
SE252: Introduction to Cloud Computing (Jan 2015)

©Yogesh Simmhan, 2015
This work is licensed under a Attribution 4.0 International (CC BY 4.0).

Project 0: Cloud & Web Service Environment

Due by Midnight Thu Jan 22, 2015
0 points for assessment, but required to be completed

1. Goals
The intent of this project is to get the class familiar with the basics of building simple web services. We
will REST web services with JSON as the specific technologies in the course project.
- At the end of Project 0, students should be able to describe and demonstrate (1) client-server pattern

of interaction using synchronous execution, (2) remote procedure calls with marshalling and
unmarshalling of parameters, and (3) coordinate execution of composite web services.

- They should also be able to use tool, libraries and languages to compose and invoke web services,
and scripts to automate execution.

2. Project Tasks
- Download the project0-statup.zip file from the course webpage. Follow the instructions in the

README.txt.

a. Deploy & Test the REST Web Service: Deploy the provided ‘echo’ REST web service whose

application logic (se252.jan15.calvinandhobbes.project0.EchoService) implements the
HTTP GET method using Jersey REST library while taking ‘msg=$message’ as a parameter. For e.g.
GET project0/echo?msg=Hello%20World HTTP/1.1 would be a sample request accepted by the
service, where $message parameter is Hello World. The method responds with a JSON version of the
text “I heard you say ‘$message’” as the response. E.g. {“message” : “I heard you say
‘Hello World’”} would be the sample JSON response.
You should be able to launch the REST web service within the Grizzly Web Server using the provided
EchoServiceLauncher on any machine (e.g., host1) from the commandline, as described in the

http://creativecommons.org/licenses/by/4.0/

SE252: Introduction to Cloud Computing (Jan 2015)

©Yogesh Simmhan, 2015
This work is licensed under a Attribution 4.0 International (CC BY 4.0).

README.txt. Test this web service using a commandline or web browser client that can invoke this
service from a different machine (e.g. host2) by taking the REST URL and the message as
parameters. This client—service interaction should be demonstrated.

b. Deploy & Test the Web Form: A sample HTML web form (EchoWebform) that has a single text box
to accept a message and a submit button that submits the form using a GET method is provided. The
application logic of this web form will call the echo REST web service with the $message set to the
contents of the text box, thus acting as a REST client. The received JSON response will be converted
to an EchoMessage Java object by the Jersey REST library, and the form will then format and display
the message in the object as an HTML web page.
Once you launch the REST web service from step (a) above on host1, next launch the Grizzly web
server for the web form (EchoWebformLauncher) on host2, passing commandline parameters as
specified in the README.txt of the startup project. Access the web form from a web browser
running on host3 (e.g., your laptop), submit the form and display the response in the browser. This
interaction between browser (host3), web form/REST Client (host2) and web service (host1) should
be demonstrated.

c. Develop Composite Web Service: Using the above service, form and client as a sample, you need to

develop a new TripBuddy REST web service that takes two cities as source and destination for a
particular traveller, and returns (i) the current weather in these two cities, (ii) the time zone
difference between the cities, and (iii) Interesting activities in the destination. You will get the
information required by (i-iii) by invoking external web services, such as [1,2,3]. The request to your
REST service will be performed as a HTTP GET and the response should be in JSON returning just
the information for (i-iii).
You should provide and demonstrate a web form that takes the cities as input, invokes the REST
service, and displays the response in a Web Browser. The web service invoked directly from a web
browser to display the JSO response should also be demonstrated.

1 Weather Underground Web Service, http://www.wunderground.com/weather/api/d/docs
2 Google Timezone Service, https://developers.google.com/maps/documentation/timezone/
3 Google Places, Bing Maps, etc.

http://creativecommons.org/licenses/by/4.0/
http://www.wunderground.com/weather/api/d/docs

SE252: Introduction to Cloud Computing (Jan 2015)

©Yogesh Simmhan, 2015
This work is licensed under a Attribution 4.0 International (CC BY 4.0).

3. Guidelines
- Read and follow the project tasks, guidelines and submission instructions carefully.
- You can implement these services and clients in any language. However, you are only provide a Java

sample. If you are using a different language, you are responsible for developing the entire programs
(including the echo services, web forms, travel service, etc.) for (a-c) and will not be able to use the
sample startup code.

- Automate building, running and testing using scripts where possible. It will ease your life.
- There are many online resources. Use them wisely. Also use the mailing list to get doubts cleared.

But do NOT post solutions or code there.
- Start early. There are lots of “gotchas” when programming for and on the Cloud! And, there may be

additional issues when working from the IISc network. Plan to finish early.

4. Submissions Instructions
Submit a single file named SE252:JAN2015:PROJ-0:$StudentName.tar.gz containing all necessary
source files required for running the demo. Also submit the MD5 checksum of the tar/gzipped file by
email to ‘simmhan@serc.iisc.in’ with the subject ‘SE252:JAN2015:PROJ-0:StudentName’. The total file
size should be <5MB. You will have to demonstrate the project 0 by deploying from exactly this tar.gz
file (hence the MD5 checksum) on three hosts which can have any standard web servers, libraries, tools,
etc. of your choice.

Include a README.txt in the zipped submission with instructions on building and running all the project
tasks. This should have enough information, including external software, servers, libraries and
dependencies, to compile and run the project 0.

5. Deadline
Submit your project by email before midnight IST on Thu, Jan 22. Only a single submission will be
accepted.

http://creativecommons.org/licenses/by/4.0/

