DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES @
dream-lab.in Indian Institute of Science, Bangalore
DREAM:Lab

SE252:Lecture 18/19, Mar 17/19
Application Execution

Models on Cloud
(Job & DAG Scheduling)

Yogesh Simmhan

AT
Yz 0 ©Yogesh Simmhan, 2014 _ _— - - 9
e This work is licensed under a Creative Commons Attribution 4.0 International License e

http://creativecommons.org/licenses/by/4.0/deed.en_US

= Application Execution Models on Clouds:

* Design and implement Cloud applications that
can scale up on a VM and out across multiple

VMs.

* [llustrate the use of load balancing techniques
for stateful and stateless applications.

* Characterize resource allocation strategies to

leverage elasticity and heterogeneity of Cloud
services

* lllustrate the use of NoSQL Cloud storage for
information storage and retrieval.

DREAM:Lab

Job Scheduling

Slides on list scheduling courtesy:
Algorithm Design by Eva Tardos and Jon Kleinberg
Copyright © 2005 Addison Wesley « Slides by Kevin

Wayne

http:/lwww.cs.princeton.edu/~wayne/Rleinberg-tardos/pdf/11ApproximationAlgorithms-2x2.pdf

B DREAN:Lab Y ())

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should T do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
. Solve problem in poly-time.
. Solve arbitrary instances of the problem.

p-approximation algorithm.
. Guaranteed to run in poly-time.
. Guaranteed to solve arbitrary instance of the problem
. Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution’s value is close to optimum, without
even knowing what optimum value is!

B DREAN:Lab Y ())

Load Balancing

Input. m identical machines; n jobs, job j has processing time t;.
. Job j must run contiguously on one machine.
. A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machineiis L, ==, _ 5, 1;

Def. The makespan is the maximum load on any machine L = max; L.

Load balancing. Assign each job to a machine to minimize makespan.

B DREAN:Lab Y ())

Image Processing Jobs on laa$S Cloud

= Users submit “jobs” on a queue
* n jobs available

» Each job has an estimated time (e.g. based on
image size)

= Set of m VMs are available
= A scheduler looks at all jobs in the queue
= Assigns jobs to VMs

= Goal: To reduce the overall time to
process all jobs in the queue

B DREAN:Lab Y ())

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.
Pf. PARTITION < p LOAD-RALANCE. PARTITION is a problem where a set of numbers have to

be partitioned into two such that the sum of the
numbers in each set is as close as possible. This an NP-

complete problem, taking O(2N) for optimal soln.
http://lwww.americanscientist.org/issues/pub/2002/3/the-easiest-hard-

problem/99999
a b c d
e f g
o A
~
length of job f
machine 1 a d f
yes

machine ¢ b c e g

0] Time L

http://www.americanscientist.org/issues/pub/2002/3/the-easiest-hard-problem/99999

B DREAN:Lab Y ())

Load Balancing: List Scheduling

List-scheduling algorithm.
. Consider n jobs in some fixed order.
. Assign job j to machine whose load is smallest so far.

List-Scheduling(m, n, t,,t,,..,t)) {
for i =1 tom {
L, = 0 «— |oad on machine i
J(i) =— ¢ <+— jobs assigned to machine i
}

for §j =1 ton {

i = argmin, L, <+— machine i has smallest load
J(i) = J(i) U {Jj} <«— assign job] tomachinei
L == L; + &4 «— update load of machine i

Implementation. O(nlogm) using a priority queue.

B DREAN:Lab Y ())

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
. First worst-case analysis of an approximation algorithm.
. Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* = max; ;.
Pf. Some machine must process the most fime-consuming job. =

Lemma 2. The optimal makespan L* = 13 .1,
Pf.
. The total processing time is X 1;.
. One of m machines must do at least a 1/m fraction of total work. =

B DREAN:Lab Y ())
Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
. Let j be last job scheduled on machine i.

. When job j assigned to machine i, i had smallest load. Its load
before assignment isL;-t; = L;-t, < L, foralll<k<m.

blue jobs scheduled before j

/
I N
machine i | T T
[

0

L.- 1. L

|] L;

B DREAN:Lab Y ())
Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L, of bottleneck machine i.
. Lef j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load
before assignment isL;-t; = Li-1; < L, foralll<k=m.
. Sum inequalities over all k and divide by m:

Li-t; = 13, L

1
- EE# I

lemmal —» < L#*

B DREAN:Lab Y ())

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

P 12 r 32 47 he 62 72 82 Machine 2 idle
3 13 23 33 43 b3 63 73 83 Machine 3 idle
4 14 24 34 44 54 64 T4 84 Machine 4 idle
5 15 2h 35 45 B 6b ™ 85 Machine 5 idle
6 16 pals} 36 46 b6 66 76 86 Machine 6 idle
T 17 27 3/ 47 5F 67 Ir 87 Machine 7 idle
8 18 28 38 48 h8 68 78 88 Machine 8 idle
9 19 29 39 49 e 69 19 89 Machine 9 idle
10 20 30 40 h0 60 70 80 90 Machine 10 idle

m = 10, list scheduling makespan = 19

B DREAN:Lab Y ())

Load Balancing: List Scheduling Analysis

Q. Isour analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

1 1 21 31 41 51 61 71 81 10
2 I2 22 32 42 52 62 T2 82 20
3 I3 23 33 43 53 63 73 83 30
4 4 24 34 4 54 64 74 84 40
5 I5 25 35 45 55 65 75 85 50
6 le 26 36 46 5H6 66 TJ6 86 60
7 r 2r 37 47 5 &7 77 & 70
8 I8 28 38 48 58 68 /8 88 80
9 9 29 39 49 B9 69 79 8 90

m = 10, optimal makespan = 11

B DREAN:Lab . (o ¥
Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, £, ,t,,.,t) {
Sort jobs so that t, 2 t,2 .. 2 t,

for i =1 tom {
L, — 0 «— |oad on machine i

J(i) — ¢ +— jobs assigned to machine i

for j =1 ton {
i = argmin, L «— machine i has smallest load
J(i) = J(i) U {3j} < assign job to machine i
L= L; + & «— update load of machine i

B DREAN:Lab Y ())

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. =

Lemma 3. If there are more thanm jobs, L* =21 ;.

Pf.
. Consider first m+1 jobs 1, .., T ;.
. Since the 1,'s are in descending order, each takes at least t,,; tfime.
. There are m+1 jobs and m machines, so by pigeonhole principle, at

least one machine gets fwo jobs. =

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

(by observation, can assume number of jobs >m)

B DREAN:Lab Y ())

Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, .., 2m-1 and
one job of length m.

DAG Scheduling

B DR EAN:Lab Y (&)

DAG Scheduling

= Map all tasks in a DAG to computing
resources
» Computational time
» Data dependencies, transfer costs

= Often done statically

» Assumes deterministic behavior of apps and
machines

» Batch operation

Batch mode
o List scheduling { Dependency mode
Heunstics
— based —] Dependency-batch
mode
Cluster based scheduling
Best-effort based
[scheduling] — Duplication based scheduling
Greedy randomized adaptive
search procedure
Crid Workflow L ﬁ;}lmmcs Simulated annealing
Scheduling) }
Genetic algonthms
Heuristics based
— Deadline- { o
constrained Metaheuristics based
~ QoS-constraint
based scheduling Heuristics based
— Budget- ‘1 o
constrained Metaheuristics based
L Others

Fig. 5.2. A taxonomy of Grid workflow scheduling algorithms.

Workflow Scheduling for Grid Computing, Wu, 2008

B DREAN:Lab Y ())
Best Effort: HEFT

= Heterogeneous Earliest Finish Time (HEFT)
» Heuristic Scheduling
* Asymmetric resources
» Communication costs between tasks
* Known time per task

= Static scheduling at start of runtime
* Pick a schedule and stick to it

Topcuoglu, Hariri and Wu, Performance-effective and Low Complexity task Scheduling for Heterogeneous
Computing, TPDS, 2002

B DREAN:Lab Y ())

Problem Definition
= GivenaDAG G = (v, e)

* The v vertices are tasks
* The e edges are control dependencies
* There are only one Entry & one Exit tasks

" data is a v X v matrix of data exchanges
between tasks

= g heterogeneous machines in the cluster

= I/ is a v X g matrix with execution times for
tasks v on machines g

= [, is vector of size g with the communication
latency time for each machine

= B is a g X g matrix with bandwidth between
each pair of g machines

B DREAM:Lab

14
13
11
13
12
13
7 15 | 11 30 L

18 12120 Topcuoglu, Hariri and Wu, Performance-effective and Low Complexity task
21 7 16 Scheduling for Heterogeneous Computing, TPDS, 2002

O W oo~ WU W =

—L

B DREAN:Lab Y ())

Data & Compute Estimates
= Average task processing time of task i

q
W _ Zm:l W(l,m)
g q

= Communication time for task i on machine m
with a successor task k on machine n is:

. data;
Cik = Lm + / Bmn
= Average communication time for tasR i

___ - data;

Observations of Heterogonous Earliest Finish Time (HEFT) Algorithm, Kevin Tzeng

B DREAN:Lab Y ())

Critical Path Estimates

= Upward Rank: Length of Critical Path from task i to
exit task, including computation cost

rank, (i) = w; + max (¢;; + rank,(j))
jesucc(i) 7

where rank, (exit) = Wa,;t

= Downward RanR: Length of Critical Path from
entry task to task i, excluding computation cost

rank,(i) = jeggéi(i)(rankd U) + Ciit+ Wj)

where rank (entry) = 0

Observations of Heterogonous Earliest Finish Time (HEFT) Algorithm, Kevin Tzeng

B DREAN:Lab Y ())

Start & Finish times of tasks

= Earliest Start Time: Earliest possible time at which a
task i can be started on machine m. Machine m must
be available, and predecessors of i must be finished.

EST(i,m) = max {avail[m],jeggéc(i)(AFT(j) -+ cj,i)}

EST (entry,m) = 0

= Earliest Finish Time: Earliest possible time at which
task i can finish its execution on machine m

EFT(l, m) — EST(l, m) + W(i,m)
= Actual Start Time (AST)
= Actual Finish Time (AFT)

B DREAN:Lab Y ())

Pseudo Code: HEFT

. Set the computation costs of tasks and communication
costs of edges to their mean values.

2. Compute the rank, for all tasks by traversing graph
backwards, starting from the exit task.

3. Sort the tasks in a scheduling 1list by non-
increasing order of rank, values.

4. while there are unscheduled tasks in the list do

4.1. Remove the first task 1, from the list for
scheduling.

4.2. For each machine m do
4.2.1. Compute the EST(i,m) value

4.3. Assign task 1 to the machine m that minimized
EFT of the task 1.

5. End while

Computational Complexity = O(e X q)

B DREAN:Lab Y ())

Critical Path on a Processor: CPOP

= Uses critical path as the .
lower bound of schedule

= Task priority is based on T /"2 \\ 5

10—

AR
sum of upward & downward 7| |e|]\ |
ranks okt e\

\ / ng

= Schedule highest priority 01— _\ A=
pending tasR, iteratively oL\ .
= Attempts to co-locate NN =

critical path processors

B DREAN:Lab Y ())

Ongoing Assignments

= Upload all
to GitHub

= HW B will

oroject midterm slides & code
oy TODAY (pre-req for grades)

ve posted on Mar 19

Reading Assignment

= Text book Chs: 2.4.1,2.4.2,4.5.2,6.2.6
= Workflow Scheduling for Grid Computing, Wu, 2008

= Topcuoglu, Hariri and Wu, Performance-effective and Low
Complexity task Scheduling for Heterogeneous Computing,

TPDS, 2002

