

SE252:Lecture 20, Mar 24

IL04:Application Execution Models on Cloud (*Dynamic Scheduling*)

Yogesh Simmhan

Lecture 20: ILO 4

Constrained Scheduling

- Best effort on co\$t
- Constraint on a deadline
- Constraint on a budget
- Adaptive scheduling

Multi-criteria Optimization

- Time & Cost Budget
 - Reduce time (best effort) while ensuring below budget (fixed)
- Normalize time & cost into single optimization function
 - Reuse existing algorithm
- Optimize one, then tweak to optimize other
 - LOSS-GAIN Approach

Scheduling with Budget Constraints[§]

- LOSS Approach
 - Schedule using HEFT. If within budget, done.

$$LossWeight(i, m) = \frac{T_{new} - T_{old}}{C_{old} - C_{new}}$$

- » T_{old} is time taken by task i on old machine assigned by HEFT
- » T_{new} is time taken by task i on new candidate machine m
- » C is cost on respective machines
- Try re-assignments using smallest $LossWeight$

Scheduling with Budget Constraints

■ GAIN Approach

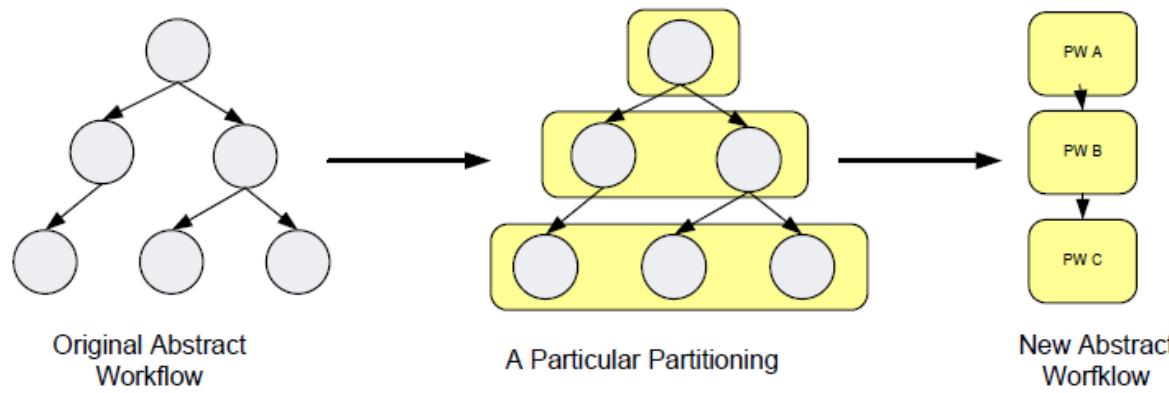
- Initially map each task to the cheapest available machine (rather than HEFT)
- Then make reassessments based on the largest *GainWeight*

$$GainWeight(i, m) = \frac{T_{old} - T_{new}}{C_{new} - C_{old}}$$

- Continue till budget is exhausted

Dynamism

- Variability in application requirements
 - DAG branches non-deterministic
 - Continuous applications
- Variability in Infrastructure
 - Performance of VMs vary in time
 - With/without task migration


DAG Scheduling Strategies under Dynamism

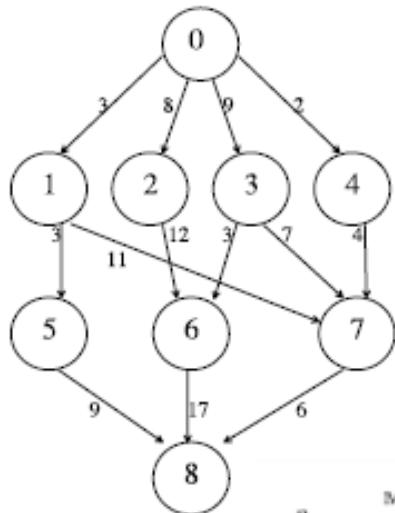
- Full-ahead planning
 - Plan task to machine mapping *a priori* (HEFT)
 - Costly, Does not consider current conditions

- Incremental
 - Add task to queue when ready
 - Simple, can lead to sub-optimal (e.g. wait time for large jobs)

DAG Scheduling Strategies under Dynamism

- Just-in-time planning
 - Pegasus: Stage at a time, when ready

[§]Pegasus: Mapping Scientific Workflows onto the Grid

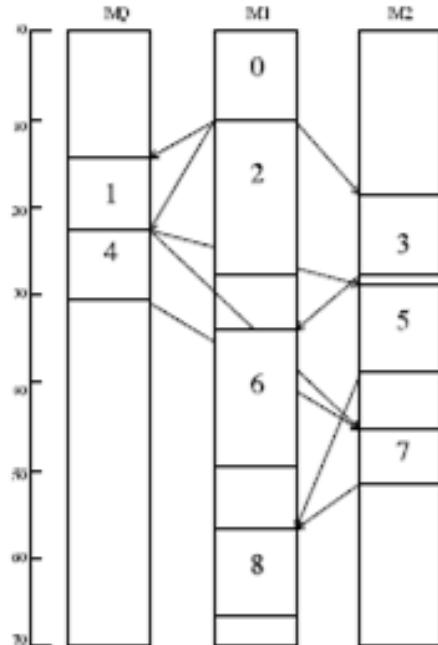


Dynamic DAG Scheduling Strategies

- Just-in-time rescheduling
 - Start with HEFT. At runtime, use actual task time to decide rescheduling.
 - *Slack & spare time* gives us leeway
- **Spare time** between a pairs of dependent nodes
 - DAG/machine dependence
 - Maximal time the source node can execute for without affecting the start of the sink node
- **Slack time** is the minimum spare time on any path from a node to the exit node
 - Maximum delay that can be tolerated, without affecting the overall makespan.
 - Slack = 0 → Node on Critical Path

Dynamic DAG Scheduling

- $ST(j)$ is the expected start time of node j
- $DAT(i, j)$ is the time at which data required by node j from node i will arrive on its machine
- $FT(i)$ is the finish time of node i in the given schedule


Spare time between node i & successor j (4&7)

$$\text{Spare}_{\text{DAG}}(i, j) = ST(j) - DAT(i, j),$$

For adjacent tasks i and j in a machine (3&5)

$$\text{Spare}_{\text{SameMach}}(i, j) = ST(j) - FT(i),$$

Maximal value that can be added to the execution time of this task without affecting the overall makespan (5&7)

$$\text{Slack}(i) = \min_{\forall j \in D_i} (\text{Slack}(j) + \text{Spare}(i, j)).$$

Reading

- A low-cost rescheduling policy for efficient mapping of workflows on grid systems, Rizos Sakellariou and Henan Zhao, *Scientific Programming* 12 (2004) 253–262
- Scheduling Workflows with Budget Constraints, Rizos Sakellariou and Henan Zhao, *Integrated Research in GRID Computing*, 2007

Summary: Scheduling on the Cloud

- Different types of applications
 - Stateful vs Stateless
 - Continuous Dataflows
- Client+Cloud
- Scale up vs Out
- Exclusivity, Variability
- Resource Sizing, Costs
- Elasticity

Scheduling

- List Scheduling
- HEFT Scheduling of DAGs
- Multi-criteria optimization
 - Scheduling on a Budget
- Dynamism

ILO 4

- Application Execution Models on Clouds:
 - *Design and implement* Cloud applications that can scale up on a VM and out across multiple VMs.
 - *Illustrate* the use of load balancing techniques for stateful and stateless applications.
 - *Characterize* resource allocation strategies to leverage elasticity and heterogeneity of Cloud services