DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES dream-lab.in | Indian Institute of Science, Bangalore

SE252:Lecture 2, Jan 9 & Jan 16 **ILO2**:1:Cloud Virtualization, *Abstractions and Enabling Technologies*

Yogesh Simmhan

DREAM:Lab

Summary of Lecture 1

Facebook: A Canonical Cloud Based Application

- Scale Up vs Scale Out of resources
 - Meet growing users/content richness using more machines rather than faster machines
 - Key concept for distributed computing on Clouds
- Service Oriented Architecture (SOA)
 - Standards for "Remote Procedure Call" over network, data structure de/serialization
 - Technology enabler, along with Virtualization

Facebook...

- Incremental Pagelet loading using BigPipe
 - Pipelining, Data parallel/MR, Task graph
 - Patterns for building cloud applications
- Synchronous vs. Asynchronous IM Chat
 - Push vs. Pull invocation, guarantees
 - Cloud app execution models & coordination
- Data locality using CDN for photos
 - Trade-off latency vs. freshness vs. consistency

Cloud is a revolution an important evolution

- 1. Cloud computing as a technology
- 2. Cloud computing as a distributed systems environment
- 3. Cloud computing as a research topic

Pre-requisites

- UG Algorithms/data struct/OS/networks
- Programming
 - Network programming, Java/Python

Intended Learning Outcomes (ILO)

 What you need to be able to do after learning from the course...expectations

Teaching and Learning Activities (TLA)

 Meet ILOs thru (Guest)Lectures, Project, Homework, Research Reading, Exam

Assessment (1000 point scale)

- 20% for two homeworks
- 10% for research Summary on a paper
- 40% for 4 project modules w/ extra credits
- 25% for midterm+final exams
- 5% for participation
- Schedule ... See webpage

Academic Integrity

- Students must uphold <u>IISc's Academic</u> <u>Integrity guidelines</u>
 - Penalties include a failing grade
- Discussions & reference to online material is encouraged, but you cannot collaborate
 - Must complete assignments by yourself
 - Document contribution of each team member
- Plagiarism is not acceptable!
 - You must cite external help/sources
- Participate: There are no "stupid" questions ©

Resources

- Distributed and Cloud Computing: From Parallel Processing to the Internet of Things, Kai Hwang, Jack Dongarra and Geoffrey Fox, Morgan Kaufmann, 2011
- Official Mailing List: se252.jan14@mailman.serc.iisc.in
 - Don't use Digest Mode! Can cause delays.
- Lecture: TTh 1130AM-1PM, SERC 202
- Office Hours: Wed, 330-5PM, Fri 1130-1pm SERC 411

Auditing? Schedule conflict? Etc.

- Final date for joining class is <u>before</u> Jan 14th!
 - NOTE: No class on Jan 14 due to campus holiday
 - NOTE: Special session on Wed 15 Jan 1-2PM will be used to discuss Project #0

DREAM:Lab

Ongoing Assignments

Project Preliminaries

- Form teams of two. Pick cool & unique title ©
 - Sign up for AWS account using team title
 - <u>http://aws.amazon.com/</u> -> Sign Up
- Email me team name & members info to me before Sunday Jan 12th
 - CC your team member in the email
- Credit students pair up with credit students. Audit w/ audit.

Reading Assignment

Chapter 1 of text book

Misc Tasks

- Sign up on mailing list using IISc email ID
 - http://mailman.serc.iisc.in/mailman/listinfo/se252.jan14
- Send status update & mugshot

DREAM:Lab

Lecture 2

ILO 2 (NOTE change in ILO1 & ILO 2 order...)

- Cloud Virtualization, Abstractions and Enabling Technologies
 - Explain virtualization and their role in elastic computing.
 - Characterize the distinctions between Infrastructure, Platform and Software as a Service (laaS, PaaS, SaaS) abstractions, and Public and Private Clouds, and
 - analyse their advantages and disadvantages.
 - Describe service oriented architectures that are foundational to the WWW.

Say you have a house to rent...

- What does the tenant want?
 - An independent house ©
- What can you give?

What does a tenant look for?

Is it affordable?

Is there enough space?

- Is it safe from outsiders?
 - Is it safe from other tenants? Locks, shades, .

- Will I not be disturbed by tenants?
- Is power billed separately?

- Can I get a separate main entrance?
 Or at least make sure I don't have to fight crowds?

Say you have a computer to rent...

- What does the "tenant" want?
 - Their own computer ©
- What can you give?
 - And how?

What does a tenant look for?

Is it affordable to rent?

Is there enough CPU/memory?

- Is it safe from the N/W?
 - Is it safe from other users? Mem/Code Leaks..

- Will their application use affect me?
- Can I pay for what I use?

- Can I get my own N/W connection?
 Or at least have a reserved bandwidth?

What do you mean I share the disk!!?

Why Virtualize?

- Share same hardware among independent users
 - Degrees of HW parallelism increasing
- Reduce HW foot print thru' consolidation
 - Eases management, energy usage
- Sandbox/migrate applications
 - Flexible allocation, utilization
- Decouple applications from underlying HW
 - Allows HW upgrades without impact on OS image

Virtualization raises the Abstraction

- Similar to Virtual Memory to access larger address space
 - Physical memory mapping is hidden by OS using paging
- Similar to hardware emulators
 - Allow code on one arch to run on a different
- Physical devices -> Virtual Devices
 - CPU, Memory, VHD, NIC
- Now worry/not be aware of physical hardware details

Virtualization Requirements*

- Efficiency Property
 - All innocuous instructions are executed by hardware
- Resource Control Property
 - It must be impossible for programs to directly affect system resources
- Equivalence Property
 - A program with a VMM performs in a manner indistinguishable from another without
 - Except: (1) Timing, (2) Resource Availability

^{*} Formal Requirements for Virtualizable 3rd Generation Architectures, Popek & Goldberg, CACM, 1974

FIGURE 1.12

Three VM architectures in (b), (c), and (d), compared with the traditional physical machine shown in (a).

- Virtual Machine Manager/Virtual Machine Monitor/Hypervisor ... a Caretaker
- Native (Hyper-V, ~KVM), Hosted (Xen)

- Full Virtualization
 - Unmodified Guest OS
 - VMM binary translates kernel to trap privileged calls
 - Software emulation
 - VMWare Server, Apple Parallels
- Pros
 - Guest OS not modified
 - No HW support required
- Cons
 - Binary translation costly, difficult

Figure 5 – The binary translation approach to x86 virtualization

^{*}Understanding Full Virtualization, Paravirtualization and Hardware Assist, VMWare, Tech Report WP-028-PRD-01-01, 2007

- Para-virtualization
 - Guest OS modified to make "hyper-calls" for privileged instructions
 - Xen in para mode
- Pro
 - (Mostly) faster & easier than bin. translation
- Con
 - Guest OS modified...
 Legacy, maintenance

Figure 6 – The Paravirtualization approach to x86 Virtualization

- H/W Assisted Virtualization
 - Unmodified Guest OS
 - CPU traps & calls VMM for privileged calls
 - CPU support in Intel VTx, AMD-V
 - Xen HVM, Hyper-V, KVM
- Pros
 - Faster to execute
 - Easier management
- Cons
 - Requires CPU support

Figure 7 – The hardware assist approach to x86 virtualization

- OS Level Virtualization
 - OS provides containers for isolation
 - Retains host OS image
 - Linux chroot, OpenVZ
- Pros
 - Faster to boot
 - Fewer images to maintain
 - No CPU support required
- Cons
 - No guest OS, limited distros

Centrality comes a full circle

- Mainframes -> Personal Computers -> Independent Servers -> Enterprise Servers
 - -> Data Centres
- Data centres (More in Lecture #5)
 - Consolidate hardware, infrastructure, energy usage
 - Ease management, automation, physical security
 - Allow transparent HW improvements
- Started as enterprise-scale data centres...

Cisco's Data Center in Texas

Google's Data Center in Georgia

Microsoft's Data Center in Ireland

NSA's Data Center in Utah

How does this all relate to Cloud Computing?

- Rent out spare capacity in Enterprise Data Centres
 - Amazon AWS, etc.
- Build Data Centres where HW can be outsourced
 - Rackspace, etc.

A Colony to rent

Levels of Abstractions: IaaS, SaaS, PaaS *(More in Lecture #3)*

- Infrastructure as a Service (laaS)
 - Rent out virtual machines
 - E.g. Amazon AWS's Elastic Computing Cloud
- Platform as a Service (PaaS)
 - Programming APIs that can be scaled
 - E.g. Microsoft Azure's Workers, Google App Engine, AWS Elastic MapReduce
- Software as a Service (SaaS)
 - End use applications that can be composed & scaled
 - E.g. GMail, Office365, DropBox

And Facebook?

DREAM:Lab

5min Peer Discussion

Reading from Today's Lecture

- Textbook, Sec 3.0 3.3
- Understanding Full Virtualization,
 Paravirtualization and Hardware Assist,
 VMWare, Tech Report WP-028-PRD-01-01,
 2007
- Ask questions in next class

Project 0

Not Graded!

Course Project Overview Book Recommendation using Text Analytics

Reading History

- Atlas Shrugged
- War & Peace
- My Experiments with Truth

Extract signature

Available Books

- •
- •

Find Similarity & Classify

If you like this, you may also like ...

Text Analysis Pipeline #1

Project #0

- Get team account on Amazon AWS from Yogesh
- 2. Start Linux micro-sized VM instance on AWS
- 3. Install & run web server on one micro-instance
- Write a REST Program to run on another micro-instance
 - GET echo?msg=Hello%20World
 - Response should just be the msg text that was passed
- Write a web form taking the input msg as a text box
 - Call "GET echo" on server side
 - Display the result from the GET request on the webpage

More details will be posted online by Sunday

Setup

Project #0

- Pick up info on REST web services
 - Search online!
- You can use nginx web server
 - http://kmil.us/blog/2012/11/24/build-a-webserver-on-amazon-ec2/
- For Python, you can use Flask for writing REST service & uWsgi to call python from nginx
 - https://github.com/d5/docs/wiki/Installing-Flask-on-Amazon-EC2
 - https://flask-restless.readthedocs.org
- For Java, you can use JDK6's javax.ws.rs package
 - http://java.dzone.com/articles/restful-web-services-java

Project Preliminaries

- You will be give Amazon AWS credits by Tue, Jan 14...provided you send teams by Sun Jan 12
 - Account login & access instructions by email
 - ~\$100 per team
- Soft quotas i.e. not physically enforced
- Honour system
- If one overshoots, rest suffer
 - It will lead to grade reductions, including failing grade!
 - Both teammates are responsible!
- We will discuss Project 0 on Wed 15 Jan 1-2PM special session in room TBD