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MapReduce
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MapReduce Design Pattern
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MapReduce: Data-parallel 
Programming Model


 map(ki, vi)  List<km, vm>[]
•
•



 reduce(km, List<vm>[])  List<kr, vr>[]
•
•
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MR Borrows from Functional Programming

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MapReduce & MPI Scatter-Gather
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MapReduce: Programming Model

How now
Brown cow

How does
It work 
now

brown 1
cow 1
does 1
How 2
it 1
now 2
work 1

<How,1>
<now,1>
<brown,1>
<cow,1>
<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>
<brown,1>
<cow,1>
<does,1>
<it,1>
<work,1>

Map(k1,v1) → list(k2,v2)
Reduce(k2, list(v2)) → list(v2)
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Map
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Map


map(String input_key, String input_value):

// input_key: line number

// input_value: line of text

for each Word w in input_value.tokenize()

EmitIntermediate(w, "1");

(0, “How now brown cow”) →

[(“How”, 1), (“now”, 1), (“brown”, 1), (“cow”, 1)]
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

let map(k, v) = emit(k.toUpper(), v.toUpper())

(“foo”, “bar”) → (“FOO”, “BAR”)

(“Foo”, “other”) → (“FOO”, “OTHER”)

(“key2”, “data”) → (“KEY2”, “DATA”)



let map(k, v) =

if (isPrime(v)) then emit(k, v)

(“foo”, 7) → (“foo”, 7)

(“test”, 10) → (nothing)
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Reduce



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Reduce


reduce(String output_key, Iterator intermediate_values)

// output_key: a word

// output_values: a list of counts

int sum = 0;

for each v in intermediate_values

sum += ParseInt(v);

Emit(output_key, AsString(sum));

(“A”, [1, 1, 1]) → (“A”, 3)

(“B”, [1, 1]) → (“B”, 2)



for each w 

in value do 

emit(w,1)

How now
Brown cow

How does
It work now

for all w in 

value do 

emit(w,1)

<How,1>
<now,1>
<brown,1>
<cow,1>

<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>

<brown,1>
<cow,1>

<does,1>
<it,1>
<work,1>

How 2
now 2

does 1
it 1
work 1

brown 1
cow 1

sum = 

sum + value

emit(key,sum)
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Anagram Example

public class AnagramMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, Text> {

private Text sortedText = new Text();
private Text orginalText = new Text();       
public void map(LongWritable key, Text value,

OutputCollector<Text, Text> outputCollector, Reporter reporter) {

String word = value.toString();
char[] wordChars = word.toCharArray();
Arrays.sort(wordChars);
String sortedWord = new String(wordChars);
sortedText.set(sortedWord);
orginalText.set(word);
// Sort word and emit <sorted word, word>
outputCollector.collect(sortedText, orginalText);

}
}



Anagram Example…
public void reduce(Text anagramKey, Iterator<Text> anagramValues,

OutputCollector<Text, Text> results, Reporter reporter) {
String output = "";
while(anagramValues.hasNext()) {

Text anagram = anagramValues.next();
output = output + anagram.toString() + "~";

}
StringTokenizer outputTokenizer = 

new StringTokenizer(output,"~");
// if the values contain more than one word 
// we have spotted a anagram.
if(outputTokenizer.countTokens()>=2) {

output = output.replace("~", ",");
outputKey.set(anagramKey.toString());
outputValue.set(output);
results.collect(outputKey, outputValue);

}
}
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5-min Assignment
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MapReduce for Histogram

int bucketWidth = 4
Map(k, v) {

emit(v/bucketWidth, 1)
}

Reduce(k, v[]){
sum=0;
foreach(w in v[])  sum++;
emit(k, sum)

}
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MapReduce for Histogram
int bucketWidth = 4
Map(k, v) {

emit(v/bucketWidth, 1)
}

Combine(k, v[]) {
// same code as reducer

}

Reduce(k, v[]){
sum=0;
foreach(w in v[])  sum+=w;
emit(k, sum)

}
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Hadoop Execution 
Model
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Hadoop MapReduce & HDFS

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HDFS Read/Write
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Scheduling a MR Job
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MapReduce w/ 1 & N Reducers
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Map only job



DREAM:LabDREAM:LabDREAM:Lab

Pipelining during Shuffle & Sort
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Sorting using MapReduce (Map Only)





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Sorting using MapReduce





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MapReduce Execution Overview
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MapReduce Execution Overview
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MapReduce Execution Overview



DREAM:LabDREAM:LabDREAM:Lab

MapReduce Resources

•
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MapReduce Resources
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MapReduce Execution Overview
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MapReduce Execution Overview
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MapReduce Execution Overview
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MapReduce Execution Overview
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Locality

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Fault Tolerance

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Optimizations


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Reminder







