
DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES
dream-lab.in | Indian Institute of Science, Bangalore
DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES
dream-lab.in | Indian Institute of Science, Bangalore

DREAM:LabDREAM:Lab

©DREAM:Lab, 2014
This work is licensed under a Creative Commons Attribution 4.0 International License

DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES
dream-lab.in | Indian Institute of Science, Bangalore

DREAM:Lab

SE252:Lecture 13-14, Feb 24/25
ILO3:Algorithms and Programming

Patterns for Cloud Applications (Hadoop)

DREAM:Lab

http://creativecommons.org/licenses/by/4.0/deed.en_US

DREAM:LabDREAM:LabDREAM:Lab

ILO 3


•

•

•

•

•









DREAM:LabDREAM:LabDREAM:Lab

Patterns & Technologies










DREAM:LabDREAM:LabDREAM:Lab

MapReduce

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Design Pattern










DREAM:LabDREAM:LabDREAM:Lab

MapReduce: Data-parallel
Programming Model


 map(ki, vi)  List<km, vm>[]
•
•



 reduce(km, List<vm>[])  List<kr, vr>[]
•
•

DREAM:LabDREAM:LabDREAM:Lab

MR Borrows from Functional Programming


•
•





•



•

•

•

MapReduce & MPI Scatter-Gather

DREAM:LabDREAM:LabDREAM:Lab

MapReduce: Programming Model

How now
Brown cow

How does
It work
now

brown 1
cow 1
does 1
How 2
it 1
now 2
work 1

<How,1>
<now,1>
<brown,1>
<cow,1>
<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>
<brown,1>
<cow,1>
<does,1>
<it,1>
<work,1>

Map(k1,v1) → list(k2,v2)
Reduce(k2, list(v2)) → list(v2)

DREAM:LabDREAM:LabDREAM:Lab

Map


•



•



DREAM:LabDREAM:LabDREAM:Lab

Map


map(String input_key, String input_value):

// input_key: line number

// input_value: line of text

for each Word w in input_value.tokenize()

EmitIntermediate(w, "1");

(0, “How now brown cow”) →

[(“How”, 1), (“now”, 1), (“brown”, 1), (“cow”, 1)]

DREAM:LabDREAM:LabDREAM:Lab



let map(k, v) = emit(k.toUpper(), v.toUpper())

(“foo”, “bar”) → (“FOO”, “BAR”)

(“Foo”, “other”) → (“FOO”, “OTHER”)

(“key2”, “data”) → (“KEY2”, “DATA”)



let map(k, v) =

if (isPrime(v)) then emit(k, v)

(“foo”, 7) → (“foo”, 7)

(“test”, 10) → (nothing)

DREAM:LabDREAM:LabDREAM:Lab

Reduce




DREAM:LabDREAM:LabDREAM:Lab

Reduce


reduce(String output_key, Iterator intermediate_values)

// output_key: a word

// output_values: a list of counts

int sum = 0;

for each v in intermediate_values

sum += ParseInt(v);

Emit(output_key, AsString(sum));

(“A”, [1, 1, 1]) → (“A”, 3)

(“B”, [1, 1]) → (“B”, 2)

for each w

in value do

emit(w,1)

How now
Brown cow

How does
It work now

for all w in

value do

emit(w,1)

<How,1>
<now,1>
<brown,1>
<cow,1>

<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>

<brown,1>
<cow,1>

<does,1>
<it,1>
<work,1>

How 2
now 2

does 1
it 1
work 1

brown 1
cow 1

sum =

sum + value

emit(key,sum)

DREAM:LabDREAM:LabDREAM:Lab

Anagram Example

public class AnagramMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, Text> {

private Text sortedText = new Text();
private Text orginalText = new Text();
public void map(LongWritable key, Text value,

OutputCollector<Text, Text> outputCollector, Reporter reporter) {

String word = value.toString();
char[] wordChars = word.toCharArray();
Arrays.sort(wordChars);
String sortedWord = new String(wordChars);
sortedText.set(sortedWord);
orginalText.set(word);
// Sort word and emit <sorted word, word>
outputCollector.collect(sortedText, orginalText);

}
}

Anagram Example…
public void reduce(Text anagramKey, Iterator<Text> anagramValues,

OutputCollector<Text, Text> results, Reporter reporter) {
String output = "";
while(anagramValues.hasNext()) {

Text anagram = anagramValues.next();
output = output + anagram.toString() + "~";

}
StringTokenizer outputTokenizer =

new StringTokenizer(output,"~");
// if the values contain more than one word
// we have spotted a anagram.
if(outputTokenizer.countTokens()>=2) {

output = output.replace("~", ",");
outputKey.set(anagramKey.toString());
outputValue.set(output);
results.collect(outputKey, outputValue);

}
}

DREAM:LabDREAM:LabDREAM:Lab

5-min Assignment

DREAM:LabDREAM:LabDREAM:Lab

MapReduce for Histogram

int bucketWidth = 4
Map(k, v) {

emit(v/bucketWidth, 1)
}

Reduce(k, v[]){
sum=0;
foreach(w in v[]) sum++;
emit(k, sum)

}

7
2
9
6
0
2
5

2
1
10
3
5
4
0

11
11
6
2
1
8
1

2
4
6
8
10
11
0

1,1
0,1
2,1
1,1
0,1
0,1
1,1

0,1
0,1
2,1
0,1
1,1
1,1
0,1

2,1
2,1
1,1
0,1
0,1
2,1
0,1

0,1
1,1
1,1
2,1
2,1
2,1
0,1

2,1
2,1
2,1
2,1
2,1
2,1
2,1
2,1

0,1
0,1
0,1
0,1
0,1
0,1

1,1
1,1
1,1
1,1
1,1
1,1
1,1
1,1

0,1
0,1
0,1
0,1
0,1
0,1

2,8 0,12 1,8

DREAM:LabDREAM:LabDREAM:Lab

MapReduce for Histogram
int bucketWidth = 4
Map(k, v) {

emit(v/bucketWidth, 1)
}

Combine(k, v[]) {
// same code as reducer

}

Reduce(k, v[]){
sum=0;
foreach(w in v[]) sum+=w;
emit(k, sum)

}

8
2
9
6
0
2
5

2
1
10
3
5
4
0

11
11
6
2
1
8
1

2
4
6
8
10
11
0

2,1
0,1
2,1
1,1

0,1
0,1
2,1
0,1

2,1
2,1
1,1
0,1

0,1
1,1
1,1
2,1

0,1
0,1
1,1

1,1
1,1
0,1

0,1
2,1
0,1

2,1
2,1
0,1

2,3 1,4 0,7 2,6 1,3 0,5

2,1
2,1
2,1

1,1
1,1
1,1
1,1

0,1
0,1
0,1
0,1

0,1
0,1
0,1

2,1
2,1
2,1

1,1
1,1
1,1

0,1
0,1
0,1
0,1
0,1

2,1
2,1
2,1

2,3
2,6

1,4
1,3

0,7
0,5

2,9 1,7 0,12

DREAM:LabDREAM:LabDREAM:Lab

Hadoop Execution
Model

DREAM:LabDREAM:LabDREAM:Lab

Hadoop MapReduce & HDFS




•

DREAM:LabDREAM:LabDREAM:Lab

HDFS Read/Write

DREAM:LabDREAM:LabDREAM:Lab

Scheduling a MR Job

DREAM:LabDREAM:LabDREAM:Lab

MapReduce w/ 1 & N Reducers

DREAM:LabDREAM:LabDREAM:Lab

Map only job

DREAM:LabDREAM:LabDREAM:Lab

Pipelining during Shuffle & Sort

DREAM:LabDREAM:LabDREAM:Lab

Sorting using MapReduce (Map Only)








DREAM:LabDREAM:LabDREAM:Lab

Sorting using MapReduce








MapReduce Execution Overview

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Execution Overview

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Execution Overview

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Resources

•

•

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Resources

•

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Execution Overview

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Execution Overview

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Execution Overview

DREAM:LabDREAM:LabDREAM:Lab

MapReduce Execution Overview

DREAM:LabDREAM:LabDREAM:Lab

Locality


•



DREAM:LabDREAM:LabDREAM:Lab

Fault Tolerance


•

•



•



DREAM:LabDREAM:LabDREAM:Lab

Optimizations







DREAM:LabDREAM:LabDREAM:Lab

Reminder






