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Abstract. Oscillations of droplets or bubbles of a confined fluid in a fluid
environment are found in various situations in everyday life, in technological
processing and in natural phenomena on different length scales. Air bubbles in
liquids or liquid droplets in air are well-known examples. Soap bubbles represent
a particularly simple, beautiful and attractive system to study the dynamics of a
closed gas volume embedded in the same or a different gas. Their dynamics is
governed by the densities and viscosities of the gases and by the film tension.
Dynamic equations describing their oscillations under simplifying assumptions
have been well known since the beginning of the 20th century. Both analytical
description and numerical modeling have made considerable progress since then,
but quantitative experiments have been lacking so far. On the other hand, a soap
bubble represents an easily manageable paradigm for the study of oscillations of
fluid spheres. We use a technique to create axisymmetric initial non-equilibrium
states, and we observe damped oscillations into equilibrium by means of a fast
video camera. Symmetries of the oscillations, frequencies and damping rates
of the eigenmodes as well as the coupling of modes are analyzed. They are
compared to analytical models from the literature and to numerical calculations
from the literature and this work.
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1. Introduction

In nature, one can find various types of confined fluids exhibiting surface oscillations; among
them are bouncing droplets, fusing vesicles, rising bubbles in a liquid (e.g. in champagne or
soda) or liquid drops evaporating on a heated plate (the Leidenfrost phenomenon). Recent
interest in the dynamics of similar systems has been focused, for example, on the properties
of bouncing drops [1]–[4], pendant and sessile drops [5]–[9], Leidenfrost droplets floating on
a plane [10] or moving on structured surfaces [11, 12] and the motion of droplets on vibrating
surfaces [13]–[18].

Generally, each of these examples involves two fluids, one enclosed by the other. Each fluid
can be a liquid or gas. With respect to these two fluids, two limiting cases can be classified: if the
enclosed fluid provides the dominant kinetic energy contribution and the outer fluid is negligible
(density of the outer medium %o ≈ 0), this structure is conventionally referred to as a drop. If the
contribution of the inner fluid to the kinetic energy is negligible (density %i ≈ 0), the system is
usually referred to as a bubble. We will use this notation here in the discussion of the literature
data. In the general case, both fluids may contribute to the dynamics. The special situation where
both fluids are of the same importance (%o ≈ %i) is considered here: in soap bubbles, there is gas
on both sides of an interface made of a soap solution.

In the absence of external forces such as gravity, electric or magnetic fields, the equilibrium
shape of the confined volume is a sphere for isotropic fluids. If the interface is not in equilibrium,
shape transformations towards equilibrium are driven by the surface or interface tensions. In
some cases, bending rigidity or spontaneous curvature of a membrane separating the fluids may
be involved. The route towards equilibrium will normally have the form of (weakly) damped
oscillations, under a permanent conversion of potential and kinetic energies. On the other hand,
one can also excite the droplets (or bubbles) to oscillations about the equilibrium shape by
continuous excitation with sound or other external forces. In this work, we study the relaxation
of an initial non-equilibrium shape towards the minimum interface equilibrium state. The linear
equations for oscillations of small amplitudes were already derived a century ago [19]–[21],
and subsequently, several studies have dealt with the nonlinear treatment of the problem,
considering e.g. mode couplings, frequency shifts with oscillation amplitude and viscous
effects [22]–[30].

For the bubble sizes studied here, the properties of the thin liquid film (except for its surface
tension) are irrelevant for the eigenmodes. The oscillation frequencies are comparatively slow
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and weakly damped. This provides the experimental opportunity for a precise observation and
recording of the oscillations even with moderate time resolution of the detector. A quantitative
characterization of the dynamics is possible. All this, along with the simple preparation and
observation of these objects, qualifies soap bubbles as an excellent model system to test
predictions of theoretical models on droplet and bubble dynamics. But interestingly, quantitative
experimental data on soap bubble oscillations are not available in the literature so far. The lack of
quantitative experiments on the oscillations of gas bubbles in a gaseous medium has motivated
the present experimental study of soap bubbles, as a model system with similar fluids on both
sides of a thin liquid membrane.

A few peculiarities have to be considered: since both fluids are gases, we will have to
discuss the incompressibility of the bubbles. As both inner and outer media have equal densities,
an oscillation of the center of mass of the inner gas volume is detectable unlike in most other
experimental studies in similar systems. Note however that in pendant (or sessile) drops this
center of mass may undergo oscillations [5] because it can exchange momentum with the solid
support.

The aim of the experiments reported here is to evaluate predictions of different models, put
forward during the last century, and to test the validity of several assumptions. In order to trace
reasons for possible discrepancies of experimental and theoretical results, we also compare our
experimental data with the results of a numerical simulation of the full dynamic equations by a
finite element method.

In order to keep the experiment simple, we have developed a special excitation technique
that allows us to excite non-equilibrium states of high symmetry. The initial state is created by
the fusion of two spherical soap bubbles floating in air. The axis connecting the two centers of
the fusing bubbles remains, after coalescence, a symmetry axis of the system, and the oscillating
bubbles retain this symmetry. This facilitates the analysis of the excited oscillation modes.

The paper is organized as follows: in section 2, we summarize the results obtained
for oscillating bubbles and droplets in the literature. Then, the experimental setup and data
evaluation are described in section 3. In section 4 we present experimental data obtained
with representative soap bubbles, and in section 5, the results of a numerical simulation are
introduced. The last section discusses and summarizes the findings.

2. Theoretical background

The problem of oscillating fluids was first considered by Kelvin [19] and Rayleigh [20] who
calculated the special case of a drop. Lamb treated the more general case of two fluids, in which
one of them is enclosed by the other one, in his book Hydrodynamics [21]. He simplified the
system by considering only irrotational flow, non-viscous and incompressible fluids and only
small, axisymmetric deformations. In his linear analysis, he identified the eigenmodes of the
system to be the spherical harmonics Y m

` characterized by the mode number `. The second
index m is set to zero here because of the assumed axial symmetry of the oscillations, and we
drop this index in the following. Hence the interface between both fluids may be expanded in a
series:

r(t; θ) =

∞∑
`=0

A`(t)Y`(θ), (1)
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Figure 1. (a) Definition of the coordinates, (b) experimental setup for the
observation of the oscillations of coalescing soap bubbles and (c) approach,
attachment and fusion of two bubbles.

where θ is the polar angle and r is the distance between the coordinate center and the interface,
measured in the direction θ (figure 1(a)). This is only applicable if the surface function r(θ)

is unique, which holds for all experiments presented hereafter. Lamb derived the natural
frequencies of these eigenmodes, related to the equilibrium radius R (of a sphere with the same
volume as the deformed structure), the surface tension of the interface σ , the densities of the
inner and outer fluids %i and %o and the mode number `:

(ω`)
2
=

σ

R3

(` − 1)`(` + 1)(` + 2)

%i(` + 1) + %o`
. (2)

The frequencies increase with the mode number. It must be pointed out that there are no natural
frequencies of the zeroth mode and of the first mode. This is obvious because a decoupled
oscillation of the zeroth mode, which is equal to a variation of the radius of the inner fluid,
changes the volume and therefore violates the incompressibility condition, given by

V = 2π

∫ π

0

∫ r(t;θ)

0
r 2 sin θ dθ dr = const. (3)

When the small amplitude approximation does not hold, this condition leads to an oscillation of
the zeroth mode, as will be discussed in section 4 in more detail. An oscillation of the first mode
is not permitted because the center of mass must not oscillate unless an external force acts on the
droplet (or bubble), it may only move in space at constant speed. In the linear approximation, the
oscillation of the first mode of a drop with constant radius would simply mean a translation of
the center of mass. Since there is no restriction as to where to place the origin of the coordinate
system for the expansion in (1), it can always be chosen in the manner that the amplitude of
the first mode is zero at all times, as was already pointed out by Becker et al [27]. Shaw [31]
showed that for moderate amplitudes the oscillation of certain modes changes the center of mass
and forces the inner liquid to translate along its symmetry axis. Every excited mode will induce
such a motion.
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Table 1. Coefficients ω
(2)

` for different mode numbers in the special cases of
drops %i � %o and bubbles %o � %i.

` = 2 ` = 3 ` = 4

Drop Bubble Drop Bubble Drop Bubble

1.278 (1.170) 1.454 2.090 (1.998) 2.220 2.914 (2.797) 2.898

Lamb [21] also estimated the damping constant for the special case of a drop, assuming
small amplitudes and small viscosities. His result is given by

τ` =
1

(` − 1)(2` + 1)

R2%

η
(4)

(where % is the density of the drop and η its dynamic viscosity).
Throughout the last 50 years, scientists studied how features such as viscosity, rotational

flow and finite amplitudes influence the oscillation dynamics (as well as compressibility, which
will not be discussed here). Miller and Scriven [32] considered the case of two incompressible,
elastic and viscous fluids oscillating with small amplitudes. They derived transcendental
equations governing the frequencies and damping rates. Later, Basaran et al [23] slightly
corrected these calculations and found a damping rate of

1

τ
=

(2` + 1)2(ω`ηiηo%i%o)
1/2

2
√

2R(%i(` + 1) + %o`)[(ηi%i)1/2 + (ηo%o)1/2]
−

(2` + 1)4ηiηo%i%o

4R2(%i(` + 1) + %o`)2[(ηi%i)1/2 + (ηo%o)1/2]2

+
(2` + 1){2(`2

− 1)η2
i %i + 2`(` + 2)η2

o%o + ηiηo[%i(` + 2) − %0(` − 1)]}

2R2(%i(` + 1) + %o`)[(ηi%i)1/2 + (ηo%o)1/2]2
(5)

(with the natural frequency ω` found by Lamb, equation (2)) in the limit of small viscosities.
Prosperetti [33] derived equations governing the influence of viscosity on axisymmetric
deformations of small amplitudes allowing vortex flow.

Tsamopoulos and Brown [22] were the first to investigate axisymmetric deformations
of moderate amplitudes. They considered the special cases of drops (%i � %o) and bubbles
(%i � %o) made of incompressible and non-viscous fluids. Expanding the surface, velocity
potential and frequency in a Poincaré–Lindstedt manner in a small quantity ε, for example,
the dimensionless surface

r(θ, t; ε) = F(θ, t; ε) =

∞∑
k=0

ε

k!
F (k)(θ, t) = 1 +

∞∑
`=2

ε` P`(cos θ) cos(ω`t) + O(ε2) (6)

(P` are the Legendre polynomials in `, which are proportional to the spherical harmonics Y` by a
factor specified by `), they derived the following dependence of the frequency on the amplitude,
which is correct up to the fourth order in ε:

ω` = ω
(0)

`

(
1 −

1

2
ω

(2)

` ε2

)
(7)

(ω(0)

` is the natural frequency given by equation (2)); the ω
(2)

` are given in table 1.
Tsamopoulos [34] corrected these coefficients in 1989 (values in parentheses).
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In addition the authors found that an oscillation of the second mode in ε excites an
oscillation of the zeroth mode and of the fourth mode with an amplitude of the order of O(ε2)
and twice the frequency of the second mode [22]. The same happens when the fourth mode is
oscillating inO(ε). The odd numbered modes can excite even and odd modes. Furthermore, they
showed that drops remain for a longer time in prolate than in oblate shapes (for a bubble both
cases are almost equally distributed). Lundgren and Mansour [35] applied the boundary integral
method to the problem of a drop undergoing axially symmetric oscillations accounting for weak
viscous effects and found that an initial excitation of one single mode triggers oscillations of
different modes with the frequency and twice the frequency of the exciting mode. In order to
be able eventually to include viscous effects of arbitrary magnitude, Patzek et al [36] solved
the Navier–Stokes equations of an incompressible and inviscid drop using a domain differential
method. Lu and Apfel [25] calculated how the presence of surfactants changes primarily the
damping of the small amplitude oscillations of an incompressible fluid immersed in another
fluid using linear stability theory. Basaran [24] found numerically that damping is stronger for
large amplitudes in the beginning of an oscillation.

Trinh et al [37] studied experimentally the axisymmetric oscillations of drops (radius
≈ 1 mm) made of silicon oil mixed with carbon tetrachloride in distilled water and drops made
of phenetole in distilled water. The drops were held in the surrounding liquid by an acoustic field
of high frequency, which was then modulated with a low frequency to drive the drop into the
different modes of oscillation. The extracted eigenfrequencies of the different modes showed
good agreement with Lamb’s predictions (equation (2)). The damping rates were compared to
an equation derived by Marston [38], which is equal to equation (5). Trinh et al [37] also found
a dependence of the eigenfrequencies on the amplitude of deformation.

Becker et al [26] examined axisymmetric, free oscillations of drops (radius ≈ 0.2 mm),
which periodically broke off a jet of ethanol (in air). After expanding the surface into a series
of Legendre polynomials in cos(θ), they found the eigenfrequencies and damping rates by
fitting the amplitude versus time dependence with a function ∝ A` e−t/τ ` sin(ω`(t) t + φ) + β.
In this way they accounted for the frequency change with time. Both the damping rates and
the eigenfrequencies in the limit of very small amplitude agreed with Lamb; the frequencies
increased with time (decaying oscillation amplitude).

Wang et al [39] regarded free axisymmetric oscillations of a drop (radius 1 cm) made of a
glycerin/water mixture under microgravity conditions. The eigenfrequencies were in agreement
with the values derived by Lamb. The frequency shift with the amplitude ε of the deformations
agreed with the predictions of Tsamopoulos and Brown [22].

Most of the published material refers to theoretical descriptions of droplet or bubble
oscillations. The experiment described in the following has been designed to test for the validity
of various theoretical predictions.

3. Experimental setup and sample preparation

In figure 1(b), the experimental setup is sketched schematically. The soap bubbles are created
in a container of acrylic glass, its bottom has been filled with butane gas. The density gradient
allows the soap bubbles to float in the box without sinking to the bottom, for a time long enough
so that collisions can be monitored. Above the container, a mirror was installed at an angle
of 45 ◦ to the viewing direction. The camera observes both the direct front view of the soap
bubbles and the mirrored top view in order to follow the bubble oscillations from two aspects.
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(a) (b) (c)

Figure 2. (a) Initial state of the soap bubble 08 shortly after the break of the
contact film area, (b) initial amplitudes of the different deformation modes,
equation (1), and (c) soap bubble 08 at maximum local deformation, the marked
distance is equal to 1.2 cm.

The bubbles in the container and their mirror images are recorded with a high-speed camera
(Photron Fastcam-ultima APX) at 1000–2000 fps (frames per second). In order to clearly detect
the edge of the bubbles in each frame, the back and the bottom of the box were lined with black
sheets, which reduced reflections from behind, and the soap bubbles were illuminated with four
single cold light sources (Schott KL2500 LCD) from each corner of the box. In addition, the
side walls were lined either with a white sheet or with creased aluminium foil to ensure good
reflections onto the bubbles.

As the material for the bubble films we used a commercially available soap solution
(Dr Rolf Hein GmbH & Co. KG) with a surface tension of σ = 0.034 N m−1. The soap bubbles
consist of thin films (the thickness is estimated from reflective colors to be less than 1 µm; it
varies over the surface); they are inflated with air. A density of air of %i,o = 1.2 kg m−3 and a
viscosity of 17.1 × 10−6 kg m−1 s−1 are assumed. The mass of the inner gas ranges from 96 to
4.1 µg, whereas the mass of the soap film (with film thickness of approximately 1 µm) ranges
from 8.6 to 1.0 µg, respectively, for the largest and smallest bubbles. The Bond number is of
the order of 10−3; therefore the equilibrium state of the bubbles is, in very good approximation,
spherical. Since the frames taken with the camera represent two-dimensional projections of the
three-dimensional motion, only bubbles with axisymmetric oscillations were selected for data
analysis. In order to guarantee this we solely considered those cases in which two soap bubbles,
initially spherical, approached each other and formed a common interface, which then tore apart
(figure 1(c)). The fused bubble is very far from its equilibrium shape and the deformation is
axisymmetric (see figure 2(a)). Therefore the bubble can be represented by a two-dimensional
plot, which is then rotated around the symmetry axis to create the three-dimensional object. If
the axis is normal to the observation direction, the entire information of the motion is contained
in the front views. The top views were used to select those collisions only where the rotational
symmetry axis was normal to the viewing direction. We have recorded more than 50 videos
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Table 2. Experimental soap bubbles selected for this presentation, their
equilibrium radii (radius of an equivalent sphere of the same volume) and frame
rates in the videos.

Experiment 08 16 18 33

R (mm) 26.2 25.2 9.1 12.0
Frame rate (fps) 2000 2000 2000 1000

Table 3. Real-time duration and image width of the supplementary video
material, available at stacks.iop.org/NJP/12/073031/mmedia.

Experiment = filename 08 16 18 33

Duration (s) 0.350 0.346 0.400 0.282
Width (mm) 74.7 70.1 34.7 71.4

Figure 3. Initial states of the soap bubbles 16, 18 and 33 (left to right) shortly
after the break of the contact film area. Image widths are 54 mm (left), 35 mm
(middle) and 36 mm (right).

of individual soap bubble collisions. For the present analysis in this paper, a few of them are
showcased. Their motions included all important features.

4. Experimental results

In the following, the features of oscillating soap bubbles will be demonstrated with four sample
experiments. They differ in their equilibrium radii as shown in table 2 and symmetries of the
initial deformations (cf figures 2(a) and 3). The videos of the four soap bubbles selected for this
presentation can be found in the supplementary material (see table 3).

In figure 2(a) one can see the state of the soap bubble 08 immediately after the fusion. From
each image recorded during the subsequent oscillations, the contour of the bubble is detected
with the help of a MATLAB program and r(θ) (figure 1(a)) is expanded in a series of spherical
harmonics. The origin of the coordinate system is chosen at the center of mass of the inner
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Figure 4. Area of soap bubble 08 as a function of time.

gas volume. In addition, the inner volume and the surface area are calculated. We found in
our various experiments that the volume is conserved throughout the whole relaxation process,
so the incompressible media models as described in section 2 should be applicable. Taking a
look at figure 2(c), this is obvious: the image shows the instant of maximum local deformation
during the motion. The local pressure caused by the film curvature following Laplace’s law,
p = 2σ(R−1

1 + R−1
2 ) (with the radii R1 and R2 of the principal curvatures), is only of the order

of about 20 Pa, almost four orders of magnitude smaller than the ambient pressure.
The expansion shows that the bubble geometry is dominated by the Y0 mode, but that the

amplitudes of the other modes are not small. In figure 2(b), the initial amplitudes of the first
13 modes are displayed for bubble 08. Since we are not interested in the fusion process itself,
the exact moment of fusion is irrelevant. We refer to the initial amplitudes as the ones determined
in the first image recorded immediately (i.e. within less than 1 ms) after the fusion. The second
mode plays the most important role in the deformation. With higher mode numbers, the initial
amplitudes decrease rapidly. The second mode is dominant because of the particular way the
initial shape of the bubble was achieved: two spheres of rather comparable size merging. When
two bubbles of very different radii merge, the third mode can become more important. When two
bubbles of equal size coalesce (cf bubble 33 in figure 3, right panel), there is even an additional
symmetry element, a mirror plane perpendicular to the rotational symmetry axis. In this case,
the excited modes are restricted to those modes that obey mirror symmetry with respect to this
plane, namely the even numbered modes.

From this state very far from equilibrium, the soap bubble starts to oscillate. The
oscillations are driven by the energy released during the transformation of two soap bubbles
(surfaces 4000 and 6500 mm2) to one single soap bubble (equilibrium surface 8600 mm2).
During the coalescence, the surface area performs rapid oscillations (see figure 4). The motions
of the zeroth, second, third and fourth modes are displayed in figure 5. Figure 5(b) shows how
the second mode seems to be oscillating in a simple cosine-like manner. A closer look reveals
that the amplitude remains positive for a longer portion of the time, namely 58.7%. Hence the
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(a) zeroth mode (b) second mode

(c) third mode (d) fourth mode

Figure 5. Amplitudes of the different modes (expansion coefficients of the
spherical harmonics) of soap bubble 08 as a function of time.

bubble remains for a longer time in the prolate shape than in the oblate one. This was already
shown by Tsamopolous and Brown [22] and various other authors for liquid droplets and gas
bubbles in a liquid. The evolution of the zeroth mode in figure 5(a) is quite different: at first
there is a fast process where the bubble is moving closer to its equilibrium state. After 5 ms,
an oscillation is observable with multiple frequencies. This originates from the condition of
volume conservation, equation (3). When the amplitudes of the higher modes start to oscillate,
the volume would change unless the zeroth mode starts to oscillate synchronously with the
frequencies of the other modes. This can be illustrated, e.g., by a calculation of the bubble
volume when only the second mode is excited, with amplitude A

V =
4π

3
R(t)3 + R(t)A(t)2 +

√
5

21
√

π
A(t)3

= const. (8)

R(t) is not equal to the equilibrium radius; it approaches it only when the amplitude A of
the second mode decays to zero. At preserved bubble volume, R is independent of A(t) only
in linear approximation. Hence, the radius R (zeroth mode) has to change in time with the
amplitude of the deformation. Since the second and third modes are the dominant ones in the
oscillation, their natural frequencies should be present in the dynamics of the zeroth mode. This
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(a) second mode (b) fourth mode

Figure 6. Windowed Fourier transformation of the second mode, figure 5(b), and
of the fourth mode, figure 5(d), soap bubble 08.

is different from the linearized approximation (in equation (8) the amplitudes of deformation are
present in higher order). A similar result was found theoretically by Basaran [24], Mashayek
and Ashgriz [40] and Shaw [31]. Their descriptions are basically in good agreement with
our observations, although a direct comparison is difficult. The dynamics of the fourth mode
reveals that the oscillation is modulated with multiple frequencies (figure 5(d)). In addition, the
amplitude is positive for a great portion (83.7%) of the time. In order to analyze the evolution
of the frequency spectrum, a windowed fast Fourier transformation (FFT) was performed with
each dataset (for the second and fourth modes, this is shown in figures 6(a) and (b)). The width
of the Hamming window was 160 ms. This window was shifted in steps of 5 ms in order to
obtain time-resolved spectra. The amplitude of the Fourier transform was scaled by the number
of points in each FFT. Figure 6(a) shows that one frequency is dominant in the second mode; it is
just damped with time. The damping constant (see table 8) can be extracted from the time decay
of the integral of a given Fourier peak. In figure 7 the amplitude change of the eigenfrequency
belonging to the second mode of bubble 18 is displayed. It reveals that damping is slightly
higher in the beginning, which was found theoretically by Prosperetti [33] and Basaran [24].
An exponential fit with a mean damping rate is displayed by a solid (red) line. The damping
constants will be discussed in more detail in the next section.

A closer look at the Fourier transforms reveals that the peak frequency of the second mode
(the eigenfrequency) changes slowly with time, which is displayed in figure 8(a). It increases
with time, which indicates that it increases with decreasing amplitude. As Tsamopoulos and
Brown [22] derived equation (7), we define an equivalent ε′ here, namely the amplitude of
the peak frequency as found in the Fourier transform in figure 6(a) divided by the equilibrium
bubble radius. The quantity ε′ differs from the ε (see equation (6)) of Tsamopoulos and Brown
only by a constant factor, since here the amplitudes of spherical harmonics are considered as
opposed to their Legendre polynomials. For the second mode, ε′

= 2
√

π/5 ε, and for the third
mode, ε′

= 2
√

π/7 ε. The change of frequency with ε′ is plotted in figure 8(b), which shows a
qualitatively similar behavior as that predicted in [22].

A quadratic fit of the form f = f0(1 −
1
2 ω̃

(2)ε′2) enables us to find the coefficients ω
(2)

` . It is
indicated by the solid line in figure 8(b). A clearer presentation of the qualitative behavior of the

New Journal of Physics 12 (2010) 073031 (http://www.njp.org/)

http://www.njp.org/


12

Figure 7. Change of the Fourier amplitude with time for the eigenfrequency of
the second mode (maximum amplitude in the FFT), soap bubble 18.

(a) natural frequency vs time (b) natural frequency vs. amplitude ε′

Figure 8. Change of the frequency of the second mode with time and amplitude,
respectively (the arrow indicates the direction of time), soap bubble 08.

frequency is displayed in figure 9 for soap bubble 18, which was recorded until the oscillations
had essentially died out. The graph shows the asymptotic frequency limit that is reached for very
small amplitudes. Note that the values for the smallest ε′ correspond to an oscillation amplitude
of only 2% of the bubble radius; the determined frequencies are affected by larger experimental
uncertainties than the remaining curve. The results for all bubbles are summarized in table 4.

When these values are compared to those in table 1, one notices considerable deviations.
A possible reason for the difference could be that in the model of Tsamopoulos and Brown,
ω

(2)

` has been derived for only one excited mode with amplitude ε. In our case there are several
oscillation modes from the beginning, so an energy transfer between the modes is possible
and the value of ε′ is affected. In addition, ε is taken as a moderate quantity in the theoretical
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Figure 9. Change of the frequency of the second mode with amplitude ε′, soap
bubble 18.

Table 4. Values of the quadratic coefficients ω
(2)

` of the frequency shift for
each soap bubble. Bubbles 18 and 33 were formed by two almost equal
fusing bubbles; thus they are almost mirror symmetric with respect to a plane
perpendicular to the central axis. The odd modes are hardly excited then.

08 16 18 33

` = 2 2.3 2.0 1.6 1.5
` = 3 6.0 7.1 – –

model, while the oscillations in our experiments are of large amplitude. This complicates a
comparison.

From a construction of the eigenfrequency versus ε′ for each mode (whenever possible) and
each soap bubble, we find the limit of the eigenfrequencies for ε′

→ 0, i.e. for small amplitudes.
The results are summarized in table 5. Normal numbers are the extrapolated frequencies for
ε′

= 0 in the fit ω`/(2π) = f` = f (0)

` (1 −
1
2 ω̃

(2)

` ε′2) and italic numbers are frequencies estimated
from the trend of the graphs. Since the higher modes are excited with very small amplitudes,
a quadratic fit is not useful there. The linear eigenfrequencies calculated with the adapted
equation (2)

ω` =

√
2σ

R3%

(` − 1)`(` + 1)(` + 2)

2` + 1
(9)

(two film surfaces, equal densities %i = %o = % of the inner and outer media) are included for
comparison. It has to be noted that in the spectra of the higher modes (cf figure 6(b)), multiple
peaks are found. In these spectra, one has to neglect frequencies that appear as a consequence
of nonlinear coupling, in order to select the eigenfrequency. The nonlinear coupling effects are
discussed below.

New Journal of Physics 12 (2010) 073031 (http://www.njp.org/)

http://www.njp.org/


14

Table 5. Asymptotic frequencies f` = ω`/(2π) and theoretical values of
Lamb [21] for each soap bubble. All frequencies are given in Hz. We estimate an
uncertainty of ±1.5 Hz for each frequency.

08 16 18 33

Experiment Lamb Experiment Lamb Experiment Lamb Experiment Lamb

` = 2 19 19.57 19 20.75 85 95.45 70 63.14
` = 3 34 36.99 35 39.21
` = 4 51 56.50 57 59.90 240 275.53 202 182.28
` = 5 71 78.07 72 82.76

Table 6. Ratios of different eigenfrequencies. The uncertainty of the
experimental ratios is ±10%.

Eigenfrequencies Ratio according to 08 16 18 33
equation (9)

Mode 3/mode 2 1.89 1.81 1.83 – –
Mode 4/mode 2 2.89 2.70 2.96 2.87 2.82
Mode 5/mode 2 3.99 3.75 3.79 – –
Mode 4/mode 3 1.53 1.49 1.62 – –
Mode 5/mode 3 2.11 2.07 2.07 – –
Mode 5/mode 4 1.38 1.39 1.28 – –

The experimentally extrapolated eigenfrequencies agree satisfactorily with those derived
from Lamb’s linear model. Deviations from the model may have several reasons. For
example, the experimental uncertainty of the bubble volume (equilibrium radius), experimental
uncertainties in the determination of the surface tension or others may affect the absolute
frequencies. In order to eliminate these effects, we compare the ratios of the different
eigenfrequencies in table 6 with those predicted by Lamb. This is useful because, according to
formula (2), the parameters radius, surface tension and density cancel. These data are reported
in table 6.

All ratios coincide within experimental uncertainty of a few per cent. In conclusion, Lamb’s
formula is correct for soap bubble oscillations at small amplitudes, but the frequencies decrease
quadratically with increasing oscillation amplitudes. The deviations of the absolute values will
be discussed in the last section.

After focusing on the eigenfrequencies, we discuss now the complete spectra (figure 5).
The Fourier transform of the fourth mode in figure 6(b) has an appearance qualitatively
very different from that of the second mode. There are at least three different frequency
peaks present: one near the eigenfrequency of the second mode (≈ 18 Hz), one near
the eigenfrequency of the third mode (≈ 34 Hz) and one at the eigenfrequency of the
fourth mode (≈ 51 Hz). Initially, the natural frequency of the fourth mode is the one with the
highest amplitude but with time the natural frequency of the third mode couples in and becomes
the dominant one. In addition, the natural frequency of the fourth mode is not simply damped
exponentially, but has a peak at about the same time as the third mode. This evidences very
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Table 7. Time-averaged dominant frequencies ω/2π (Hz) in the spectra of
individual modes; bold numbers are the natural frequencies of each mode; each
frequency is afflicted with an uncertainty of ±1.5 Hz; the numbers in parentheses
represent the largest amplitude (mm s) of each frequency peak in the Fourier
transforms.

08 16 18 33

` = 0 18 (0.17) 19 (0.08) 167 (0.08) 122 (0.03)
36 (0.24) 36 (0.14)
50 (0.03)

` = 1 16 (0.23) 16 (0.13) 83 (0.01) –
33 (0.11) 35 (0.05)
51 (0.22) 53 (0.14)

` = 2 18 (3.11) 19 (2.6) 83 (1.2) 70 (0.8)

` = 3 15 (0.22) 15 (0.22) – –
33 (1.2) 35 (0.81)
50 (0.16)
69 (0.21)

` = 4 18 (0.14) 18 (0.08) 156 (0.1) 140 (0.03)
35 (0.17) 37 (0.11) 239 (0.12) 200 (0.05)
51 (0.17) 55 (0.07)

` = 5 15 (0.15) 73 (0.25) – –
33 (0.1)
70 (0.35)
88 (0.15)

complex behavior of the mode coupling, which is of course not contained in the linear model.
Table 7 includes the most important frequencies that are present in the spectra of the individual
modes (more frequencies may be present with lower amplitudes). They have been obtained by
means of Fourier transformation of the complete observation period and thus represent some
average value for each mode, neglecting the ≈ 5% shift with varying amplitude. Therefore, they
may not be compared directly with the asymptotic frequencies in table 5 that represent the small
amplitude limits.

Table 7 shows the very complex coupling behavior between the modes, as already
discussed earlier. Our assumption about the motion of the zeroth mode (figure 5(a)) is
confirmed: the frequencies of the most important modes are found in its spectrum, confirming
that the oscillation of the zeroth mode is required for the conservation of volume. An interesting
effect can be seen in soap bubbles 18 and 33. Their initial deformation was almost symmetric
so that initially only the even numbered modes were excited. Thus the odd modes remained
essentially zero all the time. It is obvious that for symmetry reasons, oscillations that contain
only even modes can excite only even modes, whereas odd modes, in connection with the zeroth
mode, can couple to both odd and even modes.

All spectra of the fourth mode contain peaks at twice the natural frequency f2 of the second
mode. In bubbles 08 and 16, it is difficult to discriminate this from a coupling to the third mode,
which has an eigenfrequency f3 rather close to 2 f2. However, for bubbles 18 and 33, it can be
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clearly attributed to a coupling between the second and fourth modes, since the third mode is
practically absent. Such coupling was first reported for droplet oscillations by Tsamopoulos and
Brown [22] and later by Lundgren and Mansour [35]. The oscillation of the second mode acts
on the fourth mode as an excitation of second order. It results in a frequency peak of twice the
driving frequency.

It is important to note that in bubbles 08 and 16, the natural frequency f2 of the second
mode appears in the odd numbered modes reduced by about 2 Hz. In return, the natural
frequency f3 of the third mode appears in even numbered modes increased by about 2 Hz.
This shift reflects a resonant excitation in the different cases, since f3 is almost twice f2 but
not quite (table 6). This effect was already reported experimentally for liquid bubbles by Trinh
et al [41]. It is, however, difficult to distinguish from the quadratic coupling effect mentioned
above. Since the frequency ratios of the third to fifth modes to that of the second mode are very
close to integers (2, 3 and 4), coupling is very efficient.

As one can see in table 7, one also finds a weakly excited but non-zero first mode. This is
due to the fact that the center of mass of the inner gas is set to be the origin of the coordinate
system. Owing to this choice, the first mode oscillates to compensate for a displacement of the
centroid by the large-amplitude oscillations of higher modes. The oscillations of the center of
mass in the laboratory fixed frame (not shown) are correlated to the oscillations of every mode
(as Shaw [31] showed for gas bubbles in an ambient liquid).

5. Simulation

In order to compare the experimental results with the exact solution of the Navier–Stokes and
continuity equations, a numerical simulation of the soap bubbles was performed. Details of
this calculation will be published elsewhere. A mapped finite elements method on interface-
resolving moving meshes was used to solve the incompressible Navier–Stokes equation [42]

%

[
∂Ev

∂t
+ (Ev · ∇)Ev

]
= −grad p + η 4Ev, (10)

div Ev = 0. (11)

The considered problem has axial symmetry. Therefore a three-dimensional axisymmetric
formulation has been used in our computations [43]. Note that the accuracy and performance
of a two-dimensional plane variant of the code have been evaluated in quantitative
benchmark computations [44]. Calculations were performed in dimensionless coordinates. The
proper scaling was realized through the Reynolds, Froude and Weber numbers, taking into
consideration the surface tension of the film, density and viscosity of the air and bubble
dimensions. In the simulation we consider two incompressible media, one surrounding the other.
Both are separated by a freely movable interface with a surface tension but otherwise negligible
physical parameters (inertia, viscosity and elasticity). The dimensions of the simulation box
were chosen large enough so that there was no relevant flow near the outer boundaries. The
boundary condition at the interface (bubble surface) is chosen such that the flow field is
continuous across the liquid film. This means, in particular, that the flow normal to the film is
the same on both sides. Flow in the film plane advects the liquid film material in the experiment.
However, there is no flow in the film plane normal to the plane formed by the symmetry axis
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(a) experimental second mode (b) simulated second mode

Figure 10. Change of the amplitude with time of the second mode for
(a) experiment 08 and (b) the simulation of soap bubble 08.

(a) experimental fifth mode (b) simulated fifth mode

Figure 11. Change of the amplitude with time of the fifth mode for
(a) experiment 08 and (b) the simulation of soap bubble 08. We show only a
short time interval, to resolve more details.

and the radial coordinate (no tangential flow) in the simulation. The initial shape of the interface
can be chosen arbitrarily in the program. The motion starts from a deformed bubble at rest.

In order to simulate the experimental observations, we have used the parameters for air
and twice the surface tension of the employed soap solution (two film surfaces). We have
imported the rescaled interface data of the experimental soap bubble 08, figure 2(a), as the initial
conditions. The calculated shapes of the interface have been evaluated to extract amplitudes
of the oscillation modes (spherical harmonics) as a function of time. This allows for direct
comparison with the experiment. Two sample graphs (the second and fifth modes of bubble 08)
are shown in figures 10 and 11.

The Fourier transforms of the simulated data reveal that the frequencies obtained from
the simulation agree with the experiment within the resolution of the measurement. Figure 11
shows that even details of the complex time-dependent amplitudes are reproduced, except for the
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Table 8. Experimental and theoretical (equation (5)) damping rates (seconds) for
every soap bubble and damping rates from the simulation of bubble 08.

08 16 18 33

Exp. Sim. Basaran et al Exp. Basaran et al Exp. Basaran et al Exp. Basaran et al
[23] [23] [23] [23]

` = 2 0.36 0.57 0.70 0.38 0.65 0.081 0.109 0.095 0.177
` = 3 0.19 0.33 0.36 0.22 0.34 – – – –
` = 4 – – – – – 0.046 0.036 0.030 0.058

damping rates. In both figures 10 and 11, the oscillations relax much more quickly in the exper-
iment. The damping rates are summarized in table 8. In addition, the theoretical values given by
Basaran et al [23] are included in that table. The damping constants obtained by the simulation
are slightly smaller than the theoretical values. A comparison of the experimental damping rates
with those derived by Basaran shows that for all soap bubbles and almost every mode the ex-
periment damps twice as quickly as predicted by theory. The only exception is the fourth mode
of soap bubble 18, but in this case we have to assume that this mode is permanently excited by
nonlinear coupling. Miller and Scriven [32] have considered the influences of the membrane by
assuming inextensibility of a liquid film separating two fluids. They found a higher damping
than Basaran et al (but still lower than our experimental results). In our soap films the condition
of inextensibility does not hold since figure 4 shows rapid surface oscillations.

6. Conclusions and summary

The experiments were designed to test the validity of the analytical linearized model (Lamb)
that makes several simplifying assumptions and subsequent theoretical work that has included
nonlinear effects in the dynamic equations. Before we discuss the detailed results, a few general
remarks are necessary. The first concerns a purely technical point; the bubbles have been
observed for time periods between 0.3 and 0.4 s. This implies that the frequencies reported
here can only be resolved with an accuracy of 1.67 and 1.25 Hz, respectively. A better resolution
cannot be achieved. Even if the bubbles are observed for longer times, the oscillation amplitudes
will have decayed below detection level. Therefore, there is a limit in principle of the resolution
of the eigenfrequencies, which can only be circumvented when the damping rates are reduced.
Even the replacement of air as the outer and inner media by a gas of lower viscosity (H2) would
not help, since the ratio of density and viscosity is relevant.

Secondly, we need to discuss an experimental problem, the presence of butane in the
environment of the bubbles. We use this gas to keep the bubbles in the viewing field of
the camera during the fusion experiment. If the outer medium were pure butane and the
inner medium were pure air, the experimental results would be essentially different from our
observations. However, the bubble floats on a mixture of air with a low butane content. A back-
of-the-envelope calculation shows that the liquid film has a mass that is a few per cent of the
bubble mass (e.g. less than 10% for bubble 08). The buoyancy in the outer gas approximately
compensates for the weight of the liquid film; thus the outer medium will have a density that is
approximately 10% higher than the inner gas. One can see immediately, e.g. from equation (2),
that the effect on the eigenfrequencies is at the limits of our experimental resolution. The relative
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influence on the frequencies in equation (2) reduces to 2.5%. It may account for the fact that
we measure systematically too low frequencies (table 5). For bubble 18, the smallest of all, the
liquid film may contribute up to 25% of the bubble weight. This means that we underestimate
the density of the outer liquid in the calculations by approximately 25%, and the calculated
frequency is overestimated by about 6%. As one can see in table 5, the deviations of measured
frequencies from Lamb’s model are largest for this bubble. Another reason for overestimated
frequencies is the neglecting of the film mass in the analytical model. Its influence may be of
the same order of magnitude as the previous correction.

The film thickness has been estimated from bubbles observed in parallel, reflected light.
We found that the thickness of the bubbles produced in our setup was statistically distributed
in the submicrometer range, from a few hundred nanometers to about 1 µm. The properties
of the liquid membrane (except the surface tension) can be neglected for bubbles much larger
than 1 cm in diameter when one is interested in the frequency spectrum, but the membrane
seems to be responsible, among other effects, for a slightly (10%) lowered oscillation frequency
of the smallest bubble reported in this study. The most important influence of the liquid film
obviously manifests itself in the comparably large experimental damping rates. Damping of
the bubble oscillations is stronger than both the prediction by the numerical simulation and
the analytical values (cf table 8). This indicates that the viscosity of the liquid film, which is
not considered in the computations, contributes significantly to the dissipation of energy. Thus,
the film motion seems to contribute significantly to the dissipation processes. Its quantitative
evaluation is difficult, particularly because the films are never uniformly thick, but it seems
possible to study this influence by manipulating the film viscosity, e.g. by the addition of
glycerol.

Summarizing, the experiments have shown that the linearized analytical treatment by Lamb
describes the observed eigenfrequencies of the oscillation modes correctly. In addition, the
nonlinear corrections have at least three effects that are not predicted by the linear model. We
find a decrease of the eigenfrequencies as a consequence of nonlinear terms at large amplitude
oscillations. The shift of the frequencies of the modes with increasing amplitude agrees with the
quadratic prediction by Tsamopoulos and Brown [22], equation (7). However, the coefficients
are found to be quantitatively larger than predicted (table 4). Another nonlinear effect described
in the literature for droplets and bubbles is the coupling of individual modes. This effect has been
confirmed in our experiments. In particular, the frequency of the second mode is found in almost
all other modes. Nevertheless, there are two limitations to the coupling between the eigenmodes.
Firstly if we start with a symmetric deformation (fusion of two equally sized bubbles), only even
numbered (symmetric) modes are excited. Secondly, since the initial state is axially symmetric,
the bubble oscillations retain axial symmetry until equilibrium is reached. During the rapid
decay of the initial deformations, non-axisymmetric modes (spherical harmonics Y m

l with non-
zero second index m) are not measurably excited.

The third consequence of nonlinearity is the observed oscillation of the zeroth and first
modes. The latter result is peculiar for our systems with nearly equal densities of the inner and
outer media.
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