DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES @
dream-lab.in Indian Institute of Science, Bangalore
DREAM:Lab

SE252:Lecture 25, Apr 16
ILO5: Performance & Consistency

(BASE & Eventual Consistency)

Yogesh Simmhan

Today’s Lecture based on © Ken Birman’s CS5412 Spring 2012 (Cloud
Computing), Lecture 10 & 8: Logical Clocks & ACID vs BASE

©DREAM:Lab, 2014
This work is licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US

B DREAN:Lab Y ())

Deadlines

= 23/24 Apr, Thu/Fri: Final Project Report/Demo
(20%)
* See slide from Lectures 21+22.

= 23 Apr, Thu: Research Summary (10%)

* See next page slide

= 25 Apr, Sat: Homework C (10%)

* Posted online today

= 27 Apr, Mon 2-5PM: Final Exam (15%)

* Full syllabus

* Review lectures, homework, text book &
citations to external sources.

B DR EAN:Lab Y (&)

Research Review Comments

= Report should be self-contained
» Do not use phrases, incomplete sentences

» Start a section with a summary of the
section’s goals.

* Avoid “numbered lists”. Instead have self
contained paragraphs

» Offer your critique and “cite” the section
number

* Use IEEE/ACM format, Include references

B DREAN:Lab Y ())

Recall that clouds have tiers

= Focus has been on client systems and the network,
and the way that the cloud has reshaped both

= LooRed superficially at the tiered structure of clouds
» Tier 1: Very lightweight, responsive “web page builders”
that can also route (gor handle) “web services” method
invocations. Limited to “soft state”.

* Tier 2: (key,value) stores and similar services that support
tier 1. Basically, various forms of caches.

* Inner tiers: Online services that handle requests not
handled in the first tier. These can store persistent files,
run transactional services. But we shield them from load.

* Back end: Runs offline services that do things like indexing
the web overnight for use by tomorrow morning’s tier-1
services.

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAM:Lab

Replication

= A central feature of the cloud

= To handle more work, make more copies

* In the first tier, which is highly elastic, data center
mana%ement layer pre-positions inactive copies of
virtual machines for the services we might run

» Exactly like installing a program on some machine
* If load surges, creating more instances just entails

» Running more copies on more nodes

» Adjdusting the load-balancer to spray requests to new
nodes

* If load drops... just Rill the unwanted copies!

» }_ittlelal or no warning. Discard any “state” they created
ocally.

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DR EAN:Lab Y (&)

Replication is about keeping copies

= The term may sound fancier but the meaning
isn’t

= Whenever we have many copies of something
we say that we’ve replicated that thing

» But usually replica does connote “identical”

* Instead of replication we use the term redundancy
for things like alternative communication paths
(e.g. if we have two distinct TCP connections ﬁom
some client system to the cloud)

» Redundant things might not be identical.
Replicated things usually play identical roles and
have equivalent data.

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())

Things we can replicate in a cloud

= Files or other forms of data used to handle requests

» If all our first tier systems replicate the data needed for
end-user requests, then they can handle all the work!
» Two cases to consider

» In one the data itself is “write once™ like a photo. Either you
have a replica, or don’t

» In the other the data evolves over time, like the current
inventory count for the latest iPad in the Apple store
= Computation

* Here we replicate some request and then the work of
computing the answer can be spread over multiple
programs in the cloud

* We benefit from parallelism by getting a faster answer
» Can also provide fault-tolerance

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DR EAN:Lab Y (&)

Many things “map” to replication

= As we just saw, data (or databases),
computation

= Fault-tolerant request processing

= Coordination and synchronization (e.g. “who’s
ilgl chc;t; e of the air traffic control sector over
aris:

= Parameters and configuration data

= Security Reys and lists of possible users and
the rules for who is permitted to do what

= Membership information in a DHT or some
other service that has many participants

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())

So... focus on replication!

= If we can get replication right, we’ll be on the
road to a highly assured cloud infrastructure

= Key is to understand what it means to
correctly replicate data at cloud scale...

= ... then once we know what we want to do, to
find scalable ways to implement needed
abstraction(s)

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())

Concept of “consistency”

» We would say that a replicated entity behave in a
consistent manner if mimics the behavior of a
non-replicated entity
» E.g. if | ask it some question, and it answers, and

then you ask it that question, your answer is

either the same or retlects some update to the
underlying state

* Many copies but act like just one

= An inconsistent service is one that seems
“broken”

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())

Co
Im

A

nsistency lets us ignore

hlementation

consistent distributed system will often have
many components, but users observe
behavior indistinguishable from that of a
single-component reference system

Reference Model Implementation

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

http://www.delldeaton.com/images/Omega 2531-80 Vanquish 1-18 20060314_002 pc-crop 1000x750.jpg
http://www.delldeaton.com/images/Omega 2531-80 Vanquish 1-18 20060314_002 pc-crop 1000x750.jpg
http://images.google.com/imgres?imgurl=http://image.guardian.co.uk/sys-images/Arts/Arts_/site_furniture/2008/05/08/Bond460x276.jpg&imgrefurl=http://www.guardian.co.uk/film/filmblog/2008/may/05/week&usg=__8PXW09AHBYA0e0IbUv_r-Qs5kAc=&h=276&w=460&sz=15&hl=en&start=42&um=1&tbnid=frnioDXHT-jnNM:&tbnh=77&tbnw=128&prev=/images?q=james+bond+watch&ndsp=20&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGIH_en&sa=N&start=40&um=1
http://images.google.com/imgres?imgurl=http://image.guardian.co.uk/sys-images/Arts/Arts_/site_furniture/2008/05/08/Bond460x276.jpg&imgrefurl=http://www.guardian.co.uk/film/filmblog/2008/may/05/week&usg=__8PXW09AHBYA0e0IbUv_r-Qs5kAc=&h=276&w=460&sz=15&hl=en&start=42&um=1&tbnid=frnioDXHT-jnNM:&tbnh=77&tbnw=128&prev=/images?q=james+bond+watch&ndsp=20&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGIH_en&sa=N&start=40&um=1

B DR EAN:Lab Y (&)

Dangers of Inconsistency

My rent check
bounced?

= Inconsistency causes bugs That can't be right!

* Clients would never be able to
trust servers... a free-for-all

mmmmmmmmmm

Jason Fa 'B150.00 |
—agtirttie —
M\{?T;Lﬁgw_

= Weak or “best effort” consistency?
» Common in today’s cloud replication schemes

» But strong security guarantees demand
consistency

* Would you trust a medical electronic-health records
system or a bank that used “weak consistency” for
better scalability?

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

ACID & BASE

= A model for correct behaviour of databases
* Name was coined (no surprise) in California in 60’s

= Atomicity: even if “transactions” have multiple

operations, does them to completion (commit)
or rolls back so that they leave no effect (abort)

= Consistency: A transaction that runs on a
correct database leaves it in a correct
(“consistent™) state

= Isolation: It looks as if each transaction ran all by
itself. Basically says “we’ll hide any concurrency

= Durability: Once a transaction commits, updates
can’t be lost or rolled back

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())
ACID eases development

= No need to worry about a transaction leaving
some sort of partial state

* For example, showing Tony as retired and yet leaving
some customer accounts with him as the account rep

= Transaction can’t glimpse a partially completed
state of some concurrent transaction

» Eliminates worry about transient database
inconsistency that might cause a transaction to crash

= Serial & Serializable Execution
» Offers concurrency while hiding side-effects

= But costs are not small
* O(n?)..0(n>) for replicated ACID, n is replica set size

Jim Gray, Pat Helland, Patrick E. O'Neil, Dennis Shasha: The Dangers of Replication and a Solution.

SIGMOD 1996:173-182
© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

= Basically Available Soft-State Services
with Eventual Consistency

* Methodology for transforming transactional
application into more concurrent & less rigid

* Guide programmers to a cloud solution that
performs much better

= Doesn’t guarantee ACID properties
* Uses the CAP Theorem

BASE: An ACID Alternative, DAN PRITCHETT, May/June 2008 ACM QUEUE
© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

= Basically Available
* Goal is to promote rapid responses.
» Partitioning faults are rare in data centers
» Crashes force isolated machines to reboot

* Need rapid responses even when some
replicas on critical path can’t be contacted

» Fast response even if some replicas are slow or
crashed

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

= Soft State Service
* Runs in first tier. Can’t store permanent data.
* Restarts in a “clean” state after a crash

* To remember data:

» Replicate it in memory in enough copies to never
lose all in any crash

» Pass it to some other service that Reeps “hard
state”

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

= Eventual Consistency

* OK to send “optimistic” answers to external client
» Send reply to user before finishing the operation

* Can use cached data (without staleness checRk)
» Can guess the outcome of an update
» Can sRip locks, hoping no conflicts happen

* Later, if needed, correct any inconsistencies in an offline
cleanup activity

= Developer ends up thinking hard and working
hard!

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())
Amazon’s Dynamo DB

= Key-Value Store

» Simple Get() & Put() operations on objects
with unique ID. No queries.

= Highly Available
» Even the slightest outage has significant
financial consequences
= Service Level Agreements

* Guaranteeing response in 300ms for 99.9%
of requests at a peak load of 500 req/sec

Dynamo: Amazon’s Highly Available Key-value
Store, Giuseppe DeCandia, et al, SOSP, 2007

B DREAN:Lab Y ())

Design Choices

= Sacrifice strong consistency for
availability
» “always writeable”. No updates are rejected.
» Conflict resolution is executed during read

instead of write, i.e. “always writeable”.

= Incremental scalability & decentralization
* Symmetry of responsibility
* Heterogeneity in capacity

= All nodes are trusted

B DREAN:Lab Y ())
Techniques

Problem

Technique

Advantage

Partitioning

Consistent Hashing

Incremental Scalability

High Availability for writes

Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates.

Handling temporary failures

Sloppy Quorum and hinted
handoff

Provides high availability and
durability guarantee when
some of the replicas are not
available.

Recovering from permanent
failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the background.

Membership and failure
detection

Gossip-based membership
protocol and failure
detection.

Preserves symmetry and
avoids having a centralized
registry for storing
membership and node
liveness information.

B DREAN:Lab Y ())

Partitioning
Key K
= Consistent hashing @/
* Output range of hash func. on @ __
Rey Is a fixed “ring / | | NodesB.C
* Hash value corresponds to a N dewin
virtual node @ @ | aciuding.
= Each physical node A)T
responsible for multiple ONOS

virtual nodes

= Adapt to capacity of physical nodes

= Incrementally add/remove nodes
* Node unavailable: Load balance on available ones

* Node joins: Accepts range of virtual nodes from existing
ones

B DREAN:Lab Y ())

Replication

= Each data item is |

replicated at N hosts. / | Mo C

* “preference list”: The list of @ @ l}fg&?
nodes responsible for ‘)k

storing a particular Rey.

\ @ @ /

» SRip virtual nodes present D stores (A, B], (8, C], (C, D]
on same physical node
= Gossip protocol

* Propagates changes
among nodes

B DREAN:Lab Y ())

Data Versioning & Consistency

= Put() may return to its client before the
update is applied at all replicas

= Get() may return many versions of same
object
= Challenge

» Distinct version sub-histories need to be reconciled.

= Solution

» Uses vector clocks to capture causality between
different versions of the same object.

B DREAM:Lab

Consistency using Logical (Vector)

Clocks

= Vector clock: List of (node,
counter) pairs.

Every version of every object
is associated with one vector
clock.

= If the counters on the first
object’s clock are less-

t
t

nan-or-equal to all of the

nodes in the second clock,

hen the first is an

ancestor of the second
and can be forgotten.

i.e. first object happened
before secjond objpee:t

&)

write
handled by Sx
D1 ([Sx,1])

write
handled by Sx
D2 ([Sx,2])
write write
handled by Sy handled by Sz
D3 ([Sx,2],[Sy,1]) D4 ([Sx.2],[Sz,1])

reconciled

\ /and written by

Sx

D5 ([Sx,3],[Sy,11[Sz,1])

B DR EAN:Lab Y (&)

Consistency & Quorum

= Writes are successful if ‘w’ replicas can be
updated (W<N)

= Reads return ‘r’ replica values (r<N)

= Reads & writes dictated by slowest replica
*Setr+w > N

= If get() has multiple replica versions, return
causally “unrelated” versions

* i.e. remove partial ordered & only return causally
unordered versions for reconciliation

= Client writes the reconciled version back

B DREAN:Lab Y ())

\Vogels: World-Wide Failure Sensing

= Vogels wrote a paper in which he argued that
we really could do much better
* In a cloud computing setting, the cloud

management system often “forces” slow nodes
to crash and restart

» Used as a Rind of all-around fixer-upper
» Also helpful for elasticity and automated management

» So in the cloud, management layer is a fairly
trustworthy partner, it we were to make use of it

» We don’t maRe use of it, however, today

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DR EAN:Lab Y (&)

The Postman Always Rings Twice

= Suppose the mailman wants a signature
* He rings and waits a few seconds

* Nobody comes to the door... should he assume
you’ve died?

= Hopefully not

= Vogels suggests that there are many reasons
a machine might timeout and yet not be
faulty

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())

Causes of delay in the cloud

= Scheduling can be sluggish

= A node might get a burst of messages that overflow
its input sockets and triggers message loss, or
networR could have some kind of malfunction in its
routers/links

= A machine might become overloaded and slow
because too many virtual machines were mapped on
it

= An application might run wild and page heavily

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())
\/ogels suggests?

= He recommended that we add some Rind of
failure monitoring service as a standard
network component

= Instead of relying on timeout, even protocols
like remote procedure call (RPC) and TCP
would ask the service and it would tell them

= It could do a bit of sleuthing first... e.g. ask
the O/S on that machine for information...
check the network...

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())
Why clouds don‘t do this

= In the cloud our focus tends to be on keeping
the “majority” of the system running

* No matter what the excuse it might have, if some
node is slow it makes more sense to move on

. Keepinrg the cloud up, as a whole, is way more
valuable than waiting for some slow node to
catch up

» End-user experience is what counts!

= So the cloud is casual about Rilling things

= ... and avoids services like “failure sensing”
since they could become bottlenecks

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())

Also, most software is buggy!

= A mix of “Bohrbugs” and “Heisenbugs”

* Bohrbugs: Boring and easy to fix. Like Bohr
model of the atom

. -Ieisenbu%s: They seem to hide when you try to
vin them down (caused by concurrency an
oroblems that corrupt a data structure that
won’t be visited for a while). Hard to fix because
crash seems unrelated to bug

= Studies show that p(ett)(l much all programs

retain bugs over their full lifetime.

» So if something is acting strange, it may be
failing!

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())
Worst of all... timing is flakey

= At cloud scale, with millions of nodes, we
can trust timers at all

= Too many things can cause problems that
manifest as timing faults or timeouts

= Again, there are some famous models...

and again, none is ideal for describing real
clouds

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DREAN:Lab Y ())

Things we just can't do

= We can’t detect failures in a trustworthy, consistent
manner

= We can’t reach a state of “common kRnowledge”
concerning something not agreed upon in the first
place

= We can’t guarantee agreement on things (election of
a leader, update to a replicated variable) in a way
certain to tolerate failures

© Ken Birman’s CS5412 Spring 2012 (Cloud Computing)

B DR EAN:Lab Y ())

ILO 5: Performance & Consistency on
Clouds

= Describe and compare different performance
metrics for evaluating Cloud applications and

= demonstrate their use for application
measurement.

= Explain the distinctions between Consistency,
Availability and Partitioning (CAP theorem),
and

= discuss the types of Cloud applications that
exhibit these features.

