DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES @
dream-lab.in Indian Institute of Science, Bangalore
DREAM:Lab

SE252:Lecture 13-14, Feb 24/25
ILO3:Algorithms and Programming

Patterns for Cloud Applications (Hadoop)

Yogesh Simmhan

©DREAM:Lab, 2014
This work is licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US

= Algorithms and Programming Patterns for
Cloud Applications

» Examine the design of task and data parallel v
distributed algorithms for Clouds and

* use them to construct Cloud applications. ~ =Project

* Demonstrate the use of task graphs and Map-
Reduce programming model.

* Apply Amdahl's law and data locality principles to v/

* analyse and characterize the potential speedup of
Cloud applications. OProject

_pnes 4

Patterns & Technologies

= MapReduce is a distributed data-parallel
programming model from Google

= MapReduce works best with a distributed file
system, called Google File System (GFS)

= Hadoop is the open source framework
implementation from Apache that can execute
the MapReduce programming model

* Hadoop Distributed File System (HDFS) is the
open source implementation of the GFS design

= Elastic MapReduce (EMR) is Amazon’s PaaS

B DREAN:Lab [())
MapReduce

“A simple and powerful interface that
enables automatic parallelization and
distribution of large-scale computations,
combined with an implementation of this
interface that achieves hé’lgh performance on
large clusters of commodity PCs.”

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”,
OSDI, 2004

_pnes 4

MapReduce Design Pattern

= Clean abstraction for programmers
= Automatic parallelization & distribution

= Fault-tolerance
= A batch data processing system
= Provides status and monitoring tools

B DREAM:Lab

MapReduce: Data-parallel
Programming Model

= Process data using map & reduce functions
= map(k;, v;) = List<k,, v, >[]
* map is called on every input item
* Emits a series of intermediate Rey/value pairs
= All values with a given key are grouped together

* reduce(k,, List<v >[]) = List<k,., v.>[]
* reduce is called on every unique key & all its values
* Emits a value that is added to the output

input shuffle | reduce > output
0067011990 0, 0067011990..) (1950, 0)
st | o ool 1656) oo, |y s, |yl
0043012650.. (318, 0043012650..) (1949, 111) (1950, [0, 22, -11]) (350, 22) 20T
0043012650.. (424, €043012650..) (1049, 78)
map.xb sort | reduce.rb > output

Figure 2-1 MapReducc Iogical data ﬂow Copyright © 2011 Tom White, Hadoop Definitive Guide

B DREAN:Lab [())

MR Borrows from Functional Programming

= Functional operations do not modify data structures

* They always create new ones
» Original data still exists in unmodified form (read only)

= Data flows are implicit in program design

= Order of operations does not matter
* Commutative:adb0c=b0adc=cObda

= In a purely functional setting

» Elements computed by map cannot see the effects of map
on other elements

* Order of applying reduce is commutative
» Allowing parallel/reordered execution
» More optimizations possible if reduce is also associative

»(@0b)0c=a0(b?c)

MapReduce & MPI Scatter-Gather

MPI_Scatter

@—:
O O O O

OmE HON Omm OmEm MPI_Gather

®® O ® OB O O

OoooE EEE EEER EEN
() w—

ONONONO

Routing determined by
array index/element
position

MPI_Allgather

Routing determined by key
@ O= O=
® O 06

http://mpitutorial.com/mpi-scatter-gather-and-allgather/

B DREAM:Lab

MapReduce: Programsnming Model

Map(kl,vl) - list(k2,v2)
Reduce(k2, list(v2)) — list(v2)

<How, 1>
<now, 1> <How,1 1> ()
A ’ g] brown 1
How now <brown, 1> <now,1 1> T~~~
Brown cow| <cow,1> —» <brown,1> ;OW 1
<How, 1> <cow,1> oes 1
<does, 1> <does, 1> .
How does . . it 1
— <1t,1> <1t,1>
It work ? now 2
now] <work, 1> <work, 1> 1
<now, 1> Reduce wor
°
°
° MapReduce Framework
Input Output

Distributed Wordcount

B DREAN:Lab [())

Map

= [nput records from the data source
* lines out of files, rows of a database, etc.

= Passed to map function as key-value pairs
* Line number, line value

= map() produces zero or more intermediate
values, each associated with an output Rey

NNy
EENOOO

B DREAN:Lab [())

Map

= Example Wordcount
map(String input_key, String input_value):
// input_key: line number
// input_value: line of text
for each Word w in input value.tokenize()

EmitIntermediate(w, "1");

(0, “How now brown cow”) =
[(“How”, 1), (“now”, 1), (“brown”, 1), (“cow”, 1)]

B DREAN:Lab [())

= Example: Upper-case Mapper

let map(k, v) = emit(k.toUpper(), v.toUpper())
(“-FOO’,, ﬂ'bar\.”) 9 (('CFOO.”, ('CBAR.”)

(“Foo”, “other”) - (“FO0”, “OTHER”)

(ﬂ'keyz).’, “'data.”) N (“’KEYZ).’, “'DATA)))

= Example: Filter Mapper
let map(k, v) =
if (isPrime(v)) then emit(k, v)
(“foo”, 7) » (“foo”, 7)
(“test”, 10) - (nothing)

B DREAN:Lab [())

Reduce

= All the intermediate values from map for a
gilven output kRey are combined together into
a list

= reduce() combines these intermediate values
into one or more final values for that same
output Rey ... Usually one final value per key

ntal [l H H HE N 000000
~— — ~—

returned

B OREAM:Lab [) 1
Reduce
= Example Wordcount

reduce(String output_key, Iterator intermediate values)
// output key: a word
// output values: a list of counts
int sum = ©;
for each v in intermediate_values
sum += Parselnt(v);

Emit(output_key, AsString(sum));

(“A”: [1: 1: 1]) - (“A”) 3)
(“B”: [1: 1]) - (“B”: 2)

Input key*value Input key*value
pairs pairs How does

How now
Brown cow It work now

for all w in
map value do

for each w

ma ;
Data store 1 P in value do - coren E (w1
<lemit (w, 1) emit (w, 1)
(key 1, (key 2, (Key 3, (key 1, (key 2, (key 3.
valyes...) values...) values...) values...) values...) values...)
) l
== Barrier == : Aggregates intermediate values by output key
| I
key 1, <brown, 1> key 2, <does, 1> key 3,
<How,1 1> . . ’
intermediate <cow.1> intermediate <1t,1> intermediate
<now,1 1> . values 7 v values <work,1> r values
sum =
sum + value reduce reduce reduce
emit (key, sum)
does 1
How 2 fingj key 1 brown 1 gna'key 2 finalkey3s 1T 1

now 2 values cow 1 values values work 1

B DREAN:Lab [())
Anagram Example

“An anagram is a type of word play, the result of rearranging the letters of a word or
phrase to produce a new word or phrase, using all the original letters exactly once; for
example orchestra can be rearranged into carthorse.” ... Wikipedia

public class AnagramMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, Text> {
private Text sortedText = new Text();
private Text orginalText = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, Text> outputCollector, Reporter reporter) {

String word = value.toString();

char[] wordChars = word.toCharArray();
Arrays.sort(wordChars);

String sortedWord = new String(wordChars);
sortedText.set(sortedWord);
orginalText.set(word);

// Sort word and emit <sorted word, word>
outputCollector.collect(sortedText, orginalText);

http://code.google.com/p/hadoop-map-reduce-examples/

Anagram Example...

public void reduce(Text anagramKey, Iterator<Text> anagramValues,
OutputCollector<Text, Text> results, Reporter reporter) {
String output = "";
while(anagramValues.hasNext()) {
Text anagram = anagramValues.next();
output = output + anagram.toString() + "~";
}
StringTokenizer outputTokenizer =
new StringTokenizer(output,”~");
// if the values contain more than one word
// we have spotted a anagram.
if(outputTokenizer.countTokens()>=2) {
output = output.replace("~", ",");
outputKey.set(anagramKey.toString());
outputValue.set(output);

results.collect(outputKey, outputValue);

DREAM:Lab

5-min Assignment

1) Build a histogram
2) Sort numbers

B DREAN:Lab [())
MapReduce for Histogram

7 2 11 2

2 1 11 4

9 10 6 6

6 3 2 8

0 5 1 1@

2 8 o o

: . . int bucketWidth =

OO0 mEu

emit(v/bucketWidth, 1)
}

FOORNOR
A S " " T R)
PR R R R RR
OrRrONMOO
A S T S Y

W |—\|—\|—\|—\|—\|—\|—\

=

g

C—

Sl o v oRr NN
A S " " R)
F R R R RRR
OSNNMNR RO
L T S " T N
IR NN

Reduce(k, v[]){

2,1 0,1 0,1 1,1 o
2,1 0,1 0,1 1,1 sum=09;

2,1 0,1 0,1 1,1 . .
21 6.1 0.1 14 foreach(w in v[]) sum++;
2,1 0,1 0,1 1,1 emit(k, Sum)

2,1 0,1 0,1 1,1

2,1 1,1 }

2,1 1,1

ONONO,

2,8 0,12 1,8

B DREAN:Lab [())
MapReduce for Histogram

8 2 11 2

2 1 F o1 4

9 10 i 6 6 . .

6 3 L 2 g int bucketWidth =

(7] 5 : 1 10

2 4 8 11 Map(kJ V) {

° 6 1 1 % emit(v/bucketWidth, 1)
2,1 0,1 0,1 1,1 52,1 0,1 0,1 2,1
0,1 0,1 0,1 1,1 {2,12,1 1,1 2,1 .
21 11 2161 1104 1.1 0.1 Combine(k, v[]) {
1,1 R 2,1 // same code as reducer
|
2,1 1,1 0,10,1{2,12,11,1 0,1 }
2,1 1,1 0,10,1i2,12,11,1 0,1
2,1 1,1 0,1 e,1§2,1 2,11,1 0,1

1,1 e,1 0,1 Reduce(k, v[]){

=0;
@@@ @@@ ;cu)?each(w in v[]) sum+=w;

1,4 07:26 1,3

Shuffle emit(k, sum)

23 14 07 }
@ @ ®

If a Reducer is commutative and associative, it can be used as a Combiner

DREAM:Lab

Hadoop Execution
Model

Figures are from Hadoop: The Definitive
Guide, Tom White, O’Reilly, 2011

B DREAN:Lab [())

Hadoop MapReduce & HDFS

= HDFS offers a distributed, replicated file
store for commodity hardware

= Hadoop MapReduce uses HDFS for input,
intermediate & output data staging

» Tightly coupled with HDFS, e.g. scheduling
based on locality

B D REAN:Lab Y &)

. e 2: get block lacations
dient |3 .

HDFS
"'_'"'--::::: FSData namenode
- InputStream —
client JUM :
client node '“--.._‘.
4 readé 5 read
datanode datanode datanode

Figure 3-1. A client reading data from HDES

2. create
1 teate Distributed I s »>
dl‘nt i:wr“e e au....u...’
D < FSData
client JUM :

T A

namenode

client node ‘ :
4 write packet 5:ack packet
Pipeline of DataNode [§ Datahlode
datanodes

datanode datanode datanode

Incremental replication in B/G ,

Figure 3-3. A client writing data to HDFS

HDFS Read/Write

Replication Model

J Ul 11
Il

rack

data center

Avoid data loss due to nodefrack
failures.

Reduce N/W bandwidth usage,
time taken to replicate.

B DREAN:Lab [())
Scheduling a MR Job

JoZgetnewjobld >
Mapper and Reducer slots gt -‘-i!?-'l"-‘?!’--»--35-5-‘-'95'-‘-‘?-"9!’- -------------- B iacer RN
. ‘w-"
available on each task dient JVM —
tracker node. ‘"‘"‘“"": — i+ Jobtracker node
. :copy job ; g
Typically, 2 mapper slots per i |
core, 1 reducer slot per core e '
. o N
(reducers often “costlier” L it
h resources ;
than mapper). 9 lounch
A 4
child JVM
10 mné
v
MapTask
or
ReduceTask
tasktracker node

Figure 6-1. How Hadoop runs a MapReduce job

B DREAN:Lab [())
MapReduce w/ 1 & N Reducers

In-memory or in-disk sort, based on size
of output from map for a split.
Output sent to one reducer where

- merge-sort happens on sorted outputs
epiation | from all mappers.

split2 &

Figure 2-2. MapReduce data flow with a single reduce task

i
‘ output
- split0 L. .
One output sorted output generated by
part0 &= HDFS
each mapper for each reducer. replcation
split1
pat] &—— HOFS
replication
split2

Figure 2-3. MapReduce data flow with multiple reduce tasks

B DREAN:Lab [())

Map only job

; replication

replication

replication

Figure 2-4. MapReduce data flow with no reduce tasks

Output parts from Mappers concatenated to get final output

B DREAN:Lab [())
Pipelining during Shuffle & Sort

Copy “Sort” Reduce
phase phase
artmon
and reduce task
it gk >-
merge

merge

m:xture ofm -memory and an -disk data

Other maps Ty, Other reduces

Figure 6-4. Shuffle and sort in MapReduce

B DREAN:Lab [())
Sorting using MapReduce (Map Only)

= Map emits number as key
= Shuffle sorts Reys within machine
= Write to disk

= Perform merge sort offline

B DREAN:Lab [())
Sorting using MapReduce

= Map emits number as key
= Shuffle sorts Reys across machines

= Partitioner buckets kReys ranges and maps
them to Reducers

= Reducer writes Reys to disk

MapReduce Execution Overview

User
Program

(1) fork .-

_-mssign
map
(4) local write
Input Map Intermediate files Reduce Output
files phase {on local disks) phase files

http://code.google.com/edu/parallel/mapreduce-tutorial.html

B DREAM:Lab

MapReduce Execution Overview

1. The user program, via the MapReduce
library, splits the input data into splits

Split 0

S Split 1
User Split 2

Input @ Program > | Split 3
Data Split 4
Split 5

~_ Split 6

* Splits are typically 16-64mb in size

B DREAM:Lab

MapReduce Execution Overview

2. The user program creates process
copies distributed on a machine cluster.
One copy will be the “Master” and the
others will be worker threads.

@

User
Program s ‘

B DREAN:Lab [())

MapReduce Resources

3. The master distributes M map and R
reduce tasRks to idle workers.
* M == number of splits

* R ==the intermediate key space is divided
into R parts

Message(Do_map_tasR) dle
B Worker

B DREAN:Lab [())

MapReduce Resources

4. Each map-task worker reads assigned
input split and outputs intermediate
Rey/value pairs.

* Output buffered in RAM.

Split O > Key/value pairs

B DREAM:Lab

MapReduce Execution Overview

5. Each worker flushes intermediate
values, partitioned into R regions, to
disk and notifies the Master process.

Disk lOCEltyv @
Map

/ worker
C

Local
Storage

B DREAM:Lab

MapReduce Execution Overview

6. Master process gives disk locations to
an available reduce-task worker who
reads all associated intermediate data.

@ Disk locations
Reduce
worker
remote
Storage

B DREAN:Lab [())

MapReduce Execution Overview

/. Each reduce-task worker sorts its
intermediate data. Calls the reduce
function, passing in unique Reys and
associated key values. Reduce function
output appended to reduce-task’s
partition output file.

Sorts data
Partition
Output file
Reduce
worker

B DREAM:Lab

MapReduce Execution Overview

8. Master process waRes up user process
when all tasks have completed. Output
contained in R output files.

User
Program J—
Output

files

wakeup

_

B DREAN:Lab [())

Locality

= Master program distributed tasks based
on location of data

* Tries to have map() tasks on same machine as
physical file data, or at least same rack

= map() task inputs are divided into ~64 MB
splits by default...same as HDFS block
Size

B DREAN:Lab [())

Fault Tolerance

= Master detects worker failures

* Re-executes completed & in-progress map()
tasks

* Re-executes in-progress reduce() tasks

= Master notices particular input hey(‘values
cause crashes in map(), and skips those
values on re-execution.

» Effect: Can work around bugs in third-party
libraries!

= NOTE: Job Tracker and Name Nodes are single
points of failure

_pnes 4

Optimizations

= No reduce can start until map is
complete:

= A single slow disk controller can rate-limit
the whole process

= Master redundantly executes “slow
moving” map tasks; uses results of first
copy to finish

B DREAN:Lab [())

Reminder

= Midterm Exam on Thu, Mar 5 during class
hours (2-330PM) [10% weightage]

= Midterm paper review due on Tue 10 Mar.

= Midterm project report due on Thu 12
Mar. Demos on Fri 13 Mar. [10%
weightage]

