DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES @
dream-lab.in Indian Institute of Science, Bangalore
DREAM:Lab

SE252:Lecture 11/12, Feb 10/19
ILO3:Algorithms and Programming

Patterns for Cloud Applications

Yogesh Simmhan

©DREAM:Lab, 2014
This work is licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US

_pnes 4

Summary of ILO 1

* Flynn’s Taxonomy

= Shared vs Distributed Memory MIMD
= HPC, HTC, OLTP, Big Data

= Clusters, Grids, P2P, Clouds

= Task vs Data Parallelism

= Scalability
» Amdahl, Gustafson, Strong, Weak

= Parallel and Distributed Systems Context

* Classify and describe the architecture and
taxonomy of
» parallel and distributed computing,
» Shared and distributed memory, and
» data and task parallel computing.

» Explain and contrast the role of Cloud
computing within this space.

AN NN

DREAM:Lab

Lecture 11

= Algorithms and Programming
Cloud Applications

» Examine the design of task and data parallel
distributed algorithms for Clouds and

* use them to construct Cloud ap

* Demonstrate the use of task gra
Reduce programming model.

Patterns for

hlications.

bhs and Map-

* Apply Amdahl's law and data locality principles to
* analyse and characterize the potential speedup of

Cloud applications.

B DREAN:Lab [())

Application & System Goals

= System owner
e Maximize resource utilization

= Application owner
* Minimize Makespan for application
* Minimize MakRespan for workload
* Minimize Cost

= Makespan

* End-to-end time taken for an application to be
completed from the time it is submitted

= Weak vs Strong Scaling

= Latency
» Time for application to start producing “useful” result

B DREAN:Lab [())

Application Analysis

= Decompose Makespan into constituents
* Job queuing time
» Compute time (CPU)
* |/O time (disk)
* N/W time
» System Overhead
= Application Design
» Goal is to meet one of these metrics using
scalable design patterns

_pnes 4

1) Ab initio vs. Retrofit

= Parallel Formulation

* Introduce scalability into existing sequential
application using concurrency

= Parallel Algorithm

» Develop algorithm/application to specifically
work on distributed systems

Parallel Programming, L4, Johnnie Baker, 2011

B DREAN:Lab [())

Application Decomposition

= Decompose monolithic application into
discrete tasks

= Why?
* |[dentify degrees of parallelism
» Divide and conquer

* |[dentify dependencies, constraints
» Order of execution

B DREAN:Lab [())

2) Task vs Data Parallel
= Task Parallel

* Perform different tasks at the same time...
» On different processors/VMs
* Limited by?
» Number of independent tasks
= Data Parallel
* Operate on different data at the same time...
» Limited by? A
» Number of independent data “blocks” A

A
= Hybrid is common — MIMD

C

B DREAN:Lab [())

Steps to Decomposition

= Computation Decomposition/Partitioning:

* |[dentify pieces of work that can be done
concurrently

» Assign tasks to different VMs
* Think Amdahl’s Law...

= Data Decomposition/Partitioning:

» Decompose input, output & intermediate
data across different VMs

Parallel Programming, L4, Johnnie Baker, 2011

B DREAN:Lab [())

Points to Consider

= Shared vs. Independent Data
* Lock free, Write locks, Read locks

= Maximize potential speedup!

= Maximize concurrency but also reduce
overheads
* Impact on Strong vs Weak scaling

Parallel Programming, L4, Johnnie Baker, 2011

B DR AN Lab Y () 1
3) Pipelining
= Spread over time rather than space

» May make scheduling easier

= [ncremental, rather than coarse units of
computation

* Reduces time between results

(<]
o
(0]
(0]
o
o
(]
o

Chapter 3: Pipelining and Parallel Processing, Keshab K. Parhi, 1999

B DREAN:Lab [())

Pipelining
= Reduce the effective critical path thru’ interleaving
* Hide communication overheads. Think UM data transfer.

* Makespan = 1/O + Compute can be reduced to
* Makespan = MAX(l/O, Compute)

= Reduce latency between tasks
:Mm }t
APBIE

3

3

3

H

%i?i

e

grd?
AP
+

B DREAM:Lab

Task/Data Parallel & Pipelining

Orthogonal

2
=7

C

= Helps increase
degrees of
parallelism

* Reduce
latency/makespan

" [mprove resource
utilization

A A A

B DREAN:Lab [())
4) Synchronous vs Asynchronous

= Dependency between application
sequence of ops, and how you handle it

= Synchronous vs Asynchronous
» Single logical view vs. Interleaved view
* Assembly line vs. On-demand

= Can be single or multi-threaded

= Synchronous seems natural, but
» Asynchronous is more responsive
» E.g. event driven programming

_pnes 4

5) Blocking vs Non-blocking

= Blocking vs Non-blocking interaction between code
= Do you wait for completion or proceed with execution?
= Related to but orthogonal to Sync/Async

= Async, Blocking : Poll & Yield/Work
* Suspend state & yield CPU/VM, or do other work

= Sync, Blocking: Wait/Sleep
* Retain state & idle CPU/VM

= Async, Non-blocking: Call-back
» Stateless/persisted/returned in call-back, yield CPU/VM

= Sync, Non-blocking: Independent, or...
* Fire & forget

B DREAM:Lab .0‘1
S_C S o W W

S)

process i

buffer_i

kernel_i

kernel_j

buffer_j

process j

]
v R/T;L ; P\ RC

"R_C

W

(a) Blocking sync. Send, blocking Receive (b) Nonblocking sync. Send, nonblocking Receive

S/ S_C Sa W W

O g
o I —

kernel i --- — —

(c) Blocking async. Send (d) Non-blocking async. Send

mmmmm Duration to copy data from or to user buffer

———= Duration in which the process issuing send or receive primitive is blocked

S Send primitive issued S _C processing for Send completes

R Receive primitive issued R_C processing for Receive completes

Distributed Computing: Principles, Algorithms, and Systems, Ajay D. Kshemkalyani, Mukesh Singhal,
Primitives for Distributed Communication, Figure 1.8

_pnes 4

6) Task Graphs, Workflows
= Task graphs

* Dependency between tasks that form an
application

= Control dependency

» Subsequent task cannot start till any/all
previous task(s) completes

= Data dependency
» Task cannot start till all inputs are available

B DREAN:Lab [())
Control vs Data Flow

E can start after
input recv on 1 port

F can start after
C & D complete F can start after inputs

recv on each port

Dataflow has a functional model

B DREAN:Lab [())

7) Data Locality

= Hierarchy of costs
* NetworR, Disk, Memory, Compute

= NetworkR communication cost can be high in
distributed systems
* S3 > VM, VM VM

= Concurrent disk I/O on same machine can be punitive
* Cumulative disk /O

= Attempt to reduce I/O transfers, Maximize bandwidth

= Temporal data locality
» Motivates caching of data on local disk vs. S3
* Issues?

= Spatial task locality
* Move compute to data rather than data to compute

B DREAN:Lab [())
Simple Text Analytics Pipeline (SiTA)

stemmedWordListFile stoppedWordListFile wordAndCountListFile topNWordsAndCountListFile ,
wordCloudFile

inputTextFile . ﬁ _ . ﬁ

stopWordsFile cutoffN

Put Request Poll Request

Internet | Cloud I

Browser Web Server
[Web Form] [WebVM]

HTTP; GET \ Put Response [AppVM]

REST Service

Poll Response

Output Word S3 nput S3 text file
Cloud file Store Output Word Cloud file

B DREAM:Lab

Applying Patterns to SITA

(1) # of UMs: 1..6 2) # of UMs: 5

VM1 J ‘VMI HVMZHVM3 HVM4HVM5]

B B8 B8 -6

(3) (4)

i

-

#0fUMs: 2, 4,6 #0fUMs:3,4,5,6

What is the best way to design your application so that when you can strongly/weakly scale
as UMs are added? Reduce latency? Improve utilization? Reduce co$t?

B DREAN:Lab [())

Applying Patterns to SITA

= Consider times taken per task (Queue,
Compute, Disk, N/W, Overhead)

= Makespan of the application

= Bytes of data exchanged at source &
intermediate

= Analysis of times taken, bottlenecks
* “Measure twice, Cut once”

= Analyse strong & weak scaling
* With T VMs & 1 Data size

= Does reality meet expectations?

B DREAN:Lab [())

Ongoing Assignments

= Textbook reading, ch. 6
= Project outline due now.
= Mar 5: Mid-term (move from Mar 37?)

= Mar 10: Research Paper mid-term draft
submission due.

= Mar 12/13: Project Mid-term Report &
Demo

