 𝑝, 𝝉𝑝 ) = 

𝜌 𝐞 
Fr 

in Ω( 𝑡 ) × (0 , I ] , (13) 

∇ ⋅ 𝐮 = 0 in Ω( 𝑡 ) × (0 , I ] . (14)

imilarly, the ALE form of Giesekus Eq. (3) read: 

𝜕 𝝉𝑝 

𝜕𝑡 

|||||Ω̂ + ( ( 𝐮 − 𝐰 ) ⋅ ∇ ) 𝝉𝑝 − ∇ 𝐮 T ⋅ 𝝉𝑝 − 𝝉𝑝 ⋅ ∇ 𝐮 

+ 

1 
Wi 

[(
𝝉𝑝 − 𝕀 

)
+ 𝛼

(
𝝉𝑝 − 𝕀 

)2 ] = 0 in Ω( 𝑡 ) × (0 , I ] . (15) 

n computations, we take the previous time-step domain as the refer-
nce domain. Since, we move the interface with the fluid velocity in
he ALE approach, the surfactant concentration equation is treated in a
agrangian manner. Hence, the Lagrangian form of Eq. (11) reads: 

𝜕𝐶 

𝜕𝑡 

||||Γ̂𝐹 − 

1 
Pe 

ΔΓ𝝂𝐹 
𝐶 + 𝐶 ∇ Γ𝝂𝐹 

⋅ 𝐮 = 0 in Γ𝐹 ( 𝑡 ) × (0 , I ] . (16) 

ote that due to the Lagrangian formulation, the surfactant Eq. (16) does
ot contain any convective term and hence, we don’t need any stabiliza-
ion scheme while solving it using finite element method. 
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o ℎ h h K h h K  
.2. Weak formulation 

Let L 2 ( Ω( t )) and H 

1 ( Ω( t )) be the standard Sobolev spaces and ( · , · )
e the inner product in L 2 ( Ω( t )) and its vector/tensor-valued versions,
espectively. Further, we define the velocity, pressure, viscoelastic stress
nd surfactant concentration spaces as 

𝑉 (Ω( 𝑡 )) ∶= 

{
𝐯 ∈ H 

1 (Ω( 𝑡 )) 3 ∶ 𝐯 ⋅ 𝝂𝑁 

= 0 on Γ𝑁 

, 𝐯 = 0 on Γ𝐷 
}
, 

𝑄 (Ω( 𝑡 )) ∶= 

{ 

𝑞 ∈ L 2 (Ω( 𝑡 )) ∶ ∫Ω 𝑞 𝑑𝑥 = 0 
} 

, 

𝑆(Ω( 𝑡 )) ∶= 

{
𝝍 = [ 𝜓 𝑖𝑗 ] , 1 ≤ 𝑖, 𝑗 ≤ 3 ∶ 𝜓 𝑖𝑗 ∈ 𝐻 

1 (Ω( 𝑡 )) , 𝜓 𝑖𝑗 = 𝜓 𝑗𝑖 

}
, 

 

(
Γ𝐹 ( 𝑡 ) 

)
∶= 

{
𝜙 ∈ H 

1 (Γ𝐹 ( 𝑡 ) )}. 
o derive the variational formulation of the governing equations, we
ultiply the ALE form of the momentum (13) , mass balance (14) and
iesekus consititutive (15) equations by test functions v ∈V, q ∈Q

nd 𝝍 ∈ S , respectively and integrate over the computational domain
( t ). After applying integration by parts to the stress tensor term over
ach sub-domain Ωk ( t ), k = 1, 2, and further incorporating all the
oundary conditions, the variational form of the governing equations
ead: 

For given Ω0 , u 0 /U ∞, w, 𝝉p ,0 , find ( u , p , 𝝉p ) ∈V ×Q × S such that 

𝜌
𝜕𝐮 
𝜕𝑡 

, 𝐯 
)
Ω̂
+ 𝑎 ( ̂𝐮 − 𝐰 ; 𝐮 , 𝐯 ) − 𝑏 ( 𝑝, 𝐯 ) + 𝑐( 𝝉𝑝 , 𝐯 ) = 𝑓 1 ( 𝐯 ) 

𝑏 ( 𝑞, 𝐮 ) = 0 ( 

𝜕 𝝉𝑝 

𝜕𝑡 
, 𝝍 

) 

Ω̂
+ 𝑑( ̂𝐮 − 𝐰 ; 𝝉𝑝 , 𝝍 ) + 𝑒 ( ̂𝝉𝑝 ; 𝝉𝑝 , 𝝍 ) = 𝑓 2 ( 𝝍 ) (17) 

or all ( v , q , 𝝍) ∈V ×Q × S , where 

𝑎 ( ̂𝐮 − 𝐰 ; 𝐮 , 𝐯 ) = ∫Ω( 𝑡 ) 𝜌( ( ( ̂𝐮 − 𝐰 ) ⋅ ∇ ) 𝐮 ) ⋅ 𝐯 𝑑𝑥 

+ ∫Ω( 𝑡 ) 
2 𝛽
Re 

𝔻 ( 𝐮 ) ∶ 𝔻 ( 𝐯 ) 𝑑𝑥 

𝑏 ( 𝑞, 𝐯 ) = ∫Ω( 𝑡 ) 𝑞 (∇ ⋅ 𝐯 ) 𝑑𝑥 

𝑐( 𝝉𝑝 , 𝐯 ) = ∫Ω( 𝑡 ) 
( 1 − 𝛽) 
Re Wi 

𝝉𝑝 ∶ 𝔻 ( 𝐯 ) 𝑑𝑥 

𝑓 1 ( 𝐯 ) = 

1 
Fr ∫Ω( 𝑡 ) 𝜌 ( 𝐞 ⋅ 𝐯 ) 𝑑𝑥 

− 

1 
We ∫Γ𝐹 ( 𝑡 ) ℙ 𝝂𝐹 

∶ 
(
∇ Γ𝝂𝐹 

𝜎( 𝐶) 𝐯 
)
𝑑𝛾𝐹 

( ̂𝐮 − 𝐰 ; 𝝉𝑝 , 𝝍 ) = ∫Ω( 𝑡 ) ( ( ( ̂𝐮 − 𝐰 ) ⋅ ∇ ) 𝝉𝑝 ) ∶ 𝝍 𝑑𝑥 

− ∫Ω( 𝑡 ) (∇ ̂𝐮 T ⋅ 𝝉𝑝 + 𝝉𝑝 ⋅ ∇ ̂𝐮 ) ∶ 𝝍 𝑑𝑥 

𝑒 ( ̂𝝉𝑝 ; 𝝉𝑝 , 𝝍 ) = ∫Ω( 𝑡 ) 
𝛼

Wi 

(
�̂�𝑝 ⋅ 𝝉𝑝 

)
∶ 𝝍 𝑑𝑥 

+ ∫Ω( 𝑡 ) 
(1 − 2 𝛼) 

Wi 
𝝉𝑝 ∶ 𝝍 𝑑𝑥 

𝑓 2 ( 𝝍 ) = ∫Ω( 𝑡 ) 
(1 − 𝛼) 

Wi 
𝕀 ∶ 𝝍 𝑑𝑥. 

Further, for ease of notation, we denote 

𝐴 ((( ̂𝐮 − 𝐰 ) , ̂𝝉𝑝 ); ( 𝐮 , 𝑝, 𝝉𝑝 ) , ( 𝐯 , 𝑞, 𝝍 )) 

= 𝑎 ( ̂𝐮 − 𝐰 ; 𝐮 , 𝐯 ) − 𝑏 ( 𝑝, 𝐯 ) + 𝑐( 𝝉𝑝 , 𝐯 ) + 𝑏 ( 𝑞, 𝐮 ) 
+ 𝑑( ̂𝐮 − 𝐰 ; 𝝉𝑝 , 𝝍 ) + 𝑒 ( ̂𝝉𝑝 ; 𝝉𝑝 , 𝝍 ) . 
65 
The interface integral in f 1 ( v ) in the variational form can be rewritten
s follows: 

− 

1 
We ∫Γ𝐹 ( 𝑡 ) ℙ 𝝂𝐹 

∶ 
(
∇ Γ𝝂𝐹 

𝜎( 𝐶) 𝐯 
)
𝑑𝛾𝐹 

= − 

1 
We ∫Γ𝐹 ( 𝑡 ) ℙ 𝝂𝐹 

∶ 
[
𝜎( 𝐶) 

(
∇ Γ𝝂𝐹 

𝐯 
)
− 𝐸 

(
∇ Γ𝝂𝐹 

𝜎( 𝐶) 
)
⊗ 𝐯 

]
𝑑𝛾𝐹 . (18) 

he main advantages of the tangential gradient operator technique to
andle the curvature are: 

- no need to calculate the curvature explicitly 
- interfacial tension force can be computed for piecewise smooth sur-

faces 
- only the first derivatives of the basis functions are needed 
- interfacial tension force can be treated semi-implicitly giving addi-

tional stability. 

The variational form of the surfactant concentration Eq. (16) is ob-
ained by multiplying it with a test function 𝜙∈G and further applying
ntegration by parts for the diffusive term. It reads: 

For given ΓF , u , C 0 / C ∞, find C ∈G such that 

𝜕𝐶 

𝜕𝑡 
, 𝜙

)
Γ̂𝐹 

+ 

1 
Pe 

(
∇ Γ𝝂𝐹 

𝐶, ∇ Γ𝝂𝐹 
𝜙

)
+ 

(
𝐶 

(
∇ Γ𝝂𝐹 

⋅ 𝐮 
)
, 𝜙

)
= 0 , (19) 

or all 𝜙∈G . Here, ( · , · ) denotes the inner product in L 2 ( ΓF ( t )) and its
ector-valued versions, respectively. 

The computational domain is time-dependent and hence, a very fine
iscretization (both in space and time) is needed to get an accurate so-
ution. This requirement increases the computational cost in 3D. Since
he considered domain is rotational symmetric, a 2D geometry with 3D-
xisymmetric configuration is used. Thus, we transform the volume and
urface integrals in (17) , (19) into area and line integrals by using cylin-
rical coordinates, for more details we refer to [60,62] . It allows us to
se two-dimensional finite elements for velocity, pressure and viscoelas-
ic stress, whereas one-dimensional finite element is used for surfactant
oncentration on the interface. Further, it reduces the computational
omplexity in the mesh movement as well. 

.3. Spatial discretization 

Let {  ℎ } be a partition of the domain Ω( t ) into an interface resolved
riangular mesh using the mesh generator Triangle [63,64] . The diam-
ter of a cell 𝐾 ∈  ℎ is denoted by h K . The mesh parameter h is defined
y ℎ = max { ℎ 𝐾 |𝐾 ∈  ℎ } . The discrete form of the domain Ω is given
y Ωℎ ∶= 

⋃
𝐾∈ ℎ 𝐾, whereas Ω̂ℎ denotes the reference domain of Ωh .

urther, let V h ⊂V, Q h ⊂Q, S h ⊂ S and G h ⊂G be the conforming finite
lement spaces on  ℎ . The standard Galerkin approach to solve the vis-
oelastic constitutive equation leads to unphysical oscillations in the
umerical solution when the constitutive equation is highly advection
ominated at high Weissenberg numbers. Further, the choice of finite
lement spaces for the velocity, pressure and viscoelastic stress is subject
o two discrete inf-sup conditions, refer [57] . Finite elements that satisfy
oth discrete inf-sup conditions simultaneously are rare. A possible rem-
dy to the above two shortcomings of the standard Galerkin approach
or the coupled problem (17) is to use a stabilized formulation. In this
ork, we use the Local Projection Stabilization (LPS) method. LPS was
riginally proposed for the Stokes problem by Becker and Braack [65] ,
nd later it has been extended for transport [66] and Oseen [67] prob-
ems. Recently, LPS technique has been used by Venkatesan and Gane-
an [45,57,62] for the simulation of viscoelastic fluid flows. There are
wo variants of LPS implementation, namely one-level and two-level
pproach. In this work, we use the one-level LPS variant [57,68–70] ,
hich is based on enrichment of approximation spaces and it allows us

o perform the computations on a single mesh as the approximation and
he projection spaces are defined on the same mesh. 

Let Y h denote the approximation space and D h be the discontinu-
us projection space defined on  . Let D ( K ) ≔ { d | : d ∈D } and 𝜋 :
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 h ( K ) →D h ( K ) be the local L 2 -projection into D h ( K ). Further, we define
he global projection 𝜋h : Y h →D h by ( 𝜋h y )| K ≔𝜋K ( y | K ). The fluctuation
perator 𝜅h : Y h →Y h is given by 𝜅ℎ ∶= 𝑖𝑑 − 𝜋ℎ , where id is the identity
apping. The local projection stabilized finite element approximation

f the variational problem (17) reads: 
For given Ω0 , u 0 /U ∞, w h and 𝝉p ,0 , find ( u h , p h , 𝝉p,h ) ∈V h ×Q h × S h

uch that 

𝜌
𝜕𝐮 ℎ 
𝜕𝑡 

, 𝐯 ℎ 
)
Ω̂ℎ 

+ 

(
𝜕 𝝉𝑝,ℎ 

𝜕𝑡 
, 𝝍 ℎ 

)
Ω̂ℎ 

+ 𝑆 1 ( 𝐮 ℎ , 𝐯 ℎ ) + 𝑆 2 ( 𝝉𝑝,ℎ , 𝝍 ℎ ) 

+ 𝐴 ((( ̂𝐮 ℎ − 𝐰 ℎ ) , ̂𝝉𝑝,ℎ ); ( 𝐮 ℎ , 𝑝 ℎ , 𝝉𝑝,ℎ ) , ( 𝐯 ℎ , 𝑞 ℎ , 𝝍 ℎ )) = 𝑓 1 ( 𝐯 ℎ ) + 𝑓 2 ( 𝝍 ℎ ) 
(20)

or all ( v h , q h , 𝝍 h ) ∈V h ×Q h × S h , where 

𝑆 1 ( 𝐮 ℎ , 𝐯 ℎ ) = 

∑
𝐾∈ ℎ 

𝜍 1 ⟨𝜅ℎ 𝔻 ( 𝐮 ℎ ) , 𝜅ℎ 𝔻 ( 𝐯 ℎ ) ⟩𝐾 
 2 ( 𝝉𝑝,ℎ , 𝝍 ℎ ) = 

∑
𝐾∈ ℎ 

𝜍 2 ⟨𝜅ℎ (∇ ⋅ 𝝉𝑝,ℎ 
)
, 𝜅ℎ 

(
∇ ⋅ 𝝍 ℎ 

)⟩𝐾 
+ 

∑
𝐾∈ ℎ 

𝜍 3 ⟨𝜅ℎ ∇ 𝝉𝑝,ℎ , 𝜅ℎ ∇ 𝝍 ℎ ⟩𝐾 . 
ere, 𝜍 1 = (1 − 𝛽) 𝑐 1 ℎ 𝐾 , 𝜍 2 = 𝑐 2 ℎ 𝐾 , 𝜍 3 = 𝑐 3 ℎ 𝐾 , with c 1 , c 2 and c 3 being
ser-chosen constants. The numerical scheme allows us to use inf-sup
table finite elements for the velocity and pressure spaces, and equal or-
er interpolation spaces for the velocity and viscoelastic stress. In partic-
lar, we use the following triplet 

(
𝑉 ℎ , 𝑄 ℎ , 𝑆 ℎ 

)
= 

(
𝑃 𝑏𝑢𝑏𝑏𝑙𝑒 2 , 𝑃 𝑑𝑖𝑠𝑐 1 , 𝑃 𝑏𝑢𝑏𝑏𝑙𝑒 2 

)
.

y approximating the pressure with discontinuous elements, we shall
uppress the spurious velocities [48] during computations. Moreover,
e achieve better mass conservation, since the first integral moments of

he divergence of velocity field vanishes element-wise with discontin-
ous pressure approximation. For more details on LPS for viscoelastic
uid flows we refer to [45,57,62] . 

The standard Galerkin finite element approximation of the varia-
ional form of surfactant concentration Eq. (19) reads: 

For given ΓF , u h , C 0 / C ∞, find C h ∈G h such that 

 

𝜕𝐶 ℎ 

𝜕𝑡 
, 𝜙ℎ 

) 

Γ̂𝐹 
+ 

1 
Pe 

(
∇ Γ𝝂𝐹 

𝐶 ℎ , ∇ Γ𝝂𝐹 
𝜙ℎ 

)
+ 

(
𝐶 ℎ 

(
∇ Γ𝝂𝐹 

⋅ 𝐮 ℎ 
)
, 𝜙ℎ 

)
= 0 , (21)

or all 𝜙h ∈G h . We use quadratic finite elements for the surfactant con-
entration. 

.4. Time discretization and linearization 

Let 0 = 𝑡 0 < 𝑡 1 < … < 𝑡 𝑁 = I be a decomposition of the time interval
0, I], and 𝛿𝑡 = 𝑡 𝑛 +1 − 𝑡 𝑛 , 𝑛 = 0 , … , 𝑁 − 1 , be a uniform time step. We use
he first-order implicit Euler method for the time discretization of the
oupled system (20) , (21) in the time interval 

(
𝑡 𝑛 , 𝑡 𝑛 +1 

)
. Investigations

n [71] show that an implicit handling of the curvature term is needed
or unconditional stability. However, its too complicated because we
eed in advance the interface Γ𝑛 +1 

𝐹 
, which in unknown. Thus, as in [72] ,

e use a semi-implicit approximation of the curvature term (first term
n (18) ) 

 

1 
We ∫Γ𝑛 +1 

𝐹 

𝜎( 𝐶) ℙ 

𝝂
𝑛 +1 
𝐹 

∶ 
(
∇ Γ𝝂𝐹 

𝐯 ℎ 
)
𝑑𝛾𝐹 

= − 

1 
We ∫Γ𝑛 

𝐹 

𝜎( 𝐶) 
[
ℙ 𝝂

𝑛 
𝐹 
+ 𝛿𝑡 ∇ Γ𝝂𝐹 

𝐮 𝑛 +1 
ℎ 

]
∶ 
(
∇ Γ𝝂𝐹 

𝐯 ℎ 
)
𝑑𝛾𝐹 . 

onsequently, the curvature term is splitted into an explicit term on the
ight hand side of the weak formulation 

 

1 
We ∫Γ𝑛 

𝐹 

𝜎( 𝐶) ℙ 

𝝂
𝑛 
𝐹 
∶ 
(
∇ Γ𝝂𝐹 

𝐯 ℎ 
)
𝑑𝛾𝐹 

nd an implicit term on the left hand side 

𝛿𝑡 

We ∫Γ𝑛 𝜎( 𝐶) 
(
∇ Γ𝝂𝐹 

𝐮 𝑛 +1 
ℎ 

)
∶ 
(
∇ Γ𝝂𝐹 

𝐯 ℎ 
)
𝑑𝛾𝐹 , 
𝐹 p  
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hich is symmetric and positive semi-definite and thus, it improves the
tability of the discrete system compared to a fully explicit approach. 

Let 𝐮 𝑛 +1 
ℎ, 0 = 𝐮 𝑛 

ℎ 
, 𝝉𝑛 +1 

𝑝,ℎ, 0 = 𝝉
𝑛 
𝑝,ℎ 

and 𝐰 

𝑛 +1 
ℎ, 0 = 𝐰 

𝑛 
ℎ 
. We adopt the following

inearization strategy for the nonlinear terms in (20) : 

𝑎 
(
𝐮 𝑛 +1 
ℎ 

− 𝐰 

𝑛 +1 
ℎ 

; 𝐮 𝑛 +1 
ℎ 

, 𝐯 ℎ 
)
≈ 𝑎 

(
𝐮 𝑛 +1 
ℎ,𝑚 −1 − 𝐰 

𝑛 +1 
ℎ,𝑚 −1 ; 𝐮 

𝑛 +1 
ℎ,𝑚 

, 𝐯 ℎ 
)

 

(
𝐮 𝑛 +1 
ℎ 

− 𝐰 

𝑛 +1 
ℎ 

; 𝝉𝑛 +1 
𝑝,ℎ 

, 𝝍 ℎ 

)
≈ 𝑑 

(
𝐮 𝑛 +1 
ℎ,𝑚 −1 − 𝐰 

𝑛 +1 
ℎ,𝑚 −1 ; 𝝉

𝑛 +1 
𝑝,ℎ,𝑚 

, 𝝍 ℎ 

)
+ 𝑑 

(
𝐮 𝑛 +1 
ℎ,𝑚 

; 𝝉𝑛 +1 
𝑝,ℎ,𝑚 −1 , 𝝍 ℎ 

)
− 𝑑 

(
𝐮 𝑛 +1 
ℎ,𝑚 −1 ; 𝝉

𝑛 +1 
𝑝,ℎ,𝑚 −1 , 𝝍 ℎ 

)
𝑒 

(
𝝉
𝑛 +1 
𝑝,ℎ 

; 𝝉𝑛 +1 
𝑝,ℎ 

, 𝝍 ℎ 

)
≈ 𝑒 

(
𝝉
𝑛 +1 
𝑝,ℎ,𝑚 −1 ; 𝝉

𝑛 +1 
𝑝,ℎ,𝑚 

, 𝝍 ℎ 

)
, 

here, 𝑚 = 1 , 2 , ..., M , with M being the maximum allowed number of
onlinear iterations. In each fixed point iteration, we solve the linear
lasticity problem (refer [45] ) to calculate the unknown mesh veloc-
ty 𝐰 

𝑛 +1 
ℎ,𝑚 −1 ‘virtually’ without moving the mesh. In all computations, the

terations are continued until the residual of the monolithic system be-
omes less than the threshold value of 10 −7 . In general this condition is
ulfilled within 2 to 3 iteration steps. After stopping the fixed point iter-
tion, we solve the surfactant concentration equation before moving the
esh to a new position. The linearized system of algebraic equations are

olved using the Multifrontal Massively Parallel Sparse (MUMPS) direct
olver [73,74] . The proposed numerical scheme for the simulation of
iscoelastic two-phase flows with insoluble surfactants is implemented
n our in-house finite element code ParMooN [75] . 

The limits of the proposed numerical scheme are as follows: the de-
eloped scheme is for axisymmetric flows. The scheme shall not be ap-
licable for asymmetric flows since full 3D simulations need to be per-
ormed. Further, we have assumed that the flow is isothermal and the
aterial properties like density, viscosity and relaxation time of poly-
ers remain constant throughout the computations. However, in most
ractical applications it may not be the case. Further, we assumed that
here is no topological change during the computations, that is, com-
utations cannot be continued with the proposed scheme when a single
rop splits into two or more droplets. 

. Numerical results 

In this section, we present a detailed numerical investigation of 3D-
xisymmetric buoyancy driven viscoelastic two-phase flows with insol-
ble surfactants on the interface. We first perform a grid independence
est for a 3D-axisymmetric viscoelastic drop rising in a Newtonian fluid
olumn. Further, to validate the numerical scheme, computations are
erformed with 2D planar configuration for a buoyancy driven New-
onian bubble rising in a Newtonian fluid column and compared with
he benchmark results [61] . In addition, we compare the computational
esults of 2D planar Newtonian drop rising in an Giesekus fluid col-
mn with the results of Vahabi and Kamkari [76] . Next, we present the
omputational results for a buoyancy driven viscoelastic drop rising in
 Newtonian fluid column with insoluble surfactants on the interface.
oreover, the effects of Marangoni number (E), initial surfactant con-

entration ( C 0 ) and Peclet number (Pe) on the rising drop dynamics are
xamined. In addition, we investigate the flow dynamics of a Newtonian
rop rising in a viscoelastic fluid column with insoluble surfactants on
he interface. 

The computational domain is triangulated into an interface resolved
esh using the mesh generator Triangle [63,64] based on constrained
elaunay triangulation. The constraints are the number of vertices on
ach boundary and the maximum area of each cell. We limit the max-
mum area of each cell in the domain to 0.001 during the triangu-
ation (initially and as well as during the remeshing). In computa-
ions, the number of cells and the number of degrees of freedom might
hange during the remeshing. The finite element spaces used in com-
utations for the velocity, pressure, viscoelastic stress and surfactant
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Table 1 

Grid independence test: characteristics of triangular meshes. 

Mesh DOFs on ΓF h 0 Cells Total DOFs 

L0 50 0.03139526 2,000 56,776 

L1 100 0.01570538 2,267 64,337 

L2 200 0.007853659 2,912 82,522 

L3 400 0.003926950 4,152 117,493 

L4 500 0.003141572 4,641 131,259 
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oncentration on the interface are 𝑃 𝑏𝑢𝑏𝑏𝑙𝑒 2 , 𝑃 𝑑𝑖𝑠𝑐 1 , 𝑃 𝑏𝑢𝑏𝑏𝑙𝑒 2 and P 2 respec-
ively. Further, the stabilization constants used in computations are
 1 = 0.005, c 2 = 0.005 and c 3 = 0.005. 

The flow dynamics of the rising drop is analyzed using the follow-
ng parameters: drop shape, diameter of the drop at the axis of symme-
ry ( 𝐷|𝑟 =0 ), sphericity, kinetic energy, elastic energy, center of mass ( z
oordinate), rise velocity and surfactant concentration on the interface.
et |Ω1 ( 𝑡 ) | ∶= 2 𝜋 ∫Ω1 ( 𝑡 ) 

𝑟 𝑑 𝑟 𝑑 𝑧 be the volume of the drop. The kinetic and
lastic energies of the drop are calculated as follows: 

 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 

2 𝜋|Ω1 ( 𝑡 ) | ∫Ω1 ( 𝑡 ) 
( 𝐮 ⋅ 𝐮 ) 𝑟 𝑑𝑟 𝑑𝑧, 

𝐸 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 

2 𝜋|Ω1 ( 𝑡 ) | ∫Ω1 ( 𝑡 ) 
𝑡𝑟 ( 𝝉𝑝 ) 𝑟 𝑑𝑟 𝑑𝑧, 

here tr denotes the trace of the tensor. Further, the rise velocity and
enter of mass ( z coordinate) of the drop are computed as: 

Rise velocity = 

2 𝜋|Ω1 ( 𝑡 ) | ∫Ω1 ( 𝑡 ) 
𝑢 𝑧 𝑟 𝑑𝑟 𝑑𝑧, 

enter of mass = 

2 𝜋|Ω1 ( 𝑡 ) | ∫Ω1 ( 𝑡 ) 
𝑧 𝑟 𝑑𝑟 𝑑𝑧. 

he sphericity of the drop is given by 

phericity = 

surface area of the volume-equivalent sphere 

surface area of the drop 
= 

𝐴 𝑒 

𝐴 

. 

he surface area of volume-equivalent sphere and surface area of the
rop are calculated as follows: 

 𝑒 = 4 𝜋
( 3 
4 𝜋

|Ω1 ( 𝑡 ) |)2∕3 
, 𝐴 = 2 𝜋 ∫𝜕Ω1 ( 𝑡 ) 

𝑟 𝑑𝑙. 

or a perfectly spherical drop, the sphericity will be one and for any
ther deformed drop it will be less than one. It is a good quantita-
ive measure of the drop deformation. Further, to measure the accu-
acy of the numerical scheme, we compute the relative volume loss and
ig. 2. Grid independence test: (a) drop shape at t = 20, (b) elastic energy in the dro

lots (a), (b) and (c) respectively using five different meshes. 

67 
urfactant mass loss as follows: 

volume loss (%) = 

|Ω1 ( 𝑡 ) | − |Ω1 (0) ||Ω1 (0) | × 100 , 

urfactant mass loss (%) = 

∫Γ𝐹 ( 𝑡 ) 
𝐶𝑟 𝑑𝑟 𝑑𝑧 − ∫Γ𝐹 (0) 

𝐶𝑟 𝑑𝑟 𝑑𝑧 

∫Γ𝐹 (0) 
𝐶𝑟 𝑑𝑟 𝑑𝑧 

× 100 . 

n all our computations, we found that the relative volume loss is always
ess than 0.075% and the surfactant mass loss is less than 0.05%. 

.1. Grid independence test 

In this section, we perform a grid independence test for the proposed
ocal projection stabilized numerical scheme for computations of 3D-
xisymmetric viscoelastic two-phase flows with insoluble surfactants.
e consider a viscoelastic drop rising in a Newtonian fluid column
ith the following dimensionless flow parameters: Re 2 = 10, Fr = 1,
e = 400, Wi 1 = 5, 𝜀 = 2, 𝜌1 / 𝜌2 = 0.1, 𝛽1 = 0.75, 𝛽2 = 1.0, 𝛼1 = 0.1,

e = 50, C 0 = 0.5, C ∞ = 1, C ref = 0.5, E = 1, D = 0.5 and h c = 2.5.
o perform a grid independence test, we vary the number of degrees of
reedom (DOFs) on the interface. Five different meshes are used in this
tudy and the characteristics of these meshes at time t = 0 are tabulated
n Table 1 . Further, the time step length is set as 𝛿t = 0.001 and the
omputations are performed till I = 20. 

Fig. 2 depicts the convergence behaviour of the drop shape at t = 20,
lastic energy in the drop and center of mass of the rising drop for all
p, (c) center of mass of the drop, (d), (e) and (f) are the magnified view of the 
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Fig. 3. Validation of numerical scheme: (a) bubble shape at t = 3 s, (b) circularity and (c) rise velocity of a Newtonian bubble rising in a Newtonian fluid column 

compared with the numerical results from the three participating groups in the benchmark paper [61] , namely TP2D, FreeLIFE and MooNMD. 
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Table 2 

Newtonian bubble rising in a Newtonian fluid column: comparison of our re- 

sults with the numerical solutions from the three participating groups in the 

benchmark paper [61] , namely TP2D, FreeLIFE and MooNMD. 

Reference Current work TP2D FreeLIFE MooNMD 

min (Circularity) 0.5195 0.5869 0.4647 0.5144 

t | min (Circularity) 3.0000 2.4004 3.0000 3.0000 

max 1 (Rise velocity) 0.2503 0.2524 0.2514 0.2502 

t | max 1(Rise velocity) 0.7328 0.7332 0.7281 0.7317 

max 2 (Rise velocity) 0.2390 0.2434 0.2440 0.2393 

t | max 2(Rise velocity) 2.0685 2.0705 1.9844 2.0600 

Center of mass at 𝑡 = 3 . 0 1.1373 1.1380 1.1249 1.1376 

Fig. 4. Validation of numerical scheme: drop shape at t = 0.16 s of a Newtonian 

drop rising in a Giesekus fluid column compared with the results of Vahabi and 

Kamkari [76] . 
he five mesh levels. The drop shape at t = 20 obtained using all the five
esh levels are almost similar. However, a close-up look near the tail

nd of the drop at the axis of symmetry, see Fig. 2 (d), clearly shows that
he results obtained with L3 and L4 meshes are almost identical. Similar
onvergence behaviour is observed in the elastic energy in the drop and
he center of mass of the drop, see Fig. 2 (e) and (f) respectively. In order
o have a fine balance between the computational cost and the accuracy,
ll numerical results in the following section is obtained with the mesh
3. 

.2. Validation 

In order to validate the numerical scheme, we first consider a 2D
lanar Newtonian bubble rising in a Newtonian fluid column as de-
cribed in the benchmark paper of Hysing et al. [61] . The benchmark
arameters are as follows: 𝜌1 = 1, 𝜌2 = 1000, 𝜇0,1 = 0.1, 𝜇0,2 = 10,
 = 0.98, 𝜎 = 1.96, D = 0.5 and h c = 2.0 (refer test case-2 in Table 1
f [61] ). Using the characteristic length L = 1 and characteristic veloc-
ty U ∞ = 

√
L 𝑔 , we get the following dimensionless quantities Re 2 = 99,

r = 1, We = 500, 𝜌1 / 𝜌2 = 0.001, 𝜀 = 100, 𝛽1 = 1 and 𝛽2 = 1. We use
00 degrees of freedom on the interface and the time step length is set
s 𝛿t = 0.0005. Fig. 3 depicts the bubble shape at t = 3 s, circularity
nd rise velocity and compared with the results of the three partici-
ating groups in the benchmark paper [61] , namely TP2D, FreeLIFE
nd MooNMD. TP2D and FreeLIFE are finite element based codes and
evel set method is used to capture the interface. Further, in MooNMD
so-parametric finite elements have been used along with the arbitrary
agrangian-Eulerian technique to capture the interface. Moreover, TP2D
nd FreeLIFE can handle break-up of the bubble, while no criteria for
he break up of the bubble has been implemented in MooNMD. For
ore details about the three benchmark codes, we refer to [61] . Since,

ur work is based on the coupled ALE-Lagrangian approach, we expect
ur results to be close to the results of MooNMD which also uses ALE
pproach. 

In Fig. 3 (a), we can observe that all codes predict a similar shape
or the main bulk of the bubble, whereas there is no agreement in our
ubble shape to those of TP2D and FreeLIFE with respect to the thin
lamentary regions. However, our bubble shape coincides with the ear-

ier results in MooNMD even in the thin filamentary regions despite
 different mesh used in this present study. From Fig. 3 (b) and (c),
e observe excellent agreement in circularity of the bubble and rise
elocity curves with all the benchmark results till t = 1.75–2.0, af-
er which there are significant differences and this is due to the thin
lamentary regions. Beyond t = 2.0, there is no real agreement be-
ween the three groups in the benchmark paper [61] . Further, in or-
er to qualitatively compare our numerical solutions with the results
f the three groups in the benchmark paper [61] , the minimum circu-
arity, maximum rise velocity with corresponding incidence times and
he final position of the center of mass are tabulated in Table 2 . We
68 
an observe that our results are quite similar to the results of TP2D
xcept for minimum circularity and its corresponding time, in addi-
ion to an excellent agreement with MooNMD results in the benchmark
aper [61] . 

The next test case is a 2D planar Newtonian drop rising in a Giesekus
uid column as described by Vahabi and Kamkari [76] . The flow param-
ters are defined as: 𝜌1 = 100, 𝜌2 = 1000, 𝜇0,1 = 0.1025, 𝜇0,2 = 1.025,
 = 9.8, 𝜎 = 0.01, 𝜆2 = 0.2 and 𝛼2 = 0.5. Using the characteristic length
 = 0.01 and characteristic velocity U ∞ = 

√
L 𝑔 , we get the following

imensionless quantities Re 2 = 3.054, Fr = 1, We = 98, Wi 2 = 6.26,

1 / 𝜌2 = 0.1, 𝜀 = 10, 𝛼2 = 0.5, 𝛽1 = 1 and 𝛽2 = 0.286. Fig. 4 depicts
he drop shape at 0.16 seconds and compared with the results of Vahabi
nd Kamkari [76] . As it is observed, the results are almost the same re-
ealing that the developed code is well capable to predict the behavior
f a rising drop in a fluid column with viscoelastic effects modeled by
he Giesekus constitutive equation. 
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Fig. 5. Viscoelastic conformation stress profiles for a viscoelastic drop rising in a Newtonian fluid column with insoluble surfactants on the interface with flow 

parameters Re 2 = 10, Fr = 1, We = 400, Wi 1 = 5, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 0.75, 𝛽2 = 1.0, 𝛼1 = 0.1, Pe = 50, C 0 = 0.5, C ∞ = 1, C ref = 0.5, E = 1, D = 0.5 and h c = 2.5 

at dimensionless times t = 2, 6 and 20. 
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Fig. 6. Surfactant concentration profile along the interface for a viscoelastic 

drop rising in a Newtonian fluid column at time instances t = 0, 2, 6, 10, 14, 

18 and 20 for the base case with flow parameters Re 2 = 10, Fr = 1, We = 400, 

Wi 1 = 5, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 0.75, 𝛽2 = 1.0, 𝛼1 = 0.1, Pe = 50, C 0 = 0.5, 

C = 1, C = 0.5, E = 1, D = 0.5 and h = 2.5. 
.3. Viscoelastic drop rise in a Newtonian fluid column with insoluble 

urfactants 

In this section, we consider a buoyancy driven 3D-axisymmetric vis-
oelastic drop rising in a Newtonian fluid column with insoluble surfac-
ants on the interface. To systematically examine the effects of various
ow parameters, we designate a base case which is defined as: Re 2 = 10,
r = 1, We = 400, Wi 1 = 5, 𝜀 = 2, 𝜌1 / 𝜌2 = 0.1, 𝛽1 = 0.75, 𝛽2 = 1.0,

1 = 0.1, Pe = 50, C 0 = 0.5, C ∞ = 1, C ref = 0.5, E = 1, D = 0.5 and
 c = 2.5. Fig. 5 presents the viscoelastic stress profiles for the base case
ow parameters at dimensionless time instances t = 2, 6 and 20. Fur-
her, the surfactant concentration profile along the interface at different
ime instances has been presented in Fig. 6 . 

At time t = 0, the drop is of a spherical shape with initial velocities
f the drop and the bulk fluid column assumed to be zero and the vis-
oelastic conformation stress tensor is set as 𝝉p ,0 = 𝕀 . The difference in
ensities of the drop and the bulk fluid column generates a buoyancy
orce that accelerates the drop in the vertical upward direction. The
otion of the rising drop depends on the magnitude of viscous stress,

iscoelastic stress and the Marangoni effects due to the presence of in-
oluble surfactants on the interface. The shape of the drop depends on
he deforming stresses and the interfacial tension force. If the deforming
tresses at the interface are sufficiently smaller than the interfacial ten-
ion force, the drop shape remains approximately spherical. However,
hen these deforming stresses are significant the interface deforms and

he drop shape changes depending on the properties of the bulk fluid:
t deforms to an oblate shape in inertia-dominated flows and to a pro-
ate shape with or without an indentation at the trailing end in flows
n which viscoelasticity is important. Further, in flows with surfactants

he interfacial tension becomes low when the surfactant concentration 

69 
ncreases and vice-verse. The presence of the interfacial tension gradi-
nt along the interface causes the liquid to move away from the low
nterfacial tension regime. 

The initial motion of the drop is dominated by viscous stresses as the
iscoelastic stresses take some time to build up. Further, along the inter-
ace, the interfacial tension force dominates compared to the viscous and
iscoelastic stresses. Hence, the shape of the drop is more spherical at
 = 2. In Fig. 6 , we can observe that initially the surfactant concentration
s uniform along the interface with a value C 0 = 0.5. As the drop rises
ue to buoyancy, the concentration of the surfactant increases near the
∞ ref c 
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ear end of the drop while it decreases at the top end of the drop com-
ared to the initial concentration. Hence, at the rear end the drop be-
omes more easily deformable due to lower interfacial tension, whereas
t the top end it becomes difficult to deform due to higher interfacial
ension. 

At t = 6, we can observe that the drop at the rear end starts to deform
nd it attains a cylindrical shape with a dimpled trailing end. By this
ime, the viscous and viscoelastic stresses start to overcome the interfa-
ial tension at the rear end of the drop. This is aided by the reduction
n the interfacial tension at the trailing end due to surfactant migration.
n Fig. 5 , we can observe that the maximum values of viscoelastic stress
omponent 𝜏rr are concentrated in the top end of the drop, while 𝜏zz 

s built up more near the tail end of the drop. The polymers inside the
rop is stretched along the flow direction. Since the local flow direction
s normal to the interface at the rear stagnation point, the viscoelastic
tress component 𝜏zz reaches its maximum value at the tail end of the
rop and pulls the interface inward. Since, the maximum values of 𝜏rr 

nd minimum values of 𝜏zz occur at the top end of the drop, the up-
tream axial flow experiences a strong turn tangential to the drop sur-
ace so that the polymers are greatly extended in the radial directions.
hus, the drop doesn’t experience noticeable deformation at its front
nd. 

With progress in time, the magnitude of viscoelastic stresses increase,
nd the drop continues to deform at the trailing end. In particular, the
rop at the tail end gets pulled up even more. The surfactant concen-
ration increases at the tail end till t = 6, after which it decreases. This
s due to the fact near the tail end of the drop, the interfacial area in-
reases with time due to large deformation at the tail end and hence, the
urfactant is spread over more interfacial area and thus, it gets spread
ver area rather than just at the tip. The simulations were stopped at
 = 20, as beyond that the drop shall start to split and the assumption of
ig. 7. Influence of Marangoni number for a viscoelastic drop rising in a Newtoni

c) sphericity, (d) elastic energy, (e) rise velocity and (f) kinetic energy for differe

v) E = 2.0 with Re 2 = 10, Fr = 1, We = 400, Wi 1 = 5, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 0.75,

70 
o topological change in the computational domain shall fail when the
rop splits. 

In all two-phase flow computations involving viscoelasticity, low
ensity and viscosity ratios have been used due to the challenge in
onvergence. At high density and viscosity ratios, there would be very
igh gradients in the viscoelastic stress which could be handled by
hoosing the stabilization parameter adaptively and it needs further
nvestigation. 

Next, we perform a parametric study to examine the effects of
arangoni number, initial surfactant concentration and Peclet number

n the rising viscoelastic drop dynamics in a Newtonian fluid column.
or the effects of other parameters like the viscosity ratio, Newtonian
olvent ratio, Giesekus mobility factor and Weber number in the absence
f insoluble surfactants, we refer to [45] . 

.3.1. Influence of Marangoni number 

In this section, we study the influence of Marangoni number on the
ising viscoelastic drop dynamics in a Newtonian fluid column with in-
oluble surfactants on the interface. We consider the base case flow pa-
ameters and vary only the Marangoni number. The following five dif-
erent Marangoni numbers are used in this study: (i) E = 0, (ii) E = 0.5,
iii) E = 1.0, (iv) E = 1.5 and (v) E = 2.0. The case E = 0 represents the
lean case, i.e. no surfactants on the interface. Fig. 7 presents the drop
hape at t = 20, diameter of the drop at r = 0, sphericity, elastic energy,
ise velocity and kinetic energy in the drop for different Marangoni num-
ers. 

In the presence of surfactants on the interface, the interfacial ten-
ion becomes low when the surfactant concentration increases and vice-
erse. Fig. 8 presents the surfactant concentration profile along the in-
erface at different time instances for the cases E = 0.5 and E = 2.0.
an fluid column: (a) drop shape at t = 20, (b) diameter of the drop at r = 0, 

nt Marangoni numbers (i) E = 0, (ii) E = 0.5, (iii) E = 1.0, (iv) E = 1.5 and 

 𝛽2 = 1.0, 𝛼1 = 0.1, C 0 = 0.5, C ∞ = 1, C ref = 0.5, Pe = 50, D = 0.5 and h c = 2.5. 
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Fig. 8. Surfactant concentration profile along the interface for a viscoelastic 

drop rising in a Newtonian fluid column at different time instances for the cases 

(a) E = 0.5 and (b) E = 2.0. 
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rom Fig. 8 , the effect of surfactants on the rising drop dynamics can
e understood by observing how the surfactant concentration evolves
ver time along the interface. Initially, we start with an uniform surfac-
ant concentration C 0 = 0.5. It is seen that the surfactant concentration
t the trailing end quickly increases to a maximum, and then slowly
ecreases. The local maxima moves away from central tip (arc
ength = 0) as the drop deforms. We can also see that the arc length
f the drop increases with time (as it deforms and becomes less spher-
cal), which contributes to the reduction of average surfactant concen-
ig. 9. Influence of initial surfactant concentration for a viscoelastic drop rising in a 

oncentrations (i) C 0 = 0.1, (ii) C 0 = 0.5, (iii) C 0 = 1.0 and (iv) C 0 = 1.5, surfactant c

b) C 0 = 0.1 and (c) C 0 = 1.5 with flow parameters Re 2 = 10, Fr = 1, We = 400, Wi 1
nd h c = 2.5. 

71 
ration. Till t = 5, the surfactant concentration increases at the tail end
f the drop and decreases at the top end compared to the initial con-
entration. Due to the non-uniform distribution of surfactant concentra-
ion on the interface, there will be an interfacial tension gradient. The
resence of the interfacial tension gradient causes the liquid to move
way from the low interfacial tension regime. Hence, near the tail end
f the drop, it will be pulled up more compared to the clean case and the
ame is observed in the drop shape at t = 20, refer Fig. 7 (a). Marangoni
umber is nothing but the rate of increase/decrease of the interfacial
ension coefficient. Hence, with increase in the Marangoni number, the
nterfacial tension coefficient either increases more rapidly or decreases
ore rapidly depending on the surfactant concentration at a particu-

ar point on the interface. Thus, the drop shape at t = 20 is pulled up
ore as the Marangoni number is increased. Due to this phenomenon,

he temporal evolution of the diameter of the drop at r = 0 decreases
ore with increase in the Marangoni number, see Fig. 7 (b). Similar

ehaviour is observed in the sphericity curve as well, see Fig. 7 (c),
s sphericity is a measure of the deformation of the drop relative to
he initial spherical shape. Further, the elastic energy in the drop in-
reases with time as the viscoelastic stresses are developed based on
he gradient of the fluid velocity. However, the rise is lower as the
arangoni number increases. From Fig. 7 (e) and (f), we can observe

hat the rise velocity and kinetic energy in the drop increases rapidly
nitially due to the force of buoyancy. Once, the viscous and viscoelas-
ic stresses start to dominate flow dynamics, the rise velocity and kinetic
nergy no longer increases. Further, with increase in the Marangoni
umber the rise velocity and kinetic energy decreases as the drop
ises. 

.3.2. Influence of initial surfactant concentration 

To study the influence of initial surfactant concentration on the rising
rop dynamics, we consider the base case flow parameters and vary only
he initial surfactant concentration C 0 . We consider the following five
ifferent cases in this study: (i) clean drop, (ii) C 0 = 0.1, (iii) C 0 = 0.5,
iv) C 0 = 1.0 and (v) C 0 = 1.5. Here, the clean drop refers to the case
here no insoluble surfactants were used on the interface. Fig. 9 (a)
resents the drop shape at t = 20, while Fig. 9 (b) and (c) presents the
urfactant concentration profile along the interface at different time in-
tances for the cases C 0 = 0.1 and C 0 = 1.5. We can observe that the
agnitude of increase in the surfactant concentration at the tail end is
igher for larger initial surfactant concentrations. Hence, with an in-
rease in the initial surfactant concentration, the drop at the tail end
ould be pulled up even more due to large gradients in the interfacial

ension and the same can be observed in Fig. 9 (a). Thus, the diameter
Newtonian fluid column: (a) drop shape at t = 20 for different initial surfactant 

oncentration profile along the interface at different time instances for the cases 

 

= 5, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 0.75, 𝛽2 = 1.0, 𝛼1 = 0.1, E = 1, Pe = 50, D = 0.5 
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Fig. 10. Influence of Peclet number for a viscoelastic drop rising in a Newtonian fluid column: (a) drop shape at t = 20 for different Peclet numbers (i) Pe = 10, 

(ii) Pe = 50, (iii) Pe = 100 and (iv) Pe = 200, surfactant concentration profile along the interface at different time instances for the cases (b) Pe = 10 and (c) Pe = 200 

with flow parameters Re 2 = 10, Fr = 1, We = 400, Wi 1 = 5, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 0.75, 𝛽2 = 1.0, 𝛼1 = 0.1, E = 1, C 0 = 0.5, C ∞ = 1, C ref = 0.5, D = 0.5 and 

h c = 2.5. 
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f the drop at the axis of symmetry would decrease as the drop rises
ecause the drop develops an indentation near the tail end. The magni-
ude of decrease would be larger for higher initial surfactant concentra-
ions as the effect of surfactants would be higher and hence the liquid
ould move away from low interfacial tension regime. Since, the drop

s pulled up more for high surfactant concentrations, the sphericity of
he drop would decrease to a larger extent for high initial surfactant
oncentrations. 

.3.3. Influence of Peclet number 

In this section, we study the influence of Peclet number on the
iscoelastic drop rising in a Newtonian fluid column with insoluble
urfactants on the interface. We consider the base case flow parameters
nd use the following five different cases: (i) clean drop, (ii) Pe = 10,
iii) Pe = 50, (iv) Pe = 100 and (v) Pe = 200. Fig. 10 (a) presents the
rop shape at t = 20, while Fig. 10 (b) and (c) presents the surfactant
oncentration profile along the interface at different time instances for
he cases Pe = 10 and Pe = 200. We can observe that at high Peclet num-
ers, the surfactant concentration near the tail end of the drop is much
igher compared to low Peclet numbers. This is due to lower diffusion
nd domination of the transport of the surfactants along the interface
or high Peclet numbers. Hence, the effect of surfactants on the rising
rop dynamics would be more for higher Peclet numbers. Since, the sur-
actant concentration is higher near the tail end and also the gradient
f the variation of concentration along the interface is high for large
eclet numbers, the drop would be pulled up more at the rear end due
o lower interfacial tension and due to the Marangoni convection, the
uid moves away from low interfacial tension regime. This phenomenon
an be observed in Fig 10 (a). Since, the indentation at the tail end of the
rop is higher for larger Peclet numbers, the diameter of the drop at the
xis of symmetry would decrease to a larger extent with an increase in
he Peclet number. Moreover, the sphericity of the drop would also de-
rease more with an increase in the Peclet number as the drop deforms
ore. 

.4. Newtonian drop rise in a viscoelastic fluid column with insoluble 

urfactants 

In this section, we consider a buoyancy driven 3D axisymmetric New-
onian drop rising in a viscoelastic fluid column with insoluble surfac-
ants on the interface. To systematically examine the effects of various
ow parameters, we designate a base case which is defined as: Re 2 = 10,
r = 1, We = 400, Wi 2 = 15, 𝜀 = 2, 𝜌1 / 𝜌2 = 0.1, 𝛽1 = 1.0, 𝛽2 = 0.75,

2 = 0.1, Pe = 50, C 0 = 0.5, C ∞ = 1, C ref = 0.5, E = 1, D = 0.5 and
 = 2.5. Further, we use 600 degrees of freedom on the interface, the
c 

72 
ime step length is set as 𝛿t = 0.0005 and the computations are per-
ormed till I = 16. Fig. 11 presents the viscoelastic conformation stress
rofiles at time instances t = 4, 8 and 16. Moreover, the surfactant con-
entration profile along the interface at different time instances have
een presented in Fig. 12 . 

At time t = 0, we assume u 0 = 0 and 𝝉p ,0 = 𝕀 . Initially, the buoyancy
orce generated by the density difference between two fluids acceler-
tes the drop in the opposite direction of the gravity, i.e. the drop rises
p in the bulk fluid column. Further, the motion of the drop is domi-
ated by viscous stresses as the viscoelastic stresses take some time to
uild up. Along the interface, the interfacial tension force dominates
ompared to the viscous and viscoelastic stresses. Hence, the shape of
he drop is more spherical at t = 4. Further, we can observe that the
aximum values of viscoelastic stress component 𝜏rr starts to accumu-

ate at the front stagnation point, while 𝜏rz gets built up along the entire
ircumference of the bubble. However, the maximum values of 𝜏zz are
oncentrated at the rear stagnation point. At this time still the viscous
tresses continue to dominate the flow dynamics as the magnitude of
iscoelastic stresses are still small and hence, the drop shape remains
ore spherical. At time t = 8, the drop starts to become prolate and this

s an indication that the viscoelastic stresses are starting to dominate
he flow dynamics. Further, the maximum values of 𝜏zz and minimum
alues of 𝜏rr are concentrated at the rear stagnation point. Hence, the
olymers near the trailing end of the drop get stretched along the z di-
ection. The extensional viscoelastic stresses in general being large in a
hin section at the trailing end of the drop can surmount the interfacial
ension, hence forming a cusp-like trailing end [77] . The cusp-like trail-
ng end becomes more and more obvious as the time progresses. Since,
he maximum values of 𝜏rr and minimum values of 𝜏zz occur at the front
tagnation point, the upstream axial flow experiences a strong turn tan-
ential to the drop surface so that the polymers are greatly extended
n the radial directions. Thus, the drop doesn’t experience noticeable
eformation in the vicinity of its front end. With further advancement
n time, the viscoelastic stresses completely dominate the rising drop
ynamics. At t = 16, 𝜏zz gets concentrated only in the rear stagnation
oint resulting in the trailing end of the drop being extremely pulled
ut. 

From the surfactant concentration profiles in Fig. 12 , we can ob-
erve that the concentration near the tail end of the drop increases till
 = 8, while at the top end it decreases compared to the initial con-
entration. Due to this, the drop near the tail end has lower interfa-
ial tension while at the top end it has higher interfacial tension. Thus,
he drop is easily deformable at the tail end due to the addition of
urfactants. Further, Marangoni convection occurs due to non-uniform
istribution of surfactant along the interface. Due to the Marangoni
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Fig. 11. Viscoelastic conformation stress profiles for a Newtonian drop rising in a viscoelastic fluid column with insoluble surfactants on the interface with flow 

parameters Re 2 = 10, Fr = 1, We = 400, Wi 2 = 15, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, Pe = 50, C 0 = 0.5, C ∞ = 1, C ref = 0.5, E = 1, D = 0.5 and h c = 2.5 

at dimensionless times t = 4, 8 and 16. 
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onvection, the fluid inside the drop near the tail end moves away
rom low interfacial tension regime and hence the drop is pulled up
lightly. 

Computations of a Newtonian drop rising in a viscoelastic fluid col-
mn have revealed an interesting flow phenomenon. In the wake of the
ising drop, the velocity field at the vicinity of the trailing end is in
he direction of the motion of the drop, whereas it reverses its direc-
ion at a small distance away from the trailing end, commonly known
s negative wake [78] . Fig. 13 depicts the negative wake phenomenon
or the base case flow parameters at time t = 16. Moreover, with the
ddition of insoluble surfactants on the interface, the negative wake is
bserved much earlier than drops without insoluble surfactants. Fur-
her, we didn’t observe any jump in the velocity profiles as reported
73 
n the literature [79,80] . We next perform a parametric study to ex-
mine the effects of Marangoni number, initial surfactant concentration
nd Peclet number on the rising drop dynamics in a viscoelastic fluid
olumn. 

.4.1. Influence of Marangoni number 

To study the influence of Marangoni number on the rising drop dy-
amics, we consider the base case flow parameters and vary only the
arangoni number E. The following five different Marangoni numbers

re used in this study: (i) E = 0, (ii) E = 0.1, (iii) E = 1.0, (iv) E = 2.0, (v)
 = 3.0. The case E = 0 represents the clean case, i.e. no surfactants on
he interface. Fig. 14 presents the drop shape at t = 20, diameter of the
rop at r = 0, sphericity, elastic energy, rise velocity and kinetic energy
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Fig. 12. Surfactant concentration profile along the interface for a Newtonian 

drop rising in a viscoelastic fluid column at time instances t = 0, 1, 2, 4, 8, 12 

and 16 for the base case with flow parameters Re 2 = 10, Fr = 1, We = 400, 

Wi 2 = 15, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, Pe = 50, C 0 = 0.5, 

C ∞ = 1, C ref = 0.5, E = 1, D = 0.5 and h c = 2.5. 
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Fig. 13. Magnitude of velocity profile and velocity vectors at dimensionless 

time t = 16 for the base case with flow parameters Re 2 = 10, Fr = 1, We = 400, 

Wi 2 = 15, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, Pe = 50, C 0 = 0.5, 

C ∞ = 1, C ref = 0.5, E = 1, D = 0.5 and h c = 2.5. 
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n the drop for different Marangoni numbers. Further, Fig. 15 presents
he surfactant concentration profile at different time instances for the
ases E = 0.1 and E = 3.0. 

We can observe that the concentration of surfactants increase near
he tail end of the drop till t = 7, afterwards it decreases. Near the top
nd of the drop, the surfactant concentration decreases with time. From
ig. 15 , we can notice that the increase in the surfactant concentration
ear the top end of the drop is much higher for low Marangoni num-
ers. We know from the base case study, that a Newtonian drop rising
n a viscoelastic fluid column develops a long and narrow tail as the
ig. 14. Influence of Marangoni number for a Newtonian drop rising in a viscoelas

c) sphericity, (d) center of mass, (e) rise velocity and (f) kinetic energy for different

ith flow parameters Re 2 = 10, Fr = 1, We = 400, Wi 2 = 15, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2
 = 0.5. 

74 
rop rises. However, due to Marangoni convection we have observed
hat the drop at the tail end gets pulled up slightly due to the influ-
nce of surfactants. Further, the drop at the tail end also becomes much
atter as well and the same can be observed in Fig. 14 (a). Since the
tic fluid column: (a) drop shape at t = 16, (b) diameter of the drop at r = 0, 

 Marangoni numbers (i) E = 0, (ii) E = 0.1, (iii) E = 1, (iv) E = 2 and (v) E = 3 
, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, C 0 = 0.5, C ∞ = 1, C ref = 0.5, Pe = 50 and 
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Fig. 15. Surfactant concentration profile along the interface for a Newtonian 

drop rising in a viscoelastic fluid column at different time instances for the cases 

(a) E = 0.1 and (b) E = 3.0. 
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rop is pulled up due to Marangoni convection, the diameter of the
rop at the axis of symmetry increases to a lesser extent compared to
 drop rise without surfactants, see Fig. 14 (b). The sphericity of the
rop decreases with time as the drop deforms due to the effects of vis-
oelasticity and surfactant migration. The decrease is much larger for
he case E = 3 as the drop develops small projections at the tail end.
he effects of surfactants leads to flatter tail, whereas the viscoelasticity
ries to prevent the drop to rise at the tail end and hence, we observe
 combination of flat and sharper tail, see Fig. 14 (a). Further, the rise
elocity and kinetic energy in the drop decreases beyond the initial ac-
eleration due to buoyancy. The decrease in rise velocity and kinetic en-
rgy is much more for higher Marangoni numbers. Since, the drop with
ig. 16. Influence of initial surfactant concentration for a Newtonian drop rising in a 

oncentrations (i) C 0 = 0.25, (ii) C 0 = 0.5, (iii) C 0 = 1.0 and (iv) C 0 = 1.5, surfactant c

b) C 0 = 0.25 and (c) C 0 = 1.5. with flow parameters Re 2 = 10, Fr = 1, We = 400, Wi 2
nd h c = 2.5. 

75 
igher Marangoni numbers has lower rise velocity, the drop will have a
ower center of mass as it rises slowly and the same can be observed in
ig. 14 (d). 

.4.2. Influence of initial surfactant concentration 

In this section, we study the influence of initial surfactant concen-
ration on the Newtonian drop rising in a viscoelastic fluid column with
nsoluble surfactants on the interface. We consider the base case flow
arameters and use the following five different cases: (i) clean bubble,
ii) C 0 = 0.25, (iii) C 0 = 0.5, (iv) C 0 = 1.0, (v) C 0 = 1.5. Fig. 16 (a)
resents the drop shape at t = 16 for all the five cases, while Fig. 16 (b)
nd (c) presents the surfactant concentration profiles along the interface
or the cases C 0 = 0.25 and C 0 = 1.5. 

For larger initial surfactant concentrations, we can observe that the
agnitude of increase in the surfactant concentration at the tail end

f the drop is higher. Hence, the drop at the tail end would be pulled
p compared to a drop rise without surfactants, due to Marangoni con-
ection as a result of larger gradients in the interfacial tension and the
ame is observed in Fig. 16 (a). The diameter of the drop will increase
ue to the effects of viscoelasticity. However, due to the presence of in-
oluble surfactants, the increase would be lesser as the surfactants tries
o pull the tail end of drop up while the viscoelasticity resists it. Thus,
he sphericity of the drop would decrease to a larger extent for high
urfactant concentrations as the deformation is larger for the highest
urfactant concentration. 

.4.3. Influence of Peclet number 

To study the influence of Peclet number on the rising drop dynamics,
e consider the base case flow parameters and vary only the Peclet
umber. We consider the following five different cases in this study:
i) clean drop, (ii) Pe = 10, (iii) Pe = 50, (iv) Pe = 100 and (v) Pe = 125.
ig. 17 (a) presents the drop shape at t = 16 for all the five cases, while
ig. 17 (b) and (c) presents the surfactant concentration profiles along
he interface for the cases Pe = 10 and Pe = 125. 

Flows with high Peclet number have lower diffusion and hence the
onvection dominates which eventually leads to greater migration of
urfactants along the interface. Thus, at high Peclet numbers the sur-
actant concentration near the tail end of the drop is much higher com-
ared to low Peclet numbers. Due to greater migration of surfactants, the
arangoni convection would be higher as a result of higher gradients in

he surfactant concentration along the interface. Hence, the drop would
e pulled up more at high Peclet numbers and the same is observed in
ig. 17 (a). Further, due to the above phenomenon the increase in the
iameter of the bubble at the axis of symmetry would be lesser for high
eclet numbers. Moreover, the sphericity would decrease in time as the
viscoelastic fluid column: (a) drop shape at t = 16 for different initial surfactant 

oncentration profile along the interface at different time instances for the cases 

 

= 15, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, E = 1, Pe = 50, D = 0.5 
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Fig. 17. Influence of Peclet number for a Newtonian drop rising in a viscoelastic fluid column: (a) drop shape at t = 16 for different Peclet numbers (i) Pe = 10, 

(ii) Pe = 50, (iii) Pe = 100 and (iv) Pe = 125, surfactant concentration profile along the interface at different time instances for the cases (b) Pe = 10 and (c) Pe = 125 

with flow parameters Re 2 = 10, Fr = 1, We = 400, Wi 1 = 15, 𝜌1 / 𝜌2 = 0.1, 𝜀 = 2, 𝛽1 = 1.0, 𝛽2 = 0.75, 𝛼2 = 0.1, E = 1, C 0 = 0.5, C ∞ = 1, C ref = 0.5, D = 0.5 and 

h c = 2.5. 
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rop deforms and the decrease would be much greater for high Peclet
umbers. 

. Summary and observations 

A stabilized finite element scheme based on Local Projection Stabi-
ization and coupled ALE and Lagrangian approach is presented for com-
utations of buoyancy driven 3D-axisymmetric viscoelastic two-phase
ows with insoluble surfactants. The Navier–Stokes equations, Giesekus
onstitutive equation and surface evolution equation for the surfactant
oncentration are solved using this numerical scheme. In this scheme,
he surface partial differential equation describing the surfactant con-
entration on the interface is treated in a Lagrangian manner, whereas
ll other equations are handled with the arbitrary Lagrangian–Eulerian
pproach. The mesh update of the moving meshes is realized by solv-
ng the linear elasticity equation. The tangential gradient operator tech-
ique is used to handle the curvature term semi-implicitly in the force
alance at the interface. This technique allows us to approximate the
urvature term with continuous finite element basis functions. The main
ighlight of the numerical scheme is the three-field local projection sta-
ilized formulation. One-level LPS scheme based on an enriched approx-
mation space and a discontinuous projection space is used in the sta-
ilized formulation. This stabilized numerical scheme allowed us to use
soparametric second order conforming finite elements enriched with
ubic bubble functions for velocity and viscoelastic stress, second order
nite elements for surfactant concentration and discontinuous first or-
er finite element for pressure. First order implicit Euler method is used
or time discretization and fixed point iteration is used for linearization
f the non-linear terms in the equations. An excellent mass conservation
f the fluid mass and of the total surfactant mass is obtained with the
roposed scheme. 

A grid independence study is performed to obtain grid independent
umerical solutions. Further, the numerical scheme is validated for a
ewtonian drop rising in a Newtonian/Giesekus fluid column using the
umerical results in the literature. Further, a comprehensive numerical
nvestigation is performed for a Newtonian drop rising in a viscoelastic
uid column and a viscoelastic drop rising in a Newtonian fluid column
ith insoluble surfactants on the interface. The effects of the Marangoni
umber, initial surfactant concentration and Peclet number on the rising
rop dynamics are analyzed. The observations are summarized as fol-
ows. A viscoelastic drop rising in a Newtonian fluid column develops
n indentation around the rear stagnation point with a dimpled shape.
oreover, surfactants on the interface force the drop to rise slowly but

ncreases the indentation, i.e. the drop is pulled up more at the tail end.
urther, a Newtonian drop rising in a viscoelastic fluid column experi-
nces an extended trailing edge with a cusp-like shape and the negative
76 
ake phenomenon is observed. The presence of surfactants pulls the
ail end of the drop up slightly compared to flows without surfactants
nd makes the tail flatter with/without small undulations depending on
he magnitude of the surfactant concentrations. The proposed numerical
cheme shall be used to analyze the amount of polymers and surfactants
o be used during polymer flooding process for maximizing the oil and
as recovery [1–3] . 
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