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a b s t r a c t

A finite element scheme to compute the dynamics of insoluble surfactant on a deforming
free surface is presented. The free surface is tracked by the arbitrary Lagrangian–Eulerian
(ALE) approach, whereas the surfactant concentration transport equation is approximated
in a Lagrangian manner. Since boundary resolved moving meshes are used in the ALE
approach, the surface tension, which may be a linear or nonlinear function of surfactant
concentration (equation of state), and the Marangoni forces can be incorporated directly
into the numerical scheme. Further, the Laplace–Beltrami operator technique, which
reduces one order of differentiation associated with the curvature, is used to handle the
curvature approximation. A number of 3D-axisymmetric computations are performed to
validate the proposed numerical scheme. An excellent surfactant mass conservation with-
out any additional mass correction scheme is obtained. The differences in using a linear
and a nonlinear equation of state, respectively, on the flow dynamics of a freely oscillating
droplet are demonstrated.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Flows with surfactants are encountered in many industrial and biomedical applications such as enriched oil recovery,
plastic production, detergents, drug delivery and lung mechanics. The presence of surfactant at the interface between two
immiscible liquids reduces the surface tension. Therefore, a nonuniform distribution of surfactant generates variations in
the surface tension which induce Marangoni convection. Further, adsorption and desorption of surfactants between the
interface and the bulk phase may take place in the soluble surfactant case.

Apart from other challenges associated with computations of interfacial flows, the presence of surfactants makes the
computation more challenging. The coupled time-dependent Navier–Stokes and surfactant transport equations have to be
solved in a time-dependent domain, which is a priori unknown. Since the insoluble surfactant transport equation has to
be solved on the moving interface, the interface has to be captured/tracked accurately. Therefore, the ability to study the
precise effect of surfactants in fluid flows largely depends on the accuracy of the numerical scheme, which is used to solve
the flow equations and the transport equation, simultaneously in a moving domain.

Interface capturing/tracking methods such as Volume-of-Fluid [16,18,27,29–31,40], Level set [17,26,32,35,36,42], Front
Tracking [37,39], arbitrary Lagrangian–Eulerian [5,13,14,19,24,25] and pure Lagrangian [10,11] are popular approaches and
often used in many numerical studies of clean, deforming interfacial flows. Each method has its own advantages and dis-
advantages. We note that the above literature list is not complete in the context of interfacial flow simulations. Methods
. All rights reserved.
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like immersed boundary element method and molecular dynamics simulation have also been used in computations of
interfacial flows. Although, there have been many methods developed for capturing/tracking the interface in interfacial
flows, numerical simulations incorporating the surfactant effects are rare. A Volume-of-Fluid based numerical scheme
for computing interface flows with surfactants has been proposed in [30]. The formulation of the numerical scheme de-
pends on the assumption of a linear equation of state, which relates the relation between the surface tension and the sur-
factant. Another numerical scheme based on the Volume-of-Fluid method has been developed for flows with insoluble
surfactant in [20], in which an arbitrary equation of state could be used. Further, the authors have not determined the
surfactant concentration directly, but by calculating the interfacial area and the surfactant mass, separately, the surfactant
concentration obtained. A Level set based numerical scheme for two-dimensional interface flows with insoluble surfactant
has been presented in [42]. In the context of Level set method, similar works on evolving quantities (but not necessarily
surfactant concentration) along a moving interface can be found in [1,2]. A coupled Level set/Front Tracking has also been
developed in [3] for studying the effects of the surfactants on capillary waves. In [28], an arbitrary Lagrangian–Eulerian
(ALE) based finite element method has been developed for interfacial surfactant transport. The finite element discretisa-
tion used in [28] for the surfactant concentration differs from most of the existing mapped finite element codes, since the
basis functions of the reference element varies cell-wise, i.e., each cell has a different finite element space but with same
order and degrees of freedom. Further, to calculate the surface (tangential) gradient, a 3� 3 system is solved at each quad-
rature point on the hypersurface.

In our numerical scheme, we use the ALE approach to track the moving interface, i.e., the interface is resolved by a moving
mesh. Thus, the collection of edges/faces, which approximate the free surface, can be used at the same time as the compu-
tational domain for the transport equation. Further, the surface tension and local curvature can be included accurately. In our
approach, we replace the curvature by the Laplace–Beltrami operator and apply integration by parts to reduce one order of
differentiation associated with the curvature [6,7]. Thus, we end up with surface integrals with surface (tangential) gradient,
which is similar as in the surfactant concentration transport equation.

The paper is organised as follows. In Section 2, the governing equations and their transformation into the dimensionless
form are presented. Section 3 is devoted to the coupled ALE/Lagrangian finite element scheme used to approximate the solu-
tion of the flow equations and the surfactant concentration. Finally, in Section 4 computational results for validating the
numerical scheme are presented.

2. Governing equations

2.1. Dimensional form of the flow equations

We consider a Newtonian incompressible fluid flow with insoluble surfactant which is bounded by a time-dependent do-
main XðtÞ � Rd; d ¼ 2;3. For simplicity, we assume that the entire boundary of XðtÞ is a free surface CFðtÞ, i.e., CFðtÞ :¼ @XðtÞ
and that gravitational effects can be neglected. In the time interval ð0; T�, the fluid flow is described by the time-dependent
incompressible Navier–Stokes equations
q
@u
@t
þ ðu � rÞu

� �
¼ r � Sðu; pÞ; r � u ¼ 0 in XðtÞ: ð1Þ
Here, u is the velocity, p is the pressure, t is the time and q is the density. The stress tensor Sðu; pÞ for the Newtonian incom-
pressible liquid is given by
Sðu;pÞ ¼ l @ui

@xj
þ @uj

@xi

� �
� pdi;j; i; j ¼ 1; . . . ; d;
where l is the dynamic viscosity, ðx1; . . . ; xdÞ 2 Rd and di;j is the Kronecker delta. At time t ¼ 0 the domain and the velocity
field are known:
Xð0Þ ¼ X0; ujt¼0 ¼ u0:
On the free surface CFðtÞ, we impose the kinematic condition
u � m ¼ wf � m
and the force balancing condition
m � Sðu;pÞ � m ¼ rðCÞK; si � Sðu;pÞ � m ¼ si � rrðCÞ
for i ¼ 1; . . . ; d� 1 and any t 2 ð0; T�. Here, m, and si are the unit normal and tangential vectors, respectively, on the free sur-
face CFðtÞ. Further, wf is the free surface velocity, K is the sum of the principal curvatures, C is the surfactant concentration
and rðCÞ is the C dependent surface tension coefficient given by an equation of state (EOS). Often, see for example [9,28,43],
a nonlinear Langmuir equation of state in the form
rðCÞ ¼ r0 þ RTaC1 lnð1� C=C1Þ; ð2Þ
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is used. Here, r0 is the surface tension coefficient of the surfactant-free (clean) liquid, R is the ideal gas constant, Ta is the
absolute temperature and C1 is the maximum surface packing surfactant concentration. When the variation of the surfac-
tant concentration around a reference surfactant concentration C1 is small, we can use the Henry’s linear equation of state
rðCÞ ¼ r1 þ RTaðC1 � CÞ; ð3Þ
see for example [20,28]. Here, r1 corresponds to the surface tension in the reference phase.

2.2. Surfactant transport along a deforming free surface

2.2.1. Convection–diffusion equation for surfactant
The surfactant concentration along a deforming free surface is described by a scalar convection–diffusion equation with a

source like term to account for the local changes in the free surface area. It reads:
@C
@t
þr � ðCUÞ þ Cðu � mÞr � m ¼ DsDC on CFðtÞ; ð4Þ
see for e.g. [20,34,41]. Here, Ds is the surface diffusivity of the surfactant and U ¼ ðu � siÞsi ¼ ðu� ðu � mÞ � mÞ; i ¼ 1; . . . ; d� 1, is
the velocity along the free surface. The surface (tangential) gradient operator r and the Laplace–Beltrami operator ðDÞ are
defined by
rC :¼ rC� ðm � rCÞm; DC :¼ r � rC:
Note that in the definitions above we have assumed that C is defined not only on CFðtÞ but also in a certain neighbourhood.
However, it is well-known that the restrictions of rC and DC on CFðtÞ depend only from values of C on CFðtÞ. This has to be
taken into account also in the boundary condition for the Navier–Stokes equation where
si � Sðu;pÞ � m ¼ si � rrðCÞ ¼ si � rrðCÞ:
We complete Eq. (4) by the initial condition
Cjt¼0 ¼ C0:
Note that no boundary condition has to be specified due to our assumption that the boundary CFðtÞ of XðtÞ is a closed surface.

2.2.2. Alternative form of the surfactant transport equation
In our numerical scheme, we use an alternative form of the surfactant concentration equation
@C
@t
þ U � rCþ Cr � u ¼ DsDC on CFðtÞ; ð5Þ
see for example [8,23,43]. Here, the tangential divergence of the fluid velocity r � u is defined as the trace
r � u ¼ trððI� m� mÞruÞ:
Here, I and � denote the identity tensor and the vector direct product, respectively. We note that, when the free surface is
not deforming, i.e., u � m ¼ 0, the standard form of the transport equation can be used. Further, the equivalence between Eqs.
(4) and (5) can be shown by decomposing the velocity u in Eq. (5) by
Cr � u ¼ Cr � ððu � mÞmÞ þ Cr � U ¼ Cðu � mÞr � mþ Cr � U

and combining the last term and the term U � rC in Eq. (5).

2.3. Nondimensional form of the governing equations

To rewrite the Navier–Stokes equations (1) and the surfactant concentration equation (5) into a nondimensional form, we
introduce the scaling factors L and Uref as characteristic length and velocity, respectively. Further, we define the nondimen-
sional variables as
~x ¼ x
L
; ~u ¼ u

Uref
; ~w ¼ w

Uref
; ~t ¼ tUref

L
; ~p ¼ p

qU2
ref

; eC ¼ C
C1

:

In our model, with this scaling, the relevant dimensionless numbers (Reynolds, Weber and Peclet, respectively) are defined
as
Re ¼ qUref L
l

; We ¼ qU2
ref L

r0
; Pe ¼ Uref L

Ds
:

Using these nondimensional parameters in the Navier–Stokes equations (1), and omitting the tilde afterwards, we obtain
@u
@t
þ ðu � rÞu ¼ r � Sðu;pÞ; r � u ¼ 0 in XðtÞ ð6Þ
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with
Sðu;pÞ ¼ 1
Re

@ui

@xj
þ @uj

@xi

� �
� pdi;j; i; j ¼ 1; . . . ; d:
Using the nonlinear equation of state (2), the nondimensional form of the force balancing condition becomes
m � Sðu; pÞ � m ¼ 1
We
ð1þ E lnð1� CÞÞK;

si � Sðu; pÞ � m ¼ �
E

We
si �

rC
1� C

� �
;

ð7Þ
where E is the surfactant elasticity defined as E ¼ RTaC1=r0. Similarly, using the linear equation of state (3), the nondimen-
sional form of the force balancing condition becomes
m � Sðu; pÞ � m ¼ 1
We

1þ E
C1

C1
� C

� �� �
K;

si � Sðu; pÞ � m ¼ �
E

We
si � rC:

ð8Þ
Next, using these nondimensional variables in Eq. (5), and omitting the tilde afterwards, we obtain the nondimensional form
of the surfactant concentration equation as
@C
@t
þ U � rCþ Cr � u ¼ 1

Pe
DC in CFðtÞ: ð9Þ
Remark 1. The surfactant concentration model described here can be directly extended to the case of non-closed free
surfaces. Then, boundary conditions at @CFt have to be added, for example inhomogeneous Dirichlet condition
C ¼ Cg on @CFt
or Neumann type boundary condition
rC � n ¼ CN on @CFt ;
where n denotes the intrinsic unit normal of @CFt which is tangential to CFt , and Cg and CN are given functions.
3. Numerical scheme

3.1. Coupled ALE-Lagrangian formulation

For solving the coupled problem (6) and (9) numerically, we need two meshes, one to decompose XðtÞ for the solution of
the Navier–Stokes equation and one for decomposing the free surface CFðtÞ ¼ @XðtÞ and solving the surfactant concentration
equation. The idea in this paper is to track the free surface by the arbitrary Lagrangian–Eulerian (ALE) approach and to use
the discrete representation of CFðtÞ as a mesh to discretise Eq. (9). Indeed, to find the new shape of the domain X for the next
time step, we solve Eqs. (6) and (9) with C given from the previous time step and move first the free surface with the fluid
velocity u. Let WCFt

denote the resulting displacement of the free surface. Then, we compute the displacement (W) of inner
points of XðtÞ by solving the linear elasticity problem
r � TðWÞ ¼ 0 in XðtÞ; W ¼ WCFt
on CFt ;
where T denotes the stress tensor given by
Tð/Þ ¼ k1ðr � /ÞIþ 2k2Dð/Þ:
Here, D is the deformation tensor, k1 and k2 are the Lame constants, which are chosen to be k1 ¼ k2 ¼ 1 in our numerical
tests. Once the displacement vector is calculated, we compute the mesh velocity w through the relation w ¼ dW=dt. After
rewriting the Navier–Stokes equation (6) into the ALE form, it reads:
@u
@t
þ ððu�wÞ � rÞu ¼ r � Sðu; pÞ; r � u ¼ 0 in XðtÞ: ð10Þ
Note that we move the free surface with the liquid velocity, i.e., the surfactant concentration equation is considered in a
Lagrangian manner. As a consequence, the Lagrangian form of Eq. (9) reads:
@C
@t
þ Cr � u ¼ 1

Pe
DC in CFðtÞ: ð11Þ
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Due to the Lagrangian formulation, this transport equation does not contain any convection term. Thus, we do not need any
stabilisation schemes while solving this transport equation by finite element methods.

3.2. The variational form

The solutions of the Navier–Stokes equations (10) and the surfactant concentration equation (11) are approximated by
a finite element method. Thus, first we derive the variational form of the respective equations. To simplify the notation,
from here on we use the subscript t to denote the time dependency, for example, Xt for XðtÞ. Let L2ðXtÞ and HmðXtÞ,
m P 1 be the usual Lebesgue and Sobolev spaces. We define V ¼ H1ðXtÞ3 and Q ¼ L2ðXtÞ as a velocity space and a pressure
space, respectively, for Eq. (10). After incorporating the force balancing boundary condition, the variational form of Eq.
(10) reads:

Given X0 and uð0Þ, find ðuðtÞ; pðtÞÞ 2 V � Q such that for all ðv ; qÞ 2 V � Q
@u
@t
;v

� �
þ aððu�wÞ; u;vÞ � bðp;vÞ þ bðq;uÞ ¼ f ðK;vÞ; ð12Þ
Here, ð�; �Þ denotes the inner product in L2ðXtÞ and
aðû; u;vÞ ¼ 2
Re

Z
Xt

DðuÞ : DðvÞdxþ
Z

Xt

ðû � rÞu � v dx

bðq;vÞ ¼
Z

Xt

qr � v dx:
Further, for the nonlinear equation of state (7), f ðK;vÞ is defined as
f ðK; vÞ ¼ � 1
We

Z
CFt

ð1þ E lnð1� CÞÞðv � mÞKdS� E
We

Z
CFt

ðv � siÞ
rC

1� C

� �
� si dS: ð13Þ
In case of the linear equation of state (8), we have
f ðK; vÞ ¼ � 1
We

Z
CFt

1þ E
C0

C1
� C

� �� �
ðv � mÞKdS� E

We

Z
CFt

ðv � siÞrC � si dS: ð14Þ
The curvature K in the surface integrals (13) and (14), respectively, is replaced by the Laplace–Beltrami operator D of the
identity id. More precisely, Km ¼ �Did, and integration by parts reduces one order of differentiation associated with the cur-
vature. Hence, the surface integrals in (13) and (14) which contain the curvature, become
� 1
We

Z
CFt

rid : rðv½1þ E lnð1� CÞ�ÞdS ¼ � 1
We

Z
CFt

rid : ½1þ E lnð1� CÞ�rv � E
1� C

rC
� �

� v
� �

dS
and
� 1
We

Z
CFt

rid : r v 1þ E
C0

C1
� C

� �� �� �
dS ¼ � 1

We

Z
CFt

rid : 1þ E
C0

C1
� C

� �� �
rv � ErC� v

� �
dS;
respectively. Next, to derive the variational form of Eq. (11), we set W ¼ H1ðCFt Þ. The variational form of Eq. (11) is obtained
by multiplying it with a test function w 2W and integration by parts for the diffusive term. It reads:

For a given free surface CFt and an initial distribution of surfactant concentration Cð0Þ, find C 2W such that for all w 2W
@C
@t
;w

� �
þ 1

Pe
ðrC;rwÞ þ ðCr � u;wÞ ¼ 0: ð15Þ
Here, ð�; �Þ denote the inner product in L2ðCFt Þ and its vector-valued versions, respectively.
Finally, we mention that the three-dimensional variational formulation can naturally serve as a starting point for gener-

ating an axisymmetric variational form by transforming all integrals onto corresponding coordinates. For details we refer to
Ganesan and Tobiska [14].

3.3. Calculation of the surface gradient

The calculation of the surface gradient can be done in two different ways. Either using the information from the surface
mesh only, as in [28], or using the background mesh which is needed for the solution of the Navier–Stokes equation.

3.3.1. Method 1 (using the surface mesh)
Let K be a curved triangular/quadrilateral surface from the physical 3D space, and bK be their corresponding reference ele-

ment in a parametric ðn;gÞ plane. Then, we have the mapping FK : bK ! K given by
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x ¼ xðn;gÞ; y ¼ yðn;gÞ; z ¼ zðn;gÞ;
where ðn;gÞ 2 bK . Further, let /ðx; y; zÞ be a function defined on K. Setting
/̂ðn;gÞ ¼ /ðxðn;gÞ; yðn;gÞ; zðn;gÞÞ
and applying the chain rule, we get
@/̂
@n
¼ @/
@x

@x
@n
þ @/
@y

@y
@n
þ @/
@z

@z
@n
¼ r/ � s1;

@/̂
@g
¼ @/
@x

@x
@g
þ @/
@y

@y
@g
þ @/
@z

@z
@g
¼ r/ � s2;
where s1 ¼ @x
@n ;

@y
@n ;

@z
@n

� �
and s2 ¼ @x

@g ;
@y
@g ;

@z
@g

� �
are tangential vectors on the surface. Then,
m ¼ s1 � s2

ks1 � s2k
;

is the unit normal vector on the surface. Now, from
r/ ¼ r/� ðm � r/Þ � m;
we have the following conditions
r/ � s1 ¼
@/̂
@n

; r/ � s2 ¼
@/̂
@g

; r/ � m ¼ 0:
Thus, in case that only the function U on K, i.e., bU, is known, the surface gradient rU can be computed by solving the linear
3� 3 system above.

3.3.2. Method 2 (using the background mesh)
Having in mind that the local finite element basis functions for solving the surfactant concentration equation are restric-

tions of local finite element basis functions with respect to a tetrahedral or a hexahedral mesh, the computation of the sur-
face gradient is based directly on the formula
r/ ¼ r/� ðm � r/Þ � m:
In all of our test examples, we will use this method to compute the surface gradient. This is possible since the two meshes in
our coupled arbitrary Lagrangian–Eulerian and Lagrangian approach are closely related to each other.
4. Validation

The algorithm described above has been implemented in our in-house code MooNMD [21]. To validate the proposed
numerical scheme, an array of computations for 3D-axisymmetric test cases are performed. Testing of the flow solver for
the free surface flows in this numerical scheme has been reported in [12,14,15] and will not be discussed here. The consid-
ered test cases are the diffusion of surfactant over a static sphere, the convection of the free surface and the surfactant over
an expanding sphere, the Marangoni convection over a sphere, and the freely oscillation droplet with and without surfactant.

In the first test case, we compare the numerical solution with the exact analytical solution of the surfactant concentration.
In the second, the convection test case, the surfactant mass conservation is examined. The surfactant concentration profile
and the influence of the Peclet number on the surfactant concentration profile are presented in the Marangoni test case. Fi-
nally, the shapes at different instance and the trajectories of some positions of a freely oscillating droplet with and without
surfactant are presented.

In the computations, we always used isoparametric P2 finite elements, i.e., continuous, mapped piecewise polynomials of
second order for the spatial discretisation of the surfactant concentration. For the spatial discretisation of velocity and pres-
sure in the Navier–Stokes equations, the inf–sup stable pair Pb

2, Pdisc
1 has been chosen, i.e., continuous, mapped piecewise

polynomials of second order enriched with a cubic bubble function for velocity and discontinuous, mapped piecewise poly-
nomials of first order for the pressure. Further, the fractional-step-# scheme has been applied for the temporal discretisation,
see e.g. [38]. The used surfactant elasticity and the reference surfactant concentration in all computations are E ¼ 0:2 and
C1 ¼ 0:5, respectively.

4.1. Diffusion test

We consider a fixed sphere of radius R and a nonuniform distribution of surfactant over the sphere. The surfactant will
diffuse over the sphere and tends to become uniform when time goes to infinity. Taking into consideration that the Laplace–
Beltrami operator on a sphere parametrised by spherical coordinates
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x ¼ R cos u sin h; y ¼ R sin u sin h; z ¼ R cos h;
can be written in the form
DC ¼ 1
R2 sin h

@

@u
1

sin h
@C
@u

� �
þ @

@h
sin h

@C
@h

� �� 	
;

we see that an exact analytical solution for the diffusion of a surfactant is given by
Cðh; tÞ ¼ 0:5þ 0:5 exp
�2t

PeR2

� �
cos h; 0 6 h 6 p;
where h is the angular coordinate measured from the pole of the sphere. This test example has been used earlier in [20]. We
evaluated the errors in the surfactant concentration by using
L1ðL2Þ :¼ sup
ð0;TÞ
kC� ChkL2ðCFt Þ

; L2ðL2Þ :¼
Z T

0
kC� Chk2

L2ðCFt Þ

� �1
2

;

where
kC� ChkL2ðCFt Þ
¼

Z
CF ðtÞ
ðC� ChÞ2

 !1
2

:

The coarse mesh (Level 1) contains 101 degrees of freedom for the surfactant concentration. The finer mesh levels (Level 2–4)
are obtained by successively refining the initial coarse mesh uniformly. The computed errors for Pe ¼ 1 in the L1- and the L2-
norm for an unit sphere at time T ¼ 2 are presented in Fig. 1. In this computation, a linear equation of state with C1 ¼ 1 has
been used. Even on the coarse mesh, the error is very small. We observe a convergence order of about 3.9.

4.2. Convection test

One important property that reflects the accuracy of a numerical scheme is the mass conservation. The mass conservation
of the flow solver of the proposed numerical scheme has been already studied in [12]. There, for largely deforming impinging
droplets without surfactants a mass loss of less than 1% has been observed. For investigating the mass conservation of the
surfactant, we consider an unit sphere with the nonuniform surfactant distribution
C0ðhÞ ¼ 0:5þ 0:5 cos h; ð16Þ
where h is again the angular coordinate measured from the pole of the sphere. Instead of solving the Navier–Stokes equation
for the fluid velocity, we move the free surface with the given prescribed divergence-free velocity
u ¼ x

ðx2 þ y2 þ z2Þ3=2 ;
y

ðx2 þ y2 þ z2Þ3=2 ;
z

ðx2 þ y2 þ z2Þ3=2

 !
;
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Fig. 1. Surfactant concentration error over the free surface of a fixed sphere.
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normal to the free surface. The sphere starts to expand when time proceeds. Due to the free surface stretching, the surfactant
concentration starts to decrease. Moreover, using Pe ¼ 10 surfactant diffusion also takes place. When the mass of the surfac-
tant is conserved, we should have
Z

CF ðtÞ
Cds ¼ 2p:
In the computation, we used the mesh of the diffusion test example and a time step of 10�5 on all mesh levels. The mass loss
at the time T ¼ 0:25 is shown in Fig. 2 for increasing mesh levels, and it is always below 1%. This shows the high accuracy of
the proposed numerical scheme.

4.3. Marangoni convection

A convection driven by the variation of surface tension is called Marangoni convection. Since in flows with surfactants the
surface tension becomes low when the surfactant concentration increases and vice verse, the presence of the surface tension
gradient causes the liquid to move away from the low surface tension regime. In order to demonstrate this effect, we con-
sider a spherical droplet in zero gravity space surrounded by a static ambient gas. Since the droplet is already in the equi-
1 2 3 4 5

10
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10
−5

level

su
rf
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ta

nt
 m

as
s 
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ss

Fig. 2. The surfactant mass loss over the free surface of an expanding sphere.

Fig. 3. Surfactant concentration profile over the free surface of a droplet at different instances for Pe ¼ 1.
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librium position, there will be no movement in the droplet if the surface force is also in equilibrium. However, this is not the
case here, since we start with a nonuniform surfactant distribution over the droplet surface according to Eq. (16). Thus, the
imbalances in the surface force induce a movement in the droplet. Note that this initial movement is entirely due to Marang-
oni convection.

In this test example, we have to solve both the Navier–Stokes equations and the surfactant concentration equation. First,
we perform a computation for Re ¼ 1; We ¼ 1 and Pe ¼ 1 until the time T ¼ 2. The computationally obtained surfactant dis-
tributions over the arc length at different instance is presented in Fig. 3. Since the Peclet number in this computation is small,
the surfactant distribution becomes almost uniform over a shot time T ¼ 2. Next, to show the influence of the Peclet number,
we perform an array of computations for the same test configuration with Pe ¼ 1, 10, 100 and 1000. The surfactant distri-
bution over the free surface at time T ¼ 2 in each Peclet number case is presented in Fig. 4. The influence of the Peclet num-
ber is clearly visible. Further, also for a large Peclet number there is no oscillations in the numerical solution (even on a
coarse mesh) as reported in the Volume-of-Fluid method [20]. This shows the advantage of using the boundary resolved
mesh and the Lagrangian approach (no convection term) for solving the surfactant concentration equation.

4.4. Freely oscillation droplet

We consider a 3D-axisymmetric oscillating viscous liquid droplet surrounded by a static ambient gas. Initially, the droplet
shape is perturbed from its equilibrium shape using
RðhÞ ¼ R0 1þ �Sk
p
2
� h

� �� �
;

where R is the distance from the center of the droplet to the free surface, R0 is the radius of the spherical droplet, � is a con-
stant and k is the order of the spherical harmonic Sk. In all computations of oscillating droplet, we used
Re ¼ 1000; We ¼ 13:5; Pe ¼ 10; k ¼ 2 and � ¼ 0:3 with L ¼ R0 ¼ 1� 10�3 m and Uref ¼ 1 m=s.

4.4.1. Influence of mesh size
In this test case, we start at t ¼ 0 with a uniform distribution of surfactant, i.e. Cðh;0Þ ¼ 0:5. For the diffusion test on a

fixed domain, in which an analytical solution is known, we studied the convergence order on a sequence of uniformly refined
meshes. In the oscillating droplet case, we deal with highly unstructured moving meshes with a dynamically changing num-
ber of degrees of freedom (if remeshing is needed to guarantee a certain mesh quality). Under these circumstances, the usual
approach to determine an experimental order of convergence by doing three computations on meshes of size 2h; h and h=2
cannot be applied. Nevertheless, we estimated the mesh quality by comparing the numerical results for three different
meshes. For this we considered at time t ¼ 0 three different initial meshes generated by the mesh generator Triangle [33]
fixing 200, 600 and 800 degrees of freedom on the free surface. The resulting total numbers of degree of freedom have been
6674, 19,783 and 31,338. In the following, we refer to these variants as variant 1, 2 and 3, respectively. As shown in Fig. 5, the
obtained trajectories of rmax, the maximal radius of the droplet in the radial direction, in all mesh variants are almost iden-
tical. However, small variations in the trajectory path are visible in the close-up view, see Fig. 6. We computed the frequency
ðxnÞ and the scaled damping factor ðdnÞ after n periods given by
Fig. 4. Influence of the Peclet number on the surfactant concentration profile over the free surface of a droplet at time T ¼ 2.
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Fig. 5. The obtained trajectory of the rmax in a freely oscillating droplet in three variants of meshes with LEOS.
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Fig. 6. The close-up view of the obtained trajectory of the rmax in a freely oscillating droplet in three variants of meshes with LEOS.

Table 1
Frequencies obtained after n periods on the coarsest mesh (var 1) with a uniform initial surfactant distribution and LEOS.

n 1 3 5 7 9 11 13 15

xn (1/s) 117.6 118.6 119 119.3 119.4 119.6 119.6 119.7

Table 2
The damping factor dn obtained in three different variants of meshes with a uniform initial surfactant distribution and LEOS.

n 1 3 5 7 9 11 13 15

var 1, dn 0.9161 0.9223 0.9257 0.9275 0.9287 0.9296 0.9301 0.9305
var 2, dn 0.9163 0.9223 0.9257 0.9275 0.9287 0.9295 0.9301 0.9305
var 3, dn 0.9163 0.9224 0.9257 0.9276 0.9287 0.9295 0.9301 0.9305
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xn ¼ n=tn; dn ¼
rmaxðtnÞ � r1

rðt0Þ � r1

� �1=n

;

where tn is the time at the period n, and r1 is the radius of the spherical droplet with the same volume as the initial droplet
and in our considered example r1 ¼ 1:00723. In the numerically computed frequencies we saw no differences on the three
meshes. Therefore, in Table 1 only the numbers computed on the coarsest mesh are given. Table 2 shows the small differ-
ences in the damping factor on the three different meshes. Further, a least squares fit of ðrmax � r1Þ=ðrðt0Þ � r1Þ to ðe�knþle Þ
has been performed resulting in k ¼ 0:07027 and le ¼ 0:04293 and which is in good agreement with the scaled damping
A sequence of shapes and flow fields at different instances of a freely oscillating droplet, timings from top to bottom are t ¼ 4, 7, 12 and 16. Colours
nt the magnitude (red represents the maximum and blue represents the minimum in each image) of the pressure field in the droplet. (For
tation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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factors. Moreover, the relative mass loss in each variant in the entire computation is less than 0.003% which underlines the
high accuracy of the proposed numerical scheme.

4.4.2. Influence of surfactants
To study the influence of surfactants on the dynamic of the oscillating droplet, we consider the following three cases:

(i) surfactant-free (clean) free surface,
(ii) surfactant with linear equation of state (LEOS), and

(iii) surfactant with nonlinear equation of state (NLEOS).

For cases (ii) and (iii), initially, the surfactant is distributed nonuniformly over the free surface using
Fig. 8.
and (iii

Fig. 9.
and (iii
Cðh;0Þ ¼ 0:9ð1� sin hÞ; 0 6 h 6 p:
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The trajectory of the rmax in a freely oscillating droplet for (i) surfactant-free (clean) free surface, (ii) surfactant with linear equation of state (LEOS)
) surfactant with nonlinear equation of state (NLEOS) cases.
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The trajectory of the zmax in a freely oscillating droplet for (i) surfactant-free (clean) free surface, (ii) surfactant with linear equation of state (LEOS)
) surfactant with nonlinear equation of state (NLEOS) cases.



Table 3
Numerically obtained frequencies xn for the freely oscillating droplet with a nonuniform initial surfactant distribution.

xn (1/s)

Case (i) Case (ii) Case (iii)

n ¼ 1 118.9 112.35 104.16
n ¼ 2 119.91 119.04 108.69
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Fig. 10. The trajectory of the rmax in a freely oscillating droplet for the cases with the linear (LEOS) and nonlinear (NLEOS) equation of state.
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Since the free surface is not in the equilibrium position, the droplet starts to oscillate around its equilibrium position even in
the case (i) due to the imbalance of the surface force. In addition to that, in cases (ii) and (iii) a Marangoni convection takes
place due to the nonuniform distribution of the surfactant. Computational results of the surfactant-free oscillating droplet
(case i) with the considered flow parameters were already compared with the theoretical results in [14].

The obtained shapes and pressure isolines of the droplet at different instances are shown in Fig. 7 for the three cases. In
each instance, the shape and the pressure distribution of the droplet for cases (i) and (ii) look similar. However, for the non-
linear equation of the state, case (iii), it looks different from cases (i) and (ii) at their respective instance. To see the surfactant
effect, we calculated the trajectories of rmax and zmax, the maximal radius of the droplet in the radial and axial direction,
respectively. Fig. 8 shows the trajectories of rmax for three different cases. Here, the difference between the clean and the sur-
factant contaminated cases can clearly be seen. In both LEOS and NLEOS cases, the amplitude is less in comparison with the
clean surface case. A similar behaviour is also observed in Fig. 9, in which the trajectories of zmax for three different cases are
presented. It is clear, since the presence of surfactants reduce the surface tension and eventually reduce the surface force,
which is the main factor to induce the initial oscillations.

To show the effects of surfactant more clearly, we present the numerically obtained frequencies and the decay rate of
oscillations for the considered cases. Table 3 shows the frequencies for all three cases which are calculated from the trajec-
tory of zmax at r ¼ 0 in their respective case. For the clean surface case (i), the numerically obtained frequency is in good
agreement with the theoretically value 121.14 (see Ref. [14] for a comparison), which is obtained by the linear stability anal-
ysis for an inviscid oscillating droplet [4,22]. In the LEOS surfactant case (ii), the numerically obtained frequency after one
period is less in comparison with the clean surface case (i) at the same period. During this initial period, the variation in the
surfactant concentration is large and thus the influence of Marangoni forces will also be large. Since we considered a small
Peclet number, the surfactant concentration becomes quickly almost uniform, say after t ¼ 5, and hence the Marangoni effect
becomes less pronounced at later stages. As a result, the frequency of the LEOS surfactant case (ii) becomes similar to the
clean surface case (i), see Table 3 at n ¼ 2. In contrast, the obtained frequency in the NLEOS surfactant case (iii) is much smal-
ler even after the two periods.

Next, to study the difference in the LEOS and NLEOS more clearly, we run computations for cases (ii) and (iii) until time
T ¼ 200. The oscillations of the trajectory of rmax in both surfactant cases are shown in Fig. 10. Initially, the oscillations of the
trajectory in the LEOS case (ii) are damped out more quickly than in the NLEOS case (iii). The computed frequencies of rmax

after n periods in both cases are presented in Table 4. The frequency of the LEOS is similar as in the clean surface case (i). But,
the frequency of the NLEOS case is smaller than the LEOS case which can also be seen in Fig. 10. The corresponding scaled



Fig. 11. The exponentially fitted ðe�knþle Þ scaled amplitude for the trajectories of rmax in Fig. 10. For curves with circle marker (LEOS) k ¼
0:07192; le ¼ 0:01257 and square marker (NLEOS) k ¼ 0:06489; le ¼ 0:03499.

Table 5
The obtained damping factor dn for the decay rate of oscillations in case (ii) (LEOS) and case (iii) (NLEOS) at different periods n with a nonuniform initial
surfactant distribution.

n 1 3 5 7 9 11 13 15

(ii) dn 0.8961 0.9098 0.9165 0.9206 0.9231 0.9248 0.9260 0.9270
(iii) dn 0.9265 0.9272 0.9296 0.9315 0.9329 0.9334 0.9348 0.9354

Table 4
Frequencies obtained in case (ii) (LEOS) and case (iii) (NLEOS) after n periods with a nonuniform initial surfactant distribution.

n 1 3 5 7 9 11 13 15

(ii) xn 119.05 119.05 119.33 119.66 119.84 119.96 120.04 120.10
(iii) xn 108.70 109.89 110.38 110.58 110.70 110.89 111.02 111.11
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amplitude ðdnÞn of the rmax trajectories in both cases over the period n are presented in Fig. 11. The decaying scaled ampli-
tudes of LEOS and NLEOS cases are best fit with the exponential ðe�knþle Þ curve for k ¼ 0:07192; le ¼ 0:01257 and
k ¼ 0:06489; le ¼ 0:03499, respectively. However, initially, there is a small difference between the scaled amplitude and
their corresponding exponentially fitted curve in both cases. As we discussed in the above paragraph, this difference is
due to the large variation in the initial surfactant distribution. A similar effect is observed in the damping factors for LEOS
and NLEOS cases, see Table 5. Initially, the values of dn for LEOS case are small, and when the surfactant concentration be-
comes uniform, the values of dn for LEOS case become similar to the values in Table 2.

5. Summary

A moving mesh finite element scheme for computations of free surface flows with insoluble surfactants is presented in
this paper. An arbitrary Lagrangian–Eulerian approach and the Lagrangian approach are used to solve the flow equations and
the surfactant concentration equation, respectively. This allows for direct incorporation of both surface tension and Marang-
oni forces. Mathematical formulation to incorporate an arbitrary (either linear or nonlinear) equation of state, which relates
the surface tension and the surfactants, into the numerical scheme is presented. Numerical results are compared with ana-
lytical solutions for a number of 3D-axisymmetric test problems to validate the numerical scheme. A convergence study on a
uniformly refined fixed meshes has been made for the numerical scheme. Computational results for a freely oscillating 3D-
axisymmetric droplet with and without surfactants are also presented. An excellent mass conservation for both the fluid and
the surfactant is achieved in all test problems.
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